Enfermedades infecciosas

669 visualizaciones

Publicado el

Publicado en: Entretenimiento y humor
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
669
En SlideShare
0
De insertados
0
Número de insertados
6
Acciones
Compartido
0
Descargas
28
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.
  • Image References Carr, J. Spores of the bacterium that causes anthrax . CDC. Retrieved 9-18-2006 from http://phil.cdc.gov/phil/home.asp Ewing Jr, E. Electron microscope image of an HIV particle. CDC. Retrieved 9-18-2006 from http://phil.cdc.gov/phil/home.asp Foster, S. (1975). Child with smallpox (ID #7055). CDC. Retrieved 9-18-2006 from http://phil.cdc.gov/phil/home.asp Gathany, J. Researcher working with an infectious agent. CDC. Retrieved 9-18-2006 from http://phil.cdc.gov/phil/home.asp Stauffer, L. Bacteria growing in a laboratory culture dish . CDC. Retrieved 9-18-2006 from http://phil.cdc.gov/phil/home.asp
  • Infectious Diseases - Definitions Human disease can be caused by infectious agents, genetic defects, environmental factors, or a combination of these factors. Here we will discuss only diseases brought about by infectious agents or pathogens. The infectious disease process begins at the time of infection, when a pathogen enters a host and starts to reproduce. Many infectious agents, though, are killed by the body’s numerous defenses before they can begin to reproduce. Further more, an infection may not necessarily produce disease; the infectious agent could be defeated quickly or it could hide somewhere in the body where it cannot be detected. The rapidity of onset and severity of the disease caused by an infectious agent depends on the virulence of the pathogen. References Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc. National Institute of Allergy and Infectious Disease, National Institutes of Health. (2002). Microbes in sickness and in health . Retrieved 9-18-2006 from http://www.niaid.nih.gov/publications/microbes.htm
  • Infectious Diseases as a Cause of Death Infectious diseases are a leading cause of death worldwide. They are an especially large problem in the developing world and in children. In addition to the human toll, infectious diseases present a large financial burden. In the United States alone, it has been estimated that the annual cost of medical care for treating infectious diseases is about $120 billion. References Baylor College of Medicine. (2006). Infectious diseases . Department of Molecular Virology and Microbiology. Retrieved 9-18-2006 from http://www.bcm.edu/molvir/eidbt/eidbt-mvm-id.htm Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc. World Health Organization. (2006). Infectious diseases. Retrieved 9-18-2006 from http://www.who.int/topics/infectious_diseases/en/
  • Infectious Diseases Throughout History Infectious diseases probably have always afflicted humans. Numerous ancient writings describe recognizable infectious diseases that are still with us today. Through the centuries, these diseases have resulted in significant losses of human life. The scope of human death has at times influenced history; it is thought that the 1918 flu epidemic played a contributing role in ending World War I. In modern times, improved sanitation and the development of vaccines and antibiotics have saved many lives. However, despite advances in technology, success in eradicating smallpox, and virtually eliminating many other diseases in developed countries, new and old infectious diseases continue to plaque humans. This is clearly evidenced by the HIV epidemic and the looming potential threat of another influenza pandemic. Sadly, even though we have the technology and vaccines to prevent disease, especially childhood illnesses, these advances are not accessible to many of the children in the developing world. Nearly 1.5 million children continue to die of measles each year for lack of a vaccine that costs less than 12 cents per dose. References Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc. National Institute for Allergy and Infectious Diseases. (2006). Microbes in sickness and in health. Retrieved 9-20-2006 from http://www.niaid.nih.gov/publications/microbes.htm Baylor College of Medicine. (2006). Infectious diseases . Department of Molecular Virology and Microbiology. Retrieved 9-18-2006 from http://www.bcm.edu/molvir/eidbt/eidbt-mvm-id.htm Image References Tumpey, T. (2005). 1918 influenza virions ( ID # 8160 ) . CDC. Retrieved 12-28-2006 from http://phil.cdc.gov/phil/details.asp
