SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
Introduction to Seismology: Lecture Notes

16 March 2005





TODAY’S LECTURE
    1. Snell’s law in spherical media
    2. Ray equation 

    3. Radius of curvature

    4. Amplitude → Geometrical spreading

    5. τ – p



SNELL’S LAW IN THE SPHERICAL MEDIA


                                           c1                           At each interface


                                           c2                           sin i1 sin j
      i1 A                                                                    =
                                                                          c1    c2
                         i2 B
                j                                                               OQ             OQ
                                                                        sin j =      sin i2 =
                                                                                OA             OB
                                                    Q                           OB          r
                                    r2                                  sin j =    sin i2 = 2 sin i2
                    r1                                                          OA          r1
                                                                        r1 sin i1 r2 sin i2
                                                                                 =          ≡p
                                                                           c1        c2

                                         O 


                           sin i                                                             r sin i
“flat earth” →      p=                                   “spherical earth” →        p=
                             c                                                                  c

                                    rp
At critical angle,        p=             we can get depth of layer.
                                c(rp )


RAY EQUATION

                                           Directional cosine (3D and 2D)

                    s1                             dx1 2   dx       dx                      dx 2    dz
                                               (      ) + ( 2 )2 + ( 3 )2 = 1           (      ) + ( )2 = 1
                                    s2             ds      ds       ds                      ds      ds

      dz     i ds                                                   ∧
                                           Direction of ray ( n )
           dx                                  ∧                                   dx                         dz
                                n              n = (n x ,0, n z )           nx =                       nz =
                                                                                   ds                         ds


                                                            1
Introduction to Seismology: Lecture Notes

16 March 2005




                          1∧
Using Eikonal equation ∇T = n,
                          c
Generalized Snell’s law (Ray Equation)


                                d   1      d 1 dxi
                                  (      )= (          )
                               dxi c( x)   ds c( x) ds


This equation means that the change of wavespeed is related to change of ray geometry.

If there is no change in x direction, the derivative of x direction should be zero. 



d 1 dx                   1 dx                     sin i
  (        )=0      ⇒         = Const.      ⇒           = Const.    ⇒   Snell’s law !!
ds c(x) ds               c ds                      C


How does this angle i change in the direction of propagation?



d                 di dz di d                                        di ( s )    dc
   (sin i) = cos i =      = ( pc)                  ⇒                         =p
ds                ds ds ds ds                                        ds         dz

Therefore, the change of angle is related to the change of velocity. 

     dc                                             di
If      is large                         ⇒              is large

     dz                                             ds

     dc                                  di

If      is zero (c = const.)    ⇒            is zero (i = const.)             Straight

     dz                                  ds
Ray !! 



RADIUS OF CURVATURE

                                 R : the radius of curvature

                                 ds = Rdi
                                      ds 1 dz            1                     1
                                 R=     =     =                ⇒        R=
                    di                di p dc            dc                    dc
                                                       p( )                  p( )
                                                         dz                    dz
                         R
                                 R is related to wavespeed gradient and ray parameter.

     dz i ds
                                      dc
       dx                        If      =0       ⇒R → ∞      Straight Ray !!
                                      dz




                                             2
Introduction to Seismology: Lecture Notes

16 March 2005




     dc
If      large ⇒ rapid change in c Strong Gradient

     dz




                                                              r sin i
                                                   from p =           ,
                                                                 c
                                                   small i → small p → large R

         i




AMPLITUDE-GEOMETRICAL SPREADING



Focusing-defocusing





                                                                                       Shadow Zone




                     Focusing effect                          Defocusing effect




We examine the property of             dp / dx
                                             dp d dT  d 2T
                                               =  ( )= 2
                                             dx dx dx dx

Small    dx      and large     dp   → dp / dx goes to infinity → large amplitude (focusing)


Large    dx      and small     dp   → dp / dx goes to zero     → small amplitude (Shadow zone)

                                                 We also examine x( p )
                         x 

                                                        ds                   x/2
                                                 T =2              tan i =
             i                                          c                     h

     c            ds 
                   h


                                                      3
Introduction to Seismology: Lecture Notes

16 March 2005




One layer : x = 2h tan i


                                    n
Multiple layers          : x =
2   ∑h
                                   j =0
                                          j   tan i j

Continuous case 


          zp               zp                                zp                     zp
                               1                                      dz                dz
x( p ) =
2 ∫ tan idz =
2
p ∫

