SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
1DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution14 February 2013
Integrity  Service  Excellence
Tatjana Curcic
Program Officer
AFOSR/RTB
Air Force Research Laboratory
Atomic and Molecular
Physics Program
Date: 5 March 2013
2DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
2013 AFOSR SPRING REVIEW
NAME: Tatjana Curcic
BRIEF DESCRIPTION OF PORTFOLIO:
Understanding interactions between atoms, molecules, ions, and
radiation.
SUB-AREAS IN PORTFOLIO:
• Cold Quantum Gases
− Strongly-interacting quantum gases
− Ultracold molecules
− New phases of matter
− Non-equilibrium quantum dynamics
• Quantum Information Science (QIS)
− Quantum simulation
− Quantum communication
− Quantum metrology, sensing, and imaging
− Cavity optomechanics
NAME: Tatjana Curcic
BRIEF DESCRIPTION OF PORTFOLIO:
Understanding interactions between atoms, molecules, ions, and
radiation.
SUB-AREAS IN PORTFOLIO:
• Cold Quantum Gases
− Strongly-interacting quantum gases
− Ultracold molecules
− New phases of matter
− Non-equilibrium quantum dynamics
• Quantum Information Science (QIS)
− Quantum simulation
− Quantum communication
− Quantum metrology, sensing, and imaging
− Cavity optomechanics
3DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Outline
• Quantum Communication: Quantum Memories and Light-Matter Interfaces
(FY11 MURI)
• Strongly Interacting Photons: Vladan Vuletic (MIT)
• Cavity-based single-photon transistor where one photon can switch 1000 photons:
Wenlan Chen, et al, preprint
• Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar
Painter (CalTech)
• Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012)
• Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012)
• Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in
preparation)
• Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard)
• Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J.
Burek, et al, Nano Lett. 12, 6084 (2012)
• PMMA-diamond hybrid cavities, coupling stable NV centers
• Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley)
• Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
• Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012)
• Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012)
• Ultracold Molecules: Jun Ye, John Bohn (JILA)
• Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
4DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Outline
• Quantum Communication: Quantum Memories and Light-Matter Interfaces
(FY11 MURI)
• Strongly Interacting Photons: Vladan Vuletic (MIT)
• Cavity-based single-photon transistor where one photon can switch 1000 photons:
Wenlan Chen, et al, preprint
• Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar
Painter (CalTech)
• Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012)
• Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012)
• Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in
preparation)
• Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard)
• Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J.
Burek, et al, Nano Lett. 12, 6084 (2012)
• PMMA-diamond hybrid cavities, coupling stable NV centers
• Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley)
• Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
• Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012)
• Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012)
• Ultracold Molecules: Jun Ye, John Bohn (JILA)
• Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
5DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Quantum
Repeater
Site A
Site B
Entanglement
Entanglement
Requirements
• Light-matter interface
• Quantum memory
• Elementary quantum gates
“The quantum internet”, H. J. Kimble,
Nature 453, 1023 (2008)
Enable ultra-secure communication over fiber network or free space
Quantum Networks
6DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
long
coherence
times speed
scalability
NV
Network
frequency
conversion
between
segments
QD
Network
Atomic
Network
• Memory-light entanglement;
• Deterministic quantum gates;
• Long memory lifetime;
• Memory coupling to telecom
light;
• Cavity-enhanced light-memory
coupling.
Quantum Memories and Light-Matter
Interfaces (FY11 MURI)
7DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Quantum Memories and Light-Matter
Interfaces (FY11 MURI)
• Two teams:
• GaTech (PI: A. Kuzmich): U. Michigan, Columbia, Harvard, U. Wisconsin, Stanford, MIT
• UCSB (PI: D. Awschalom): Iowa State U., U. Iowa, Harvard, CalTech
NV-diamond:
• Spin-photon interface: quantum interference
demonstrated (Harvard)
• NV qubit coherence lifetime > 1s (Harvard)
• All-optical control of of NV spins (UCSB)
• Stable NV centers in bulk and nanobeams
• Integrated diamond networks for
nanophotonics (Harvard)
• Engineering shallow spins with N delta-
doping (UCSB)
• SiC and other color centers (UCSB, U. Iowa)
• Accomplishments in 1st year:
Atoms:
• 16s atomic memory (GaTech)
• Rydberg single-photon source (GaTech)
• Nonlinearity at the single-photon level
(MIT/Harvard)
• Single-photon transistor (MIT)
• Coupling atoms with nanofiber cavities
(CalTech)
• Atomic mirrors, integration with
nanophotonics (CalTech)
Quantum dots:
• New scheme to efficiently couple a single QD electron spin to an
optical nanocavity (Stanford)
• More than 40 papers, including 6 Nature/Science and 10 PRLs.
8DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Outline
• Quantum Communication: Quantum Memories and Light-Matter Interfaces
(FY11 MURI)
• Strongly Interacting Photons: Vladan Vuletic (MIT)
• Cavity-based single-photon transistor where one photon can switch 1000 photons:
Wenlan Chen, et al, preprint
• Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar
Painter (CalTech)
• Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012)
• Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012)
• Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in
preparation)
• Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard)
• Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J.
Burek, et al, Nano Lett. 12, 6084 (2012)
• PMMA-diamond hybrid cavities, coupling stable NV centers
• Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley)
• Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
• Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012)
• Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012)
• Ultracold Molecules: Jun Ye, John Bohn (JILA)
• Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
9DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Photon-photon switch and transistor
Vladan Vuletic, MIT
Cavity (signal)
transmission
w/o gate
photon
With gate
photon
ωωc
Experimental setup Atomic level scheme
Wenlan Chen, et al, preprint
10DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Single-photon transistor with gain:
switching 1000 photons with one
control
gate
recovery
signal
gate
gate
storage
Single gate photon suppresses
signal transmission by factor of 6.
More than 1000 signal photons can
be blocked by a single photon!
11DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Future Possibilities
• Quantum non-demolition detector
for traveling optical photons
• Deterministic photon-photon
phase shift
• Photon-photon quantum gates?
• All-optical circuits with feedback
and gain in analogy to electronic
circuits
12DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Outline