  • Koch’s Postulates Bacteria were discovered in 1675 by Antony van Leeuwenhoek, but it wasn’t until 1876 that a German physician named Robert Koch first demonstrated that specific diseases are associated with particular microorganisms. Koch developed a set of criteria to show that anthrax, a disease of cattle, was caused by a specific bacterium, named Bacillus anthracis, and that tuberculosis was caused by a separate distinct bacterium. Koch presented his discovery of Mycobacteium tuberculosis in a lecture in March of 1882. He brought his entire laboratory setup to the lecture hall and demonstrated his procedures for his audience, inviting them to check his findings themselves. His methods were so innovative that his criteria still are useful today in identifying disease-causing agents. Difficulties in applying these criteria can arise, however, for agents that are difficult to grow in culture or where a suitable, susceptible experimental host cannot be found. This is an especially difficult situation, and raises ethical concerns, where humans are the only known host. Robert Koch was awarded the Nobel Prize in Physiology and Medicine in 1905 for his work in tuberculosis. References Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc. Flint, S. J., Enquist, L. W., Krug, R. M., Racaniello, V. R., & Skalka, A. M. (2000). Principles of virology: Molecular biology, pathogenesis, and control . ASM Press. Nobel Prize Organization. (2006). Robert Koch and tuberculosis. Retrieved 9-18-2006 from http://nobelprize.org/educational_games/medicine/tuberculosis/readmore.html National Institute for Allergy and Infectious Diseases. (2006). Microbes in sickness and in health. Retrieved 9-20-2006 from http://www.niaid.nih.gov/publications/microbes.htm Image Reference United States National Library of Medicine. Robert Koch, old negative no. 66-70. Retrieved 9-18-2006 from http://wwwihm.nlm.nih.gov/cgi-bin/gw_44_3/chameleon
  • Infectious Disease Agents Most disease-causing organisms, or pathogens, are too small to be seen without a microscope. Some (e.g., most viruses) are even too small to be visible under a light microscope and must be viewed with the more powerful electron microscope. Because of their microscopic size, these minute organisms often are referred to as microbes or microorganisms. The study of these organisms is called microbiology, and scientists who study these organisms are microbiologists. Not all microbes cause disease; many are beneficial and even essential. Bacteria, in the digestive system, for example are important partners in digestion. Microbes that cause disease are sometimes informally referred to as “germs” or “bugs”. The five main groups of pathogens are bacteria, viruses, protozoa, fungi, and helminths. Bacteria are simple, single-celled organisms that lack an organized nucleus or membrane enclosed organelles. They often have a cell wall (prokaryotes), and their cells usually are rod-shaped or spherical. Commonly known diseases caused by bacteria are diarrheal diseases, pneumonia, strep throat, tuberculosis, and anthrax. Viruses are particles of nucleic acid (DNA or RNA) surrounded by a protective coat that replicate within specific host cells and can spread from cell to cell. Infectious diseases caused by viruses include the flu, the common cold, AIDS, chickenpox, and hepatitis. Protozoa are single-celled, motile, eukaryotic organisms, found in the Kingdom Protista, that can be human parasites. A protozoan known as Plasmodium (over 170 species), causes malaria, an infectious disease that is one of the world’s top killers. Fungi are made of eukaryotic cells (organized nucleus and membrane enclosed organelles). All fungi, with the exception of the yeast group, are multi-cellular organisms that absorb nutrients from the environment. Fungi can cause athlete’s foot, sinusitis, skin diseases, and vaginal infections. Helminths (worms and flukes) are invertebrate animals, some of which are parasitic. Wuchereia bancrofti is transmitted to humans by way of the mosquito. The mature adults pass into lymphatic glands, obstructing lymphatic drainage and resulting in a disfiguring condition, known as elephantiasis. References Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Bbology of the cell, (4 th ed.). New York: Garland Publishing, Inc. Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc. National Institute for Allergy and Infectious Diseases. (2006). Microbes in sickness and in health. Retrieved 9-20-2006 from http://www.niaid.nih.gov/publications/microbes.htm Image References Ajello, L. Yeast-type fungus that causes a skin disease (ID # 4314) . CDC. Retrieved 11-29-2006 from http://phil.cdc.gov/phil/home.asp CDC. Rod-shaped bacteria . Retrieved 9-18-2006 from http://phil.cdc.gov/phil/home.asp Glenn, S. Malaria parasite inside a red blood cell . CDC. Retrieved 11-29-2006 from http://phil.cdc.gov/phil/home.asp Melvin, M. (1979). Scolex of Taenia solium ( ID #1515). CDC. Retrieved 11-29-2006 from http://phil.cdc.gov/phil/home.asp Murphy, F. (1975). SARS-related virus (ID # 4814) . CDC. Retrieved 11-29-2006 from http://phil.cdc.gov/phil/home.asp
  • Transmission of Infectious Diseases There are many ways that infectious diseases can spread. Pathogens usually have specific routes by which they are transmitted, and these routes may depend on the type of cells and tissue that a particular agent targets. For example, because cold viruses infect the respiratory tract, they are dispersed into the air via coughing and sneezing. Once in the air, the viruses can infect another person who is unlucky enough to inhale air containing the virus particles. Agents vary greatly in their stability in the environment. Some viruses may survive for only a few minutes outside of a host, while some spore-forming bacteria are extremely durable and may survive in a dormant state for a decade or more. As noted, some diseases, such as colds, the flu and tuberculosis, spread