                            (         −
 p 2 )
−1/ 2 dz =
2
p ∫
                =
2 p ∫

           0               0 c( z )
                                    2
                                                              0  1 / c 2 −
 p 2       0
                                                                                        η




                            d ⎧               ⎫    dx ⎧              ⎫ ⎧ p d 2c ⎫
      zp                         zp                                         z
dx             dz              ⎪        dz    ⎪             1            ⎪         ⎪
   = 2 ∫
              + 2 p ⎨
∫
             ⎬
⇒ 
 ≈ ⎨−             ⎬ + ⎨+ ∫ 2 dz ⎬
dp             2
          1 / c −
 p 2                  2   2
                            dp ⎪ 0 1 /
c − p ⎪     dp ⎩ (dc / dz ) 0 ⎭ ⎪ 0 dz
                                                                         ⎩         ⎪
                                                                                   ⎭
       0                       ⎩              ⎭


The change of distance in terms of ray parameter is related to gradient of wave speed

at surface and gradient of the change in wavespeed between surface and turning point.



                                              d 2c
Changes of velocity gradient,                       , are small → large distance x for smaller ray

                                              dz 2

               dx

parameter p,       < 0 → “Normal” or Prograde behavior
               dp



                                                                       T 

                 c(z)



                                                                                             dx
                                                                                                <0
   z 
                                                                                       dp

                                                                                                Δ





                                                        4
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                             Distance (�)




                                                                                Intercept time (�)
                                 Depth




                                           Velocity                                                  Ray parameter (p)
            Ray parameter (p)




                                                                         Time




                                         Distance (�)                                                Distance (�)


                                                           Figure by MIT OCW.


     This    figure   represents    ray    paths, T ( ∆ ) , p( ∆ ) , and                                       τ ( p)   relationships for
     velocity increasing slowly with depth.


( Adapted from S.               Stein      and   M.     Wysession   (2003),     An Introduction to Seismology, Earthquakes,
     and Earth Sturcture, Blackwell Publishing, p160)




                                                                    5
Introduction to Seismology: Lecture Notes

16 March 2005





                                 d 2c
Changes of v elocity gradient,        , are large → samll distance x for smaller ray

                                 dz 2
               dx
parameter p,      > 0 → Retrograde behavior
               dp
                           dx
If dp   ≠ 0 and dx = 0 →      = 0 → “Caustic” or focusing effect
                           dp


               c(z)




   z




                                            dx
                                   Caustic, dp = 0        large amplitude
                      dx
                         >0
                      dp                          dx
                                                     <0
                                                  dp

                 dx
                    <0
                 dp




                                             6
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                         Distance (�)




                                                                               Intercept time (�)
                                  Depth




                                          Velocity                                                  Ray parameter (p)
              Ray parameter (p)




                                                                        Time




                                          Distance (�)                                                 Distance (�)


                                                         Figure by MIT OCW.



This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity
increasing rapidly with depth. In this case we can see the triplication and retrograde
behavior.
( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology,
Earthquakes, and Earth Sturcture, Blackwell Publishing, p160)




                                                                   7
Introduction to Seismology: Lecture Notes

     16 March 2005





                                                         Distance (�)




                                                                         Intercept time (�)
                                  Depth




                                           Velocity                                           Ray parameter (p)
           Ray parameter (p)




                                                                        Time




                                          Distance (�)                                              Distance (�)


                                                         Figure by MIT OCW.



This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity
decreasing slowly within a low-velocity zone. In this case we can see the shadow zone
where no direct geometric arrivals appear, and hence discontinuous T ( ∆ ) , p( ∆ ) , and τ ( p) curves.

( Adapted from                  S. Stein and M. Wysession (2003), An Introduction to Seismology,
Earthquakes,                   and Earth Sturcture, Blackwell Publishing, p161)




                                                                   8
Introduction to Seismology: Lecture Notes

16 March 2005





τ – p
                                                          dT
                                        T ( p) = τ ( p) +      x = τ ( p) + px
  T 
                                                     dx
                                       ⇒ 	        τ ( p) = T ( p ) − px
                                                  dτ
                                       ⇒             = − x( p)
  τ2
                                             dp
                                       The function τ(p) is called the intercept

                                                                                -
  τ1

                                       slowness representation of the travel time 

                                       curve. Just as p is the slope of the travel

           x1         x2          Δ    time curve, T(x), the distance x is minus the

                                       slope of the τ(p) curve.