• Quantum Communication: Quantum Memories and Light-Matter Interfaces
(FY11 MURI)
• Strongly Interacting Photons: Vladan Vuletic (MIT)
• Cavity-based single-photon transistor where one photon can switch 1000 photons:
Wenlan Chen, et al, preprint
• Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar
Painter (CalTech)
• Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012)
• Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012)
• Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in
preparation)
• Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard)
• Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J.
Burek, et al, Nano Lett. 12, 6084 (2012)
• PMMA-diamond hybrid cavities, coupling stable NV centers
• Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley)
• Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
• Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012)
• Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012)
• Ultracold Molecules: Jun Ye, John Bohn (JILA)
• Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
13DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Nanofiber Optical Trap for Cold Atoms
Jeff Kimble, CalTech
• Strong interactions of single photons
and atoms
 Multi-pass interactions and small mode
volume in an optical cavity (cQED)
 Large optical depth (e.g., atomic
ensembles)
 Strong focusing of light
• A new frontier to achieve all three in
one setting ─ nanofiber atom trap
14DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Etransmitted
Ein
Demonstration of a State-Insensitive
Nanofiber Trap
A. Goban et al., Phys. Rev. Lett. 109, 033603 (2012)ba
tapered
fiber
nanofiber
Nano-fiber
Etransmitted
Ein
Ereflected
~1000 atoms
15DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Mirror atomsMirror atoms Impurity
atom
Input
Reflection
Cavity QED
In Out
Quantum protocols
-Single photon generation
-Entanglement distribution
-Quantum logic
- atoms
- photons
- …
Cavity QED with Atomic Mirrors
D. Chang, L. Jiang, A. Gorshkov & H.J. Kimble, N. J. Phys. 14 063003 (2012)
A Surprise!
• Strong coupling regime can be reached with very low cavity finesse F < 103
• Conventional Fabry-Perot cavity with dielectric mirrors requires finesse F ≈ 105
Nanofiber issues
-Two-color traps increase noise sensitivity
- Ill defined polarizations for trap and
probe fields
- “Noise” from vibrational modes of
nanofiber…
Solution →
16DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
2 μm
1 mm
100 μm
2 μm
• Clear window for trapping of atomic clouds in
Kimble Group MOT
• Arrays of fiber-coupled waveguides (1 shown
here) for multiple device testing in a given
experiment run
Fiber-coupled chip for atom-light coupling
Oskar Painter, CalTech
Evanescent atom-light coupling
Efficient collection fiber
Photonic crystal mirrors/cavities
17DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Outline
• Quantum Communication: Quantum Memories and Light-Matter Interfaces
(FY11 MURI)
• Strongly Interacting Photons: Vladan Vuletic (MIT)
• Cavity-based single-photon transistor where one photon can switch 1000 photons:
Wenlan Chen, et al, preprint
• Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar
Painter (CalTech)
• Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012)
• Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012)
• Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in
preparation)
• Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard)
• Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J.
Burek, et al, Nano Lett. 12, 6084 (2012)
• PMMA-diamond hybrid cavities, coupling stable NV centers
• Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley)
• Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
• Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012)
• Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012)
• Ultracold Molecules: Jun Ye, John Bohn (JILA)
• Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
18DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
V
N Challenges for quantum information
processing:
• Creating identical single spins
• Developing scalable quantum memories
• Fabricating hybrid devices
NV centers provide
• Room temperature quantum coherence
• Long spin coherence (T2 ~ 10 ms)
• Optical initialization and readout
• Solid state system
• Reduced nuclear spin environment
Nitrogen Vacancy Centers in Diamond
19DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Angle-Etched Nanobeam Cavities
Marko Lončar, Harvard
M. J. Burek, N. P. de Leon, et al,
Nano Letters 12, 6084 (2012)
New approach for fabricating nanostructures from bulk diamond
20DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Angle-Etched Diamond Nanobeam Cavities @ Telecom
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1
1500 1502 1504 1506 1508 1510 1512 1514 1516 1518 1520
Wavelength (nm)
Normalizedintensity(a.u.)
Q ~ 20 000
Q ~ 5000
Taper-fiber measurements in telecom
Q1,exp ~ 20 000
Q2,exp ~ 5 000
21DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
5 µm
Challenge: spatial & spectral overlap between a stable NV and a cavity;
Solution:
• Deterministic positioning of cavities around NVs;
• New cavity approach that allows for cavities to be realized
around the same NV multiple times;
22DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Outline
• Quantum Communication: Quantum Memories and Light-Matter Interfaces
(FY11 MURI)
• Strongly Interacting Photons: Vladan Vuletic (MIT)
• Cavity-based single-photon transistor where one photon can switch 1000 photons:
Wenlan Chen, et al, preprint
• Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar
Painter (CalTech)
• Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012)
• Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012)
• Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in
preparation)
• Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard)
• Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J.
Burek, et al, Nano Lett. 12, 6084 (2012)
• PMMA-diamond hybrid cavities, coupling stable NV centers
• Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley)
• Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
• Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012)
• Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012)
• Ultracold Molecules: Jun Ye, John Bohn (JILA)
• Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
23DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Cavity Optomechanics
Common goals:
Dominance of quantum fluctuations over
thermal fluctuations
cooling mechanical oscillator to
ground state
reaching quantum limits for sensitivity
Study and use quantum effects
quantifying and evading measurement
backaction
entanglement of macroscopic object
with light
Route to complex quantum systems
Multi-mode systems (optics and
mechanics)
Optomechanics as link between
quantum objects
Kippenberg and Vahala, Science 321, 1172 (2008)
24DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Cavity Optomechanics with Cold Atoms
Dan Stamper-Kurn, UC Berkeley
trap
probe
…… 𝑍1 𝑍2 𝑍3
trapped
ultracold
rubidium
atoms
Each ensemble represents a mechanical element
2mmMOT
Loading
Conveyor
Belt
Cavity
Locations
Mechanical oscillator:
sheets of atoms
25DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
-
Input = AM tone to measure gain
Input = vacuum noise to measure squeezing