through the air when an infected person coughs or sneezes. Another route or transmission is through ingestion of contaminated food or water. Water- and food-borne illnesses can be caused by bacteria, viruses, or protozoa. This risk of contracting these illnesses is greatest with impure and untreated water and undercooked or improperly stored foods. Infectious diseases can also be transmitted through body fluids, such as blood, semen, and saliva. For example, HIV easily can be passed through contact with blood and semen, however, even though the virus has been found in saliva, there are no documented cases where HIV has been transmitted by contact with saliva. Similarly, there are no known cases of transmission of HIV by mosquitoes. Additionally, infectious agents can be passed through blood and blood products during medical procedures, such as blood transfusions. Many hemophiliacs receiving blood products were unwittingly infected with HIV before the responsible agent was identified and blood donations were screened. Other people can be infected as a result of sharing contaminated needles. Touching contaminated objects commonly leads to infection, especially among pre-school children. Fecal to oral transmission is a major path for diarrheal diseases, such as rotavirus and Norwalk virus, that are widespread in daycare centers. It is also possible to become infected with some agents by touching surfaces such as doorknobs and telephones, especially those located in public places. Pigs and birds, in particular, are known to harbor viruses that can mutate and spread to humans upon contact. Finally, pathogens can be transmitted through insect vectors, such as mosquitoes. Mosquitoes are responsible for the spread of malaria, yellow fever, and West Nile virus, among other diseases. Ticks, which spread Lyme’s disease, are another common vector. References Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc. National Institute for Allergy and Infectious Diseases. (2006). Microbes in sickness and in health. Retrieved 9-20-2006 from http://www.niaid.nih.gov/publications/microbes.htm Image References Chinese students wearing masks during the SARS epidemic. Courtesy: VOA Gathany, J. (2006). Feeding female mosquito (ID# 9182). CDC. Retrieved 11-29-2006 from http://phil.cdc.gov/phil/home.asp
  • Phases of Infectious Disease Diseases caused by infectious agents usually run a standard course that is associated with different signs and symptoms. Before we describe these different phases of infectious diseases, we must first define the terms, “signs” and “symptoms.” Signs of an infectious disease are characteristics of a disease that can be observed by examining a patient. They include things such as fever, coughing, rash, vomiting, and diarrhea. Symptoms, on the other hand, can be felt only by the patient. They include pain, headache, and nausea. The time period from when a person first becomes infected until signs and symptoms become apparent is called the incubation period. During this phase, the person is not aware that he or she is infected, but he or she may already be contagious (capable of passing the agent on to others). The length of the incubation period is typical for a specific agent but can vary, depending on how virulent the agent is, the dose of infectious agent entering the body, and the route of infection (i.e., where the agent enters the body relative to the tissue it infects). In the prodromal phase, a person experiences mild, nonspecific symptoms. During this time, the agent is continuing to multiply and the person is contagious. This phase is absent in some diseases, which cause a person to feel ill suddenly, without any warning. The clinical phase (also called the invasive phase or acute phase) is the period in which typical disease signs and symptoms are evident. During this phase, there comes a time when symptoms reach their greatest intensity. Called the “acme,” this is the height of the battle between the pathogen that is invading and destroying tissue and the efforts of the body’s immune system to contain and obliterate the invader. Fever is usually a component of this phase, during which the patient is most contagious. Once the acme is reached, the number of infectious agents begins to drop and the signs and symptoms start to decrease. This is the decline phase, during which the body’s activities gradually return to normal, the tissues heal, and the individual no longer experiences any symptoms. The recovery phase also is known as the convalescent phase. With some diseases, such as chickenpox, a person can still be contagious during recovery until the lesions are healed. From the pathogen’s perspective, it is advantageous to induce the signs and symptoms of disease, such as coughing, sneezing, vomiting, and diarrhea, because these are ways that the infectious agent can be released from one host and spread to another. And although we do not enjoy feeling ill, these signs and symptoms are beneficial to us, in that they make us more likely to stay in bed and conserve energy to fight the pathogen and minimize the chance of spreading the disease to others. Reference Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc.