                                             9

Más contenido relacionado

La actualidad más candente

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ragulan Dev
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
การแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตการแปลงทางเรขาคณิต
การแปลงทางเรขาคณิต
Ruangrit Ritruangdej
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
Nishant Prabhakar
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
ketanaka
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)
Nigel Simmons
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient wind
Tarun Gehlot
 

La actualidad más candente (17)

Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
การแปลงทางเรขาคณิต
การแปลงทางเรขาคณิตการแปลงทางเรขาคณิต
การแปลงทางเรขาคณิต
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
 
The imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical latticeThe imbalanced antiferromagnet in an optical lattice
The imbalanced antiferromagnet in an optical lattice
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
Reflections worksheet1student
Reflections worksheet1studentReflections worksheet1student
Reflections worksheet1student
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : Geodesics
 
Multi-subject models of the resting brain
Multi-subject models of the resting brainMulti-subject models of the resting brain
Multi-subject models of the resting brain
 
Learning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivityLearning and comparing multi-subject models of brain functional connecitivity
Learning and comparing multi-subject models of brain functional connecitivity
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 
Notes 9-2
Notes 9-2Notes 9-2
Notes 9-2
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient wind
 

Similar a Seismic

Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdt
Adam Getchell
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and note
smktsj2
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
Deepak Agarwal
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
Tarun Gehlot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
Tarun Gehlot
 
20110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-320110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-3
Computer Science Club
 

Similar a Seismic (20)

6m optics
6m optics6m optics
6m optics
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Newtonian limit in cdt
Newtonian limit in cdtNewtonian limit in cdt
Newtonian limit in cdt
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
S 7
S 7S 7
S 7
 
Legendre
LegendreLegendre
Legendre
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Form 5 formulae and note
Form 5 formulae and noteForm 5 formulae and note
Form 5 formulae and note
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Cepstral coefficients
Cepstral coefficientsCepstral coefficients
Cepstral coefficients
 
Diffraction part i
Diffraction part iDiffraction part i
Diffraction part i
 
Examples Of Central Forces
Examples Of Central ForcesExamples Of Central Forces
Examples Of Central Forces
 
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdfUse Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
Use Theorem 14.1 to show that for all odd n= 3 we have D2n is isomo.pdf
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Ex 7 4_fsc_part1
Ex 7 4_fsc_part1Ex 7 4_fsc_part1
Ex 7 4_fsc_part1
 
20110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-320110911 models of web graphs and their applications raigorodsky_lecture1-3
20110911 models of web graphs and their applications raigorodsky_lecture1-3
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Último (20)

Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

Seismic

  • 1. Introduction to Seismology: Lecture Notes 16 March 2005 TODAY’S LECTURE 1. Snell’s law in spherical media 2. Ray equation 3. Radius of curvature 4. Amplitude → Geometrical spreading 5. τ – p SNELL’S LAW IN THE SPHERICAL MEDIA c1 At each interface c2 sin i1 sin j i1 A = c1 c2 i2 B j OQ OQ sin j = sin i2 = OA OB Q OB r r2 sin j = sin i2 = 2 sin i2 r1 OA r1 r1 sin i1 r2 sin i2 = ≡p c1 c2 O sin i r sin i “flat earth” → p= “spherical earth” → p= c c rp At critical angle, p= we can get depth of layer. c(rp ) RAY EQUATION Directional cosine (3D and 2D) s1 dx1 2 dx dx dx 2 dz ( ) + ( 2 )2 + ( 3 )2 = 1 ( ) + ( )2 = 1 s2 ds ds ds ds ds dz i ds ∧ Direction of ray ( n ) dx ∧ dx dz n n = (n x ,0, n z ) nx = nz = ds ds 1
  • 2. Introduction to Seismology: Lecture Notes 16 March 2005 1∧ Using Eikonal equation ∇T = n, c Generalized Snell’s law (Ray Equation) d 1 d 1 dxi ( )= ( ) dxi c( x) ds c( x) ds This equation means that the change of wavespeed is related to change of ray geometry. If there is no change in x direction, the derivative of x direction should be zero. d 1 dx 1 dx sin i ( )=0 ⇒ = Const. ⇒ = Const. ⇒ Snell’s law !! ds c(x) ds c ds C How does this angle i change in the direction of propagation? d di dz di d di ( s ) dc (sin i) = cos i = = ( pc) ⇒ =p ds ds ds ds ds ds dz Therefore, the change of angle is related to the change of velocity. dc di If is large ⇒ is large dz ds dc di If is zero (c = const.) ⇒ is zero (i = const.) Straight dz ds Ray !! RADIUS OF CURVATURE R : the radius of curvature ds = Rdi ds 1 dz 1 1 R= = = ⇒ R= di di p dc dc dc p( ) p( ) dz dz R R is related to wavespeed gradient and ray parameter. dz i ds dc dx If =0 ⇒R → ∞ Straight Ray !! dz 2
  • 3. Introduction to Seismology: Lecture Notes 16 March 2005 dc If large ⇒ rapid change in c Strong Gradient dz r sin i from p = , c small i → small p → large R i AMPLITUDE-GEOMETRICAL SPREADING Focusing-defocusing Shadow Zone Focusing effect Defocusing effect We examine the property of dp / dx dp d dT d 2T = ( )= 2 dx dx dx dx Small dx and large dp → dp / dx goes to infinity → large amplitude (focusing) Large dx and small dp → dp / dx goes to zero → small amplitude (Shadow zone) We also examine x( p ) x ds x/2 T =2 tan i = i c h c ds h 3
  • 4. Introduction to Seismology: Lecture Notes 16 March 2005 One layer : x = 2h tan i n Multiple layers : x = 2 ∑h j =0 j tan i j Continuous case zp zp zp zp 1 dz dz x( p ) = 2 ∫ tan idz = 2 p ∫ ( − p 2 ) −1/ 2 dz = 2 p ∫ = 2 p ∫ 0 0 c( z ) 2 0 1 / c 2 − p 2 0 η d ⎧ ⎫ dx ⎧ ⎫ ⎧ p d 2c ⎫ zp zp z dx dz ⎪ dz ⎪ 1 ⎪ ⎪ = 2 ∫ + 2 p ⎨ ∫ ⎬ ⇒ ≈ ⎨− ⎬ + ⎨+ ∫ 2 dz ⎬ dp 2 1 / c − p 2 2 2 dp ⎪ 0 1 / c − p ⎪ dp ⎩ (dc / dz ) 0 ⎭ ⎪ 0 dz ⎩ ⎪ ⎭ 0 ⎩ ⎭ The change of distance in terms of ray parameter is related to gradient of wave speed at surface and gradient of the change in wavespeed between surface and turning point. d 2c Changes of velocity gradient, , are small → large distance x for smaller ray dz 2 dx parameter p, < 0 → “Normal” or Prograde behavior dp T c(z) dx <0 z dp Δ 4
  • 5. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity increasing slowly with depth. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p160) 5
  • 6. Introduction to Seismology: Lecture Notes 16 March 2005 d 2c Changes of v elocity gradient, , are large → samll distance x for smaller ray dz 2 dx parameter p, > 0 → Retrograde behavior dp dx If dp ≠ 0 and dx = 0 → = 0 → “Caustic” or focusing effect dp c(z) z dx Caustic, dp = 0 large amplitude dx >0 dp dx <0 dp dx <0 dp 6
  • 7. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity increasing rapidly with depth. In this case we can see the triplication and retrograde behavior. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p160) 7
  • 8. Introduction to Seismology: Lecture Notes 16 March 2005 Distance (�) Intercept time (�) Depth Velocity Ray parameter (p) Ray parameter (p) Time Distance (�) Distance (�) Figure by MIT OCW. This figure represents ray paths, T ( ∆ ) , p( ∆ ) , and τ ( p) relationships for velocity decreasing slowly within a low-velocity zone. In this case we can see the shadow zone where no direct geometric arrivals appear, and hence discontinuous T ( ∆ ) , p( ∆ ) , and τ ( p) curves. ( Adapted from S. Stein and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Sturcture, Blackwell Publishing, p161) 8
  • 9. Introduction to Seismology: Lecture Notes 16 March 2005 τ – p dT T ( p) = τ ( p) + x = τ ( p) + px T dx ⇒ τ ( p) = T ( p ) − px dτ ⇒ = − x( p) τ2 dp The function τ(p) is called the intercept - τ1 slowness representation of the travel time curve. Just as p is the slope of the travel x1 x2 Δ time curve, T(x), the distance x is minus the slope of the τ(p) curve. 9