Below shot-noise by
1.4% ±0.1% (stat) ±0.1% (sys)
Non-classical light generation
Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
Sub-shot-noise optical
squeezing observed
• Collective atomic motion is driven
by quantum fluctuations in radiation
pressure
• The back-action of this motion onto
the cavity light field produces
ponderomotive squeezing
26DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Next: Cavity optomechanics with a
mechanical array
widerinitialcloud
• Nearby lattice sites given
different resonances using optical
superlattice
• Sideband asymmetry for each
oscillator
• 6 mechanically distinct
oscillators demonstrated
• Motional state of one
oscillator can be
selectively addressed
• Nanometer-scale spatial
resolution of each
mechanical element
“Optical read-out of the quantum motion of an array of atoms-based mechanical oscillators,” arXiv:1210.5218 (2012)
27DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Outline
• Quantum Communication: Quantum Memories and Light-Matter Interfaces
(FY11 MURI)
• Strongly Interacting Photons: Vladan Vuletic (MIT)
• Cavity-based single-photon transistor where one photon can switch 1000 photons:
Wenlan Chen, et al, preprint
• Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar
Painter (CalTech)
• Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012)
• Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012)
• Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in
preparation)
• Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard)
• Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J.
Burek, et al, Nano Lett. 12, 6084 (2012)
• PMMA-diamond hybrid cavities, coupling stable NV centers
• Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley)
• Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012)
• Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012)
• Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012)
• Ultracold Molecules: Jun Ye, John Bohn (JILA)
• Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
28DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Science with Ultracold Moleculeslog10(density[cm-3])
log10(temperature [K])
-9 -6 -3 0
3
6
9
12
Novel phases
& quantum many-body
Dipolar quantum gas
Quantum information
Ultracold Chemistry
Molecule optics & circuitry
Cold controlled chemistry
Novel collisions
Fundamental tests
Precision measurement
Phase
space
density
Carr, DeMille, Krems, Ye, New. J. Phys. 2009
29DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution
Evaporative Cooling of OH
Jun Ye, John Bohn, JILA
Cooling by at least an
order of magnitude in
temperature and three
orders in phase space
density!!
Benjamin K. Stuhl, et al, Nature 492, 396 (2012)