  • Types of Infectious Disease Infectious diseases are classified by their duration and their location within the body, among other characteristics. “Acute,” “chronic,” and “latent” are terms used to describe the duration of a disease, how quickly the symptoms develop, and how long they last. The common cold is an acute disease; tuberculosis is a chronic disease; and herpes infections can produce latent infections with recurring attacks interspersed by periods with no symptoms (e.g. cold sores). “ Local” and “systemic” refer to the location of a disease within the body. Pathogens that spread from a more localized site, enter the bloodstream and are carried to other tissues can produce a systemic infection. “ Primary” and “secondary” characterize the order of infection. A primary infection, usually an acute infection, occurs first in a previously healthy person. Sometimes, when a person is suffering from a primary infection and his or her immune system has been weakened by battling the primary infection, the person can succumb to a secondary infection caused by another agent. Thus, a person who has caught a cold due to a virus may then become ill with an ear infection caused by a bacterium because his/her immune system is incapable of fighting off another agent in its weakened state. Reference Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc.
  • How Infectious Agents Cause Disease Many microbes produce toxins or enzymes that damage host tissue. Bacteria produce two groups of toxins: endotoxins and exotoxins. Endotoxins are part of the cell wall of some types of bacteria and are released into host tissues when the bacteria divide or die. Exotoxins are secreted by bacteria into host tissues; they are sufficient to make a person ill even in the absence of the bacterial organisms. There are seven different types of the exotoxin produced by the organism that causes botulism (Clostridium botulinum ). Types A, B, E, and F cause a severe type of food poisoning, producing one of the most poisonous substances known to mankind. Types C, D, and E cause illness in mammals, birds, and fish. Botox, a pharmaceutical, is a purified and diluted A neurotoxin used for clinical and cosmetic purposes (e.g., to remove wrinkles by paralyzing forehead muscles for several months). Viruses must invade a cell directly in order to reproduce and in the process disrupt normal host cell functions. In many cases, the assembly and release of new virus particles causes the cell to lyse or rupture, releasing the new virus particles which can go on to infect more cells. Fungi and protozoa also can release toxins and enzymes that destroy host tissues. Some protozoa, such as the parasite that causes malaria, directly invade host cells. Many signs and symptoms of disease are brought on by the host’s immune system in response to pathogen invasion. Fever, for example, is an attempt by your body to kill invading microbes that are sensitive to changes in temperature. Sneezing, coughing, vomiting, and diarrhea all are efforts by the body to rid itself of pathogens. Reference Black, J. G. (2005). Microbiology (6 th ed.). John Wiley & Sons, Inc. Image Reference Goldsmith, C., Feoriino, P., Palmer, E. L., & McManus, W. R. (1989). HIV particles on the surface of a blood cell (ID # 8244). CDC. Retrieved 11-29-2006 from http://phil.cdc.gov/phil/home.asp
  • Example of an Infectious Disease - Flu Influenza virus is spread through the air and causes an acute infection of cells within the respiratory tract. Following a brief incubation and prodromal phase, an infected individual will experience chills, fever, body aches, headache, weakness, and sometimes a sore throat and gastrointestinal symptoms. Except for the elderly, young children, and people with certain health conditions, seasonal flu epidemics are not life-threatening. A person usually recovers within a week, but fatigue can last up to several weeks. The flu often can be prevented with a vaccine. However, the “flu shot” must be given yearly because the flu virus mutates rapidly and thus, flu strains vary from year to year. There are two types of vaccines: live, attenuated (weakened) viruses; and inactivated. The vaccine stimulates the body’s immune system to identify and remember the invading virus. Subsequently, if the virus is detected, the defense is mounted and the virus is neutralized before it can spread. Anti-viral drugs are available, but these must be administered early in the course of infection to reduce the symptoms and duration of the disease. Of greater concern are variants of the flu that have never existed in human populations before. These variants can cause much more deadly pandemics because our immune systems have not experienced them previously and cannot mount an effective immune response against them. During the Spanish flu pandemic of 1918–1919, more than 500,000 people died in the United States alone. Currently, there is an outbreak of a strain of avian flu, called influenza A/H5N1. H5N1 has killed large number of birds in Asia, and now has spread to parts of Europe, Africa, and the Middle East. So far, there have been only a limited number of human infections. These resulted almost exclusively from direct contact with infected birds, but there is concern that the virus will mutate in a way that will make it easily transmissible from person to person. It is unclear whether effective vaccines and antiviral drugs could be produced in sufficient quantities in a short enough time period to protect the population should this virus acquire the capability of spreading easily from one person to another. Unfortunately, scientists can not predict if or when this virus—or other bird flu strains—might mutate and become transmissible among humans. References Baylor College of Medicine. (2006). Infectious diseases . Department of Molecular Virology and Microbiology. Retrieved 9-18-2006 from http://www.bcm.edu/molvir/eidbt/eidbt-mvm-id.htm Hahn, D. B., Payne, W. A., & Mauer, E. B. (2005). Focus on health (7 th ed.). New York: McGraw Hill.
  • Example of an Infectious Disease - AIDS AIDS, caused by the virus, HIV, has become the most devastating infectious diseases of our lifetime. Since 1983, when HIV was first identified, approximately one million Americans have been infected. In 2006, approximately 40 million people were living with HIV infection worldwide, over four million became newly infected, and about three million died of AIDS. The epidemic is growing most rapidly among minority populations and women. HIV infects white blood cells, primarily those called T cells, which are part of our immune systems. HIV destroys the ability of these cells to fight infection by other agents. Therefore, HIV-infected patients sometimes die from infection by other viruses, bacteria, or other agents that are not normally harmful to healthy individuals. Some AIDS patients also develop unusual cancers because of defects in their immune systems. HIV is not easily spread from person to person because it requires direct contact with the body fluids (blood and semen) of an HIV-infected person and it does not survive for very long in the environment. Transmission can occur through sexual contact, sharing of contaminated needles, transfusion of infected blood or blood products, and from mother to infant. There has not been documentation of HIV transmission in saliva or by blood carried by biting insects such as mosquitoes. There usually is a long lag period from the time someone is infected with HIV until the person begins to experience the symptoms of AIDS. (HIV infection does not follow the typical disease progression pattern described earlier, and the length of time to progression to AIDS can be highly variable.) Soon after infection, an individual may experience flu-like symptoms, but then remain asymptomatic (without symptoms) for up to a decade. However, during this phase, the virus continues to replicate and the infected person is contagious. The steady increase in the number of HIV particles during the period while the virus is reproducing leads to a gradual decline in the level of immune system cells, known as CD4-positive (CD4+) T cells. A normal person has about 1,000 CD4+ T cells in a milliliter of blood. Once CD4+ T cell numbers fall to 200 cells per milliliter, the patient enters the phase of HIV infection known as AIDS. From this point on, it becomes increasingly difficult for patients to fight off infections. Signs and symptoms of HIV/AIDS include tiredness, fever, loss of weight, diarrhea, and swollen glands. As of yet, there is no effective vaccine to prevent AIDS, and there is no cure. There are drugs that will reduce the number of HIV virus particles in the patient’s body (the viral load), which improves the length and quality of life. However, these drugs do not rid a person of HIV. Moreover, the drugs may become ineffective over time as the virus mutates and becomes resistant to the drugs. Once treatment is ceased, virus levels go back to earlier levels. Currently, there are four classes of anti-HIV drugs that block three essential steps in the virus reproductive cycle: the entry phase (where the virus particle fuses with the host cell); the reverse transcription step (where the virus makes a DNA copy of its RNA genome); and the protease step (where a virus protein chops long strands of virus proteins into smaller, functional units). These usually are given in combination, as a “cocktail” called “highly active antiviral therapy,” or HAART for short. HAART is very effective for many people, at least for a period of time, but the treatment can produce unpleasant side effects and is too expensive for most people in the developing world. Most of all, it is important to remember that HAART is not a cure for AIDS. References Baylor College of Medicine. (2006). Infectious diseases . Department of Molecular Virology and Microbiology. Retrieved 9-18-2006 from http://www.bcm.edu/molvir/eidbt/eidbt-mvm-hivaids.htm. Hahn, D. B., Payne, W. A., & Mauer, E. B. (2005). Focus on health (7 th ed.). New York: McGraw Hill. Image Reference CDC. (1983). Human Immunodeficiency Virus ( ID # 8254 ) . Retrieved 12-28-2006 from http://phil.cdc.gov/phil/details.asp