Más contenido relacionado

La actualidad más candente

Piezoelectric Photothermal Spectroscopy (PPT)_V4
Piezoelectric Photothermal Spectroscopy (PPT)_V4Piezoelectric Photothermal Spectroscopy (PPT)_V4
Piezoelectric Photothermal Spectroscopy (PPT)_V4Nadal Sarkytbayev
 
Exploring structural and dynamical properties of microtubules by means of A...
Exploring structural and dynamical properties  of microtubules by means of  A...Exploring structural and dynamical properties  of microtubules by means of  A...
Exploring structural and dynamical properties of microtubules by means of A...Rita Pizzi
 
Probing Molecular Electronic Structure Using High Harmonic Generation Tomography
Probing Molecular Electronic Structure Using High Harmonic Generation TomographyProbing Molecular Electronic Structure Using High Harmonic Generation Tomography
Probing Molecular Electronic Structure Using High Harmonic Generation TomographyChelsey Crosse
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6Kumar
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeChelsey Crosse
 
Ion trap quantum computation
Ion trap quantum computationIon trap quantum computation
Ion trap quantum computationGabriel O'Brien
 
Measurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beamMeasurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beamSebastien Bianchin
 
APS08_Felix_CoupledMicrodisks
APS08_Felix_CoupledMicrodisksAPS08_Felix_CoupledMicrodisks
APS08_Felix_CoupledMicrodisksXia (Shia) Li
 
S.Denega_thesis_2011
S.Denega_thesis_2011S.Denega_thesis_2011
S.Denega_thesis_2011Sergii Denega
 
Observations of cosmic neutrinos in the Kamiokande II detector
Observations of cosmic neutrinos in the Kamiokande II detectorObservations of cosmic neutrinos in the Kamiokande II detector
Observations of cosmic neutrinos in the Kamiokande II detectorWathan Pratumwan
 
University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012Brock University
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Lewis Larsen
 
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」PC Cluster Consortium
 
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Lewis Larsen
 
Quantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavityQuantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavityGabriel O'Brien
 
PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」
PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」
PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」PC Cluster Consortium
 

La actualidad más candente (20)

Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
Piezoelectric Photothermal Spectroscopy (PPT)_V4
Piezoelectric Photothermal Spectroscopy (PPT)_V4Piezoelectric Photothermal Spectroscopy (PPT)_V4
Piezoelectric Photothermal Spectroscopy (PPT)_V4
 
Exploring structural and dynamical properties of microtubules by means of A...
Exploring structural and dynamical properties  of microtubules by means of  A...Exploring structural and dynamical properties  of microtubules by means of  A...
Exploring structural and dynamical properties of microtubules by means of A...
 
Probing Molecular Electronic Structure Using High Harmonic Generation Tomography
Probing Molecular Electronic Structure Using High Harmonic Generation TomographyProbing Molecular Electronic Structure Using High Harmonic Generation Tomography
Probing Molecular Electronic Structure Using High Harmonic Generation Tomography
 
NEUTRINO
NEUTRINONEUTRINO
NEUTRINO
 
nuclear physics,unit 6
nuclear physics,unit 6nuclear physics,unit 6
nuclear physics,unit 6
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSe
 
Ion trap quantum computation
Ion trap quantum computationIon trap quantum computation
Ion trap quantum computation
 
Measurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beamMeasurement of the neutrino velocity with the OPERA detector in the CNGS beam
Measurement of the neutrino velocity with the OPERA detector in the CNGS beam
 
Electron Tomography (=Controlled Electron Tomography
Electron Tomography (=Controlled Electron TomographyElectron Tomography (=Controlled Electron Tomography
Electron Tomography (=Controlled Electron Tomography
 
APS08_Felix_CoupledMicrodisks
APS08_Felix_CoupledMicrodisksAPS08_Felix_CoupledMicrodisks
APS08_Felix_CoupledMicrodisks
 
S.Denega_thesis_2011
S.Denega_thesis_2011S.Denega_thesis_2011
S.Denega_thesis_2011
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
 
Observations of cosmic neutrinos in the Kamiokande II detector
Observations of cosmic neutrinos in the Kamiokande II detectorObservations of cosmic neutrinos in the Kamiokande II detector
Observations of cosmic neutrinos in the Kamiokande II detector
 
University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
PCCC21 筑波大学計算科学研究センター 「学際計算科学による最新の研究成果」
 
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
 
Quantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavityQuantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavity
 
PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」
PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」
PCCC20 筑波大学計算科学研究センター「学際計算科学による最新の研究成果」
 

Similar a Curcic - Atomic and Molecular Physics Program - Spring Review 2013

Doctorate Thesis Presentation
Doctorate Thesis PresentationDoctorate Thesis Presentation
Doctorate Thesis PresentationRony Pozner
 
Mott metal insulator transitions satej soman, robert tang-kong
Mott metal insulator transitions  satej soman, robert tang-kongMott metal insulator transitions  satej soman, robert tang-kong
Mott metal insulator transitions satej soman, robert tang-kongABDERRAHMANE REGGAD
 
Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...
Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...
Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...Chi-Han (Helen) Huang
 
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...Alexander Decker
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Alexander Decker
 
Invited review article single photon sources and detectors
Invited review article single photon sources and detectorsInvited review article single photon sources and detectors
Invited review article single photon sources and detectorsGabriel O'Brien
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATKAnders Blom
 
Cocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptxCocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptxRehmanRasheed3
 
MAster's Thesis presentation
MAster's Thesis presentationMAster's Thesis presentation
MAster's Thesis presentationNazanin Karimi
 
Scintillating Metal Organic Frameworks
Scintillating Metal Organic FrameworksScintillating Metal Organic Frameworks
Scintillating Metal Organic Frameworksfpdoty
 
Like-CV-2016
Like-CV-2016Like-CV-2016
Like-CV-2016Ke Li
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsMohammadreza Nematollahi
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processPFHub PFHub
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processDaniel Wheeler
 
11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dotsAlexander Decker
 
Electronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsElectronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsAlexander Decker
 

Similar a Curcic - Atomic and Molecular Physics Program - Spring Review 2013 (20)

Doctorate Thesis Presentation
Doctorate Thesis PresentationDoctorate Thesis Presentation
Doctorate Thesis Presentation
 
Mott metal insulator transitions satej soman, robert tang-kong
Mott metal insulator transitions  satej soman, robert tang-kongMott metal insulator transitions  satej soman, robert tang-kong
Mott metal insulator transitions satej soman, robert tang-kong
 
Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...
Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...
Solar cells sensitized with molecular dipole-modified quantum dots v. done--H...
 
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
 
Invited review article single photon sources and detectors
Invited review article single photon sources and detectorsInvited review article single photon sources and detectors
Invited review article single photon sources and detectors
 
CQED
CQEDCQED
CQED
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATK
 
Cocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptxCocchi_talk_EWPAA2019.pptx
Cocchi_talk_EWPAA2019.pptx
 
Equal1 aps march_meeting
Equal1 aps march_meetingEqual1 aps march_meeting
Equal1 aps march_meeting
 
MAster's Thesis presentation
MAster's Thesis presentationMAster's Thesis presentation
MAster's Thesis presentation
 
cl21-UCNt-Slaughter
cl21-UCNt-Slaughtercl21-UCNt-Slaughter
cl21-UCNt-Slaughter
 
Curcic - Atomic and Molecular Physics Program - Spring Review 2012
Curcic - Atomic and Molecular Physics Program - Spring Review 2012Curcic - Atomic and Molecular Physics Program - Spring Review 2012
Curcic - Atomic and Molecular Physics Program - Spring Review 2012
 
Scintillating Metal Organic Frameworks
Scintillating Metal Organic FrameworksScintillating Metal Organic Frameworks
Scintillating Metal Organic Frameworks
 
Like-CV-2016
Like-CV-2016Like-CV-2016
Like-CV-2016
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation process
 
Nucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation processNucleation III: Phase-field crystal modeling of nucleation process
Nucleation III: Phase-field crystal modeling of nucleation process
 
11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots
 
Electronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsElectronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dots
 

Más de The Air Force Office of Scientific Research

Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...The Air Force Office of Scientific Research
 

Más de The Air Force Office of Scientific Research (20)

Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013
Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013
Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013
 
Li - Energy Conversion and Combustion Sciences - Spring Review 2013
Li - Energy Conversion and Combustion Sciences - Spring Review 2013Li - Energy Conversion and Combustion Sciences - Spring Review 2013
Li - Energy Conversion and Combustion Sciences - Spring Review 2013
 
Birkan - Space Propulsion and Power - Spring Review 2013
Birkan - Space Propulsion and Power - Spring Review 2013Birkan - Space Propulsion and Power - Spring Review 2013
Birkan - Space Propulsion and Power - Spring Review 2013
 
Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013
Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013
Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013
 
Bradshaw - Sensory Information Systems - Spring Review 2013
Bradshaw - Sensory Information Systems - Spring Review 2013Bradshaw - Sensory Information Systems - Spring Review 2013
Bradshaw - Sensory Information Systems - Spring Review 2013
 