  • Reducing the Spread of Infectious Diseases The most effective method of stemming the spread of infectious disease is through vaccination. Vaccines consist of weakened or killed microbes, or just components of a pathogen, and stimulate the body’s natural defenses—the immune system—to combat infections. Vaccination has eliminated smallpox, nearly eradicated poliovirus from much of the world, and drastically reduced the incidence of childhood infections, such as measles, mumps, and whooping cough, at least in the developed world. Influenza vaccines are available to reduce the occurrence of seasonal flu, although the shot must be given yearly due to the extreme variance of the influenza virus from season to season. Vaccines for other infectious diseases, especially HIV, still are being sought. Antibiotics are effective for many types of bacterial infections (although they are entirely useless against viruses). But increasingly, bacteria are becoming resistant to the arsenal of antibiotics at our disposal. Very few drugs work well against viruses (anti-viral drugs for influenza and HIV were discussed in the previous two slides). Anti-fungal drugs exist, but their use is limited. There are no vaccines against protozoan parasites, and other medications against them are becoming ineffective. Therefore, protection from insect vectors such as mosquitoes and control of mosquito populations are crucial strategies in containing the spread of insect-borne diseases, such as malaria. Good sanitation, water purification, hand washing, and proper cooking and storage of foods all help to reduce the prevalence of infectious disease. In cases of highly contagious, often fatal diseases, quarantine is employed as a means of preventing the spread of disease through a community. However, regardless of the disease, it is wise to limit contact with other individuals when ill. Reference Hahn, D. B., Payne, W. A., & Mauer, E. B. (2005). Focus on health (7 th ed.). New York: McGraw Hill. National Institute for Allergy and Infectious Diseases. (2006). Microbes in sickness and in health. Retrieved 9-20-2006 from http://www.niaid.nih.gov/publications/microbes.htm Image Reference Gathany, J. (2003). Influenza virus vaccine, (ID# 5404) . CDC. Retrieved 8-14-2006 from http://phil.cdc.gov/phil/quicksearch.asp
  • Emerging Infectious Diseases Although we have developed the technology to control many infectious diseases, new diseases continue to arise and spread. Emerging infectious diseases can be caused by both “new” and “old” pathogens. Diseases that recently appeared in a population, or whose range of hosts or geographic locations are rapidly expanding or threatening to expand in the near future are referred to as “emerging diseases.” Diseases whose incidence had significantly declined in the past, but have again reappeared are known as “re-emerging diseases.” Examples of emerging diseases are HIV, influenza, SARS, and Ebola. Tuberculosis is a disease that is re-emerging. “Old” pathogens are considered emerging if they are spreading to new species or new geographic locations. Diseases sometimes emerge due to natural processes, such as the evolution of the infectious agent over time, but many emerging diseases result from human activities. These include population growth, migration from rural areas to cities, international air travel, blood transfusions, poverty, wars, and destructive ecological changes caused by economic development and land use. Many emerging diseases arise when infectious agents in animals are passed to humans (referred to as zoonoses). This is occurring more and more as the human population grows and spreads into new geographical regions, resulting in increased contact with wild animal. It is not difficult to imagine a scenario in which a hunter in a remote area of Africa becomes infected with a “new” infectious agent and then travels to a village, where he infects other locals, one of whom boards a plane and infects his fellow passengers, who then travel to other parts of the world before any infection is detected. In this way, a disease could emerge quite rapidly. For an emerging disease to become established, at least two events must occur: (1) the infectious agent must be introduced into a vulnerable population; and (2) the agent must have the ability to spread readily from person to person, cause disease, and sustain itself within the population. Both of these events have occurred with HIV. To date, only the first has happened with avian flu. Even diseases previously thought to have been under control can sometimes make a comeback. This can occur when an agent becomes resistant to the drugs, such as antibiotics, used to treat the disease. An infectious agent can mutate so that these drugs are no longer useful in combating the disease. Drug resistance is on the rise, in large part due to overuse and misuse of antibiotics and other drugs. Tuberculosis, for example, is becoming highly antibiotic-resistant. Malaria, too is becoming increasingly drug-resistant. A frightening possibility is the emergence of an infectious disease due to its deliberate introduction into human or agricultural populations for terrorist purposes. Since the terrorist attacks of September 11, 2001, and the subsequent mailing of anthrax-laced letters, this threat is being taken very seriously. Agents considered most dangerous include those which cause anthrax, botulism, plague, and smallpox. Other potential agents classified as risks, albeit lower level ones, include West Nile virus, Salmonella, SARS, influenza, yellow fever, and drug-resistant tuberculosis. References National Institute of Allergy and Infectious Diseases. (1999). Understanding emerging and re-emerging infectious diseases . NIH Curriculum Supplements Series. Retrieved 9-18-2006 from http://www.niaid.nih.gov/publications/curriculum.htm Baylor College of Medicine. (2006). Infectious diseases . Department of Molecular Virology and Microbiology. Retrieved 9-18-2006 from http://www.bcm.edu/molvir/eidbt/eidbt-mvm-pbt.htm Baylor College of Medicine. (2006). Infectious diseases . Department of Molecular Virology and Microbiology. Retrieved 9-18-2006 from http://www.bcm.edu/molvir/eidbt/eidbt-mvm-eid.htm
  • Enfermedades infecciosas

    1. 1. EnfermedadesInfecciosasPor Christine Herrmann,PhDBioEd Online
    2. 2. www.BioEdOnline.orgEnfermedades Infecciosas- Definiciones Enfermedad - una condición patológica de los tejidos o partes delcuerpo caracterizado por un grupo identificable de los signos ysíntomas. Enfermedades infecciosas - enfermedad causada por un agenteinfeccioso, como una bacteria, virus, protozoos y hongos.Puedetransmitirse a otras personas. Infección - se produce cuando un agente infeccioso entra en el cuerpoy empieza a reproducirce, puede conducir a la enfermedad. Patógeno - agente infeccioso que causa la enfermedad. Anfitrión - organismo infectado por otro organismo. Virulencia - capacidad relativa de un agente para causar enfermedadsevera y rápida en un anfitriòn.BioEd Online
    3. 3. www.BioEdOnline.orgEnfermedades Infecciosas como causa de muerte Las enfermedades infecciosas son responsables de un cuarto aun tercio de todas las muertes en todo el mundo. Las enfermedades infecciosas representan más de la mitad detodas las muertes en niños menores de 5 años. De las diez principales causas de muerte elaborado por laOrganización Mundial de la Salud, cinco se deben aenfermedades infecciosas. El principio único agente de asesinos son el VIH / SIDA, elpaludismo y la tuberculosis. Los otros grandes asesinos sonmenores de las infecciones respiratorias y enfermedadesdiarreicas, que son causadas por una variedad de agentes.BioEd Online
    4. 4. www.BioEdOnline.orgEnfermedades infecciosas en la HistoriaCortesia de CDCRecreacion de 1918 , Virus deGripe .La gripe española mató amás de 500.000 personas enlos Estados Unidos y hasta 50millones en todo el mundo.BioEd Online Los agentes infecciosos siempre han causadoenfermedad en seres humanos. La viruela ha sido descrito en antiguos escritosegipcios y chinos y han sido responsables de másmuertes que todas las demás enfermedadesinfecciosas juntas. Hay pruebas de que el paludismo y la poliomielitishan existido desde tiempos antiguos. .En el siglo XIV la peste bubónica o muerte Negra,mató a unos 20 millones de personas sólo enEuropa. En el siglo XX la gripe mato de 1.918 muertos hasta50 millones de personas en todo el mundo Cerca de 20 millones de personas han muerto deSIDA hasta la fecha.
    5. 5. www.BioEdOnline.orgPostulados de KochBioEd Online Koch desarrollo cuatro criterios para demostrarque una enfermedad es causada por un agente. El agente específico debe estar asociado contodos los casos de la enfermedad. El agente debe ser aislado de un enfermo deacogida y crecido en la cultura. Cuando el agente ha crecido se introduce enun huésped susceptible sano, el agente debeprovocar la misma enfermedad. El mismo agente debe ser aislado de nuevoa partir de la infección experimental deacogida.