Bradshaw - Human Performance and Biosystems - Spring Review 2013
Bradshaw - Human Performance and Biosystems - Spring Review 2013Bradshaw - Human Performance and Biosystems - Spring Review 2013
Bradshaw - Human Performance and Biosystems - Spring Review 2013
 
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
 
DeLong - Natural Materials and Systems - Spring Review 2013
DeLong - Natural Materials and Systems - Spring Review 2013DeLong - Natural Materials and Systems - Spring Review 2013
DeLong - Natural Materials and Systems - Spring Review 2013
 
Harrison - Low Density Materials - Spring Review 2013
Harrison - Low Density Materials - Spring Review 2013Harrison - Low Density Materials - Spring Review 2013
Harrison - Low Density Materials - Spring Review 2013
 
Lee - Organic Materials Chemistry - Spring Review 2013
Lee - Organic Materials Chemistry - Spring Review 2013Lee - Organic Materials Chemistry - Spring Review 2013
Lee - Organic Materials Chemistry - Spring Review 2013
 
Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013
Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013
Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013
 
Weinstock - Quantum Electronic Solids - Spring Review 2013
Weinstock - Quantum Electronic Solids - Spring Review 2013Weinstock - Quantum Electronic Solids - Spring Review 2013
Weinstock - Quantum Electronic Solids - Spring Review 2013
 
Hwang - Adaptive Multimode Sensing - Spring Review 2013
Hwang - Adaptive Multimode Sensing - Spring Review 2013Hwang - Adaptive Multimode Sensing - Spring Review 2013
Hwang - Adaptive Multimode Sensing - Spring Review 2013
 
Hwang - GHz-THz Electronics - Spring Review 2013
Hwang - GHz-THz Electronics - Spring Review 2013Hwang - GHz-THz Electronics - Spring Review 2013
Hwang - GHz-THz Electronics - Spring Review 2013
 
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
 
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
 
DeLong - Complex Materials and Devices - Spring Review 2013
DeLong - Complex Materials and Devices - Spring Review 2013DeLong - Complex Materials and Devices - Spring Review 2013
DeLong - Complex Materials and Devices - Spring Review 2013
 
Myung - Computational Cognition and Robust Decision Making - Spring Review 2013
Myung - Computational Cognition and Robust Decision Making - Spring Review 2013Myung - Computational Cognition and Robust Decision Making - Spring Review 2013
Myung - Computational Cognition and Robust Decision Making - Spring Review 2013
 
Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013
Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013
Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013
 
Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013
Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013
Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013
 

Último

Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024D Cloud Solutions
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Commit University
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintMahmoud Rabie
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfJamie (Taka) Wang
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDEADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDELiveplex
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureEric D. Schabell
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsSafe Software
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-pyJamie (Taka) Wang
 
AI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarAI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarPrecisely
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6DianaGray10
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Adtran
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfAijun Zhang
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxGDSC PJATK
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URLRuncy Oommen
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Websitedgelyza
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesDavid Newbury
 

Último (20)

Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership Blueprint
 
20230104 - machine vision
20230104 - machine vision20230104 - machine vision
20230104 - machine vision
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDEADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
ADOPTING WEB 3 FOR YOUR BUSINESS: A STEP-BY-STEP GUIDE
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability Adventure
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-py
 
AI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarAI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity Webinar
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdf
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptx
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URL
 
COMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a WebsiteCOMPUTER 10 Lesson 8 - Building a Website
COMPUTER 10 Lesson 8 - Building a Website
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond Ontologies
 