    6. 6. www.BioEdOnline.orgAgentes de Enfermedades InfecciosasCortesia de CDCBioEd Online La mayoría de los agentes infecciosos que causan laenfermedad son de tamaño microscópico y, por tanto,se denominan microbios o microorganismos. Diferentes grupos de agentes que causan laenfermedad son: Bacterias Virus Protozoarios (protistas) Hongos Helmintos (Animales)
    7. 7. www.BioEdOnline.orgTransmision de Enfermedades InfecciosasCortesia de VOAEstudiantes chinos conmáscaras durante un brote deSRASCortesia de CDCMosquito Aedes aegyptiConocido por transmitir la fiebre dedengueBioEd Online Agentes que causan enfermedades infecciosasse pueden transmitir de muchas maneras. A través del aire A través de alimentos o aguacontaminados A través de fluidos corporales Por contacto directo con objetoscontaminados Por vectores animales como insectos,aves, murciélagos,
    8. 8. www.BioEdOnline.orgFases de las enfermedades infecciosas Período de incubación - el tiempo entre la infección y laaparición de signos y síntomas. Fase prodrómica –- los síntomas inespecíficos de señalde inicio de algunas enfermedades. Fase clínica - una persona experimenta los síntomas ysignos típicos de la enfermedad. Fase de declive - El hundimiento de los síntomas. Fase de recuperación - Han desaparecido los síntomas,sanar los tejidos, y el cuerpo recupera la fuerza.BioEd Online
    9. 9. www.BioEdOnline.orgClasificacion de las enfermedades infecciosas Por la duración Aguda - desarrolla y sigue su curso rápidamente. Crónica - se desarrolla más lentamente y suele ser menos grave, peropuede persistir por un largo, período de tiempo indefinido. Latente - se caracteriza por períodos entre un brote y otro, no hay síntomasde la enfermedad. Por localización Local - se limita a un área específica del cuerpo. Sistémico - una enfermedad generalizada que afecta a la mayoría de lospatógenos con el cuerpo distribuido ampliamente en los tejidos. Por el momento Primaria - inicial de la infección en una persona previamente sana. Secundaria - infección que se produce en una persona debilitada por unainfección primaria.BioEd Online
    10. 10. www.BioEdOnline.org¿Como los agentes infecciosos causan laenfermedad? Producción de sustancias tóxicas,tales como toxinas y enzimas, quedestruyen las células y los tejidos. Invasión directa y la destrucciónde las células del huésped. Activación de la respuesta delsistema inmune del huésped a lasenfermedades principales signos ysíntomas.Cortesia de CDCVirus de la InmunodeficienciaHumana. Virus de VIH-1 sepuede ver en la superficie delos linfocitos.BioEd Online
    11. 11. www.BioEdOnline.orgEjemplo de Enfermedad Infecciosa - GripeBioEd Online Aguda enfermedad contagiosa causada por el virus de la gripe. Infección del tracto respiratorio, pero los síntomas sentir en todotodo el cuerpo. Las epidemias se producen estacionalmente de baja mortalidad,más mortíferas pandemias ocurren varias veces cada siglo. Altamente cambiante del virus que puede infectar a varias especies,incluidos los seres humanos, cerdos y aves. Preocupación de que la gripe aviar actual se llegará a una nuevapandemia.
    12. 12. www.BioEdOnline.orgEjemplo de Enfermedades Infecciosas -SIDACortesia de CDCEsta muy magnifica micrográficaelectrónica de transmisión (TEM)de imagen revelaron la presenciade las formas maduras de losvirus de la inmunodeficienciahumana (VIH) en una muestra detejido bajo investigación.BioEd Online SIDA (Síndrome de Inmuno Deficiencia Adquirida) esla enfermedad causada por el virus llamado VIH(virus de inmunodeficiencia humana). El VIH ataca las células del sistema inmunológico ydestruye su capacidad para combatir la infección porotros agentes. El VIH se transmite mediante el intercambio directode fluidos corporales. Hay un largo período de tiempo desde la infección porel VIH a la aparición del SIDA. Fármacos anti-VIH prolongar la duración y la calidadde vida, pero no hay ninguna vacuna o cura para elSIDA.
    13. 13. www.BioEdOnline.orgReducir la propagacion de EnfermedadesInfecciosasBioEd Online Vacunas Los antimicrobianos Buena higiene personal y el saneamiento Protección contra los mosquitos Cuarentena
    14. 14. www.BioEdOnline.orgEnfermedades Infecciosas EmergentesBioEd Online Las enfermedades emergentes son los que han aparecidorecientemente en una población, o cuya incidencia o rangogeográfico está aumentando rápidamente. Enfermedades pueden surgir o resurgir debido a: aparición de un agente desconocido anteriormente. evolución de un nuevo agente infeccioso. propagación de un agente infeccioso a un nuevo huésped. propagación de un agente infeccioso a los nuevos lugares. adquisición de resistencia a los antimicrobianos de las drogas. introducción deliberada en una población.

    ×