Curcic - Atomic and Molecular Physics Program - Spring Review 2013

  • 1. 1DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution14 February 2013 Integrity  Service  Excellence Tatjana Curcic Program Officer AFOSR/RTB Air Force Research Laboratory Atomic and Molecular Physics Program Date: 5 March 2013
  • 2. 2DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution 2013 AFOSR SPRING REVIEW NAME: Tatjana Curcic BRIEF DESCRIPTION OF PORTFOLIO: Understanding interactions between atoms, molecules, ions, and radiation. SUB-AREAS IN PORTFOLIO: • Cold Quantum Gases − Strongly-interacting quantum gases − Ultracold molecules − New phases of matter − Non-equilibrium quantum dynamics • Quantum Information Science (QIS) − Quantum simulation − Quantum communication − Quantum metrology, sensing, and imaging − Cavity optomechanics NAME: Tatjana Curcic BRIEF DESCRIPTION OF PORTFOLIO: Understanding interactions between atoms, molecules, ions, and radiation. SUB-AREAS IN PORTFOLIO: • Cold Quantum Gases − Strongly-interacting quantum gases − Ultracold molecules − New phases of matter − Non-equilibrium quantum dynamics • Quantum Information Science (QIS) − Quantum simulation − Quantum communication − Quantum metrology, sensing, and imaging − Cavity optomechanics
  • 3. 3DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Outline • Quantum Communication: Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Strongly Interacting Photons: Vladan Vuletic (MIT) • Cavity-based single-photon transistor where one photon can switch 1000 photons: Wenlan Chen, et al, preprint • Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in preparation) • Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard) • Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J. Burek, et al, Nano Lett. 12, 6084 (2012) • PMMA-diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012) • Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012) • Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012) • Ultracold Molecules: Jun Ye, John Bohn (JILA) • Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
  • 4. 4DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Outline • Quantum Communication: Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Strongly Interacting Photons: Vladan Vuletic (MIT) • Cavity-based single-photon transistor where one photon can switch 1000 photons: Wenlan Chen, et al, preprint • Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in preparation) • Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard) • Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J. Burek, et al, Nano Lett. 12, 6084 (2012) • PMMA-diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012) • Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012) • Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012) • Ultracold Molecules: Jun Ye, John Bohn (JILA) • Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
  • 5. 5DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Quantum Repeater Site A Site B Entanglement Entanglement Requirements • Light-matter interface • Quantum memory • Elementary quantum gates “The quantum internet”, H. J. Kimble, Nature 453, 1023 (2008) Enable ultra-secure communication over fiber network or free space Quantum Networks
  • 6. 6DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution long coherence times speed scalability NV Network frequency conversion between segments QD Network Atomic Network • Memory-light entanglement; • Deterministic quantum gates; • Long memory lifetime; • Memory coupling to telecom light; • Cavity-enhanced light-memory coupling. Quantum Memories and Light-Matter Interfaces (FY11 MURI)
  • 7. 7DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Two teams: • GaTech (PI: A. Kuzmich): U. Michigan, Columbia, Harvard, U. Wisconsin, Stanford, MIT • UCSB (PI: D. Awschalom): Iowa State U., U. Iowa, Harvard, CalTech NV-diamond: • Spin-photon interface: quantum interference demonstrated (Harvard) • NV qubit coherence lifetime > 1s (Harvard) • All-optical control of of NV spins (UCSB) • Stable NV centers in bulk and nanobeams • Integrated diamond networks for nanophotonics (Harvard) • Engineering shallow spins with N delta- doping (UCSB) • SiC and other color centers (UCSB, U. Iowa) • Accomplishments in 1st year: Atoms: • 16s atomic memory (GaTech) • Rydberg single-photon source (GaTech) • Nonlinearity at the single-photon level (MIT/Harvard) • Single-photon transistor (MIT) • Coupling atoms with nanofiber cavities (CalTech) • Atomic mirrors, integration with nanophotonics (CalTech) Quantum dots: • New scheme to efficiently couple a single QD electron spin to an optical nanocavity (Stanford) • More than 40 papers, including 6 Nature/Science and 10 PRLs.
  • 8. 8DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Outline • Quantum Communication: Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Strongly Interacting Photons: Vladan Vuletic (MIT) • Cavity-based single-photon transistor where one photon can switch 1000 photons: Wenlan Chen, et al, preprint • Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in preparation) • Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard) • Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J. Burek, et al, Nano Lett. 12, 6084 (2012) • PMMA-diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012) • Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012) • Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012) • Ultracold Molecules: Jun Ye, John Bohn (JILA) • Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
  • 9. 9DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Photon-photon switch and transistor Vladan Vuletic, MIT Cavity (signal) transmission w/o gate photon With gate photon ωωc Experimental setup Atomic level scheme Wenlan Chen, et al, preprint
  • 10. 10DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Single-photon transistor with gain: switching 1000 photons with one control gate recovery signal gate gate storage Single gate photon suppresses signal transmission by factor of 6. More than 1000 signal photons can be blocked by a single photon!
  • 11. 11DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Future Possibilities • Quantum non-demolition detector for traveling optical photons • Deterministic photon-photon phase shift • Photon-photon quantum gates? • All-optical circuits with feedback and gain in analogy to electronic circuits
  • 12. 12DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Outline • Quantum Communication: Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Strongly Interacting Photons: Vladan Vuletic (MIT) • Cavity-based single-photon transistor where one photon can switch 1000 photons: Wenlan Chen, et al, preprint • Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in preparation) • Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard) • Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J. Burek, et al, Nano Lett. 12, 6084 (2012) • PMMA-diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012) • Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012) • Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012) • Ultracold Molecules: Jun Ye, John Bohn (JILA) • Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
  • 13. 13DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Nanofiber Optical Trap for Cold Atoms Jeff Kimble, CalTech • Strong interactions of single photons and atoms  Multi-pass interactions and small mode volume in an optical cavity (cQED)  Large optical depth (e.g., atomic ensembles)  Strong focusing of light • A new frontier to achieve all three in one setting ─ nanofiber atom trap
  • 14. 14DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Etransmitted Ein Demonstration of a State-Insensitive Nanofiber Trap A. Goban et al., Phys. Rev. Lett. 109, 033603 (2012)ba tapered fiber nanofiber Nano-fiber Etransmitted Ein Ereflected ~1000 atoms
  • 15. 15DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Mirror atomsMirror atoms Impurity atom Input Reflection Cavity QED In Out Quantum protocols -Single photon generation -Entanglement distribution -Quantum logic - atoms - photons - … Cavity QED with Atomic Mirrors D. Chang, L. Jiang, A. Gorshkov & H.J. Kimble, N. J. Phys. 14 063003 (2012) A Surprise! • Strong coupling regime can be reached with very low cavity finesse F < 103 • Conventional Fabry-Perot cavity with dielectric mirrors requires finesse F ≈ 105 Nanofiber issues -Two-color traps increase noise sensitivity - Ill defined polarizations for trap and probe fields - “Noise” from vibrational modes of nanofiber… Solution →
  • 16. 16DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution 2 μm 1 mm 100 μm 2 μm • Clear window for trapping of atomic clouds in Kimble Group MOT • Arrays of fiber-coupled waveguides (1 shown here) for multiple device testing in a given experiment run Fiber-coupled chip for atom-light coupling Oskar Painter, CalTech Evanescent atom-light coupling Efficient collection fiber Photonic crystal mirrors/cavities
  • 17. 17DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Outline • Quantum Communication: Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Strongly Interacting Photons: Vladan Vuletic (MIT) • Cavity-based single-photon transistor where one photon can switch 1000 photons: Wenlan Chen, et al, preprint • Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in preparation) • Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard) • Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J. Burek, et al, Nano Lett. 12, 6084 (2012) • PMMA-diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012) • Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012) • Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012) • Ultracold Molecules: Jun Ye, John Bohn (JILA) • Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
  • 18. 18DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution V N Challenges for quantum information processing: • Creating identical single spins • Developing scalable quantum memories • Fabricating hybrid devices NV centers provide • Room temperature quantum coherence • Long spin coherence (T2 ~ 10 ms) • Optical initialization and readout • Solid state system • Reduced nuclear spin environment Nitrogen Vacancy Centers in Diamond
  • 19. 19DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Angle-Etched Nanobeam Cavities Marko Lončar, Harvard M. J. Burek, N. P. de Leon, et al, Nano Letters 12, 6084 (2012) New approach for fabricating nanostructures from bulk diamond
  • 20. 20DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Angle-Etched Diamond Nanobeam Cavities @ Telecom 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1500 1502 1504 1506 1508 1510 1512 1514 1516 1518 1520 Wavelength (nm) Normalizedintensity(a.u.) Q ~ 20 000 Q ~ 5000 Taper-fiber measurements in telecom Q1,exp ~ 20 000 Q2,exp ~ 5 000
  • 21. 21DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution 5 µm Challenge: spatial & spectral overlap between a stable NV and a cavity; Solution: • Deterministic positioning of cavities around NVs; • New cavity approach that allows for cavities to be realized around the same NV multiple times;
  • 22. 22DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Outline • Quantum Communication: Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Strongly Interacting Photons: Vladan Vuletic (MIT) • Cavity-based single-photon transistor where one photon can switch 1000 photons: Wenlan Chen, et al, preprint • Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in preparation) • Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard) • Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J. Burek, et al, Nano Lett. 12, 6084 (2012) • PMMA-diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012) • Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012) • Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012) • Ultracold Molecules: Jun Ye, John Bohn (JILA) • Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
  • 23. 23DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Cavity Optomechanics Common goals: Dominance of quantum fluctuations over thermal fluctuations cooling mechanical oscillator to ground state reaching quantum limits for sensitivity Study and use quantum effects quantifying and evading measurement backaction entanglement of macroscopic object with light Route to complex quantum systems Multi-mode systems (optics and mechanics) Optomechanics as link between quantum objects Kippenberg and Vahala, Science 321, 1172 (2008)
  • 24. 24DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Cavity Optomechanics with Cold Atoms Dan Stamper-Kurn, UC Berkeley trap probe …… 𝑍1 𝑍2 𝑍3 trapped ultracold rubidium atoms Each ensemble represents a mechanical element 2mmMOT Loading Conveyor Belt Cavity Locations Mechanical oscillator: sheets of atoms
  • 25. 25DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution - Input = AM tone to measure gain Input = vacuum noise to measure squeezing  Below shot-noise by 1.4% ±0.1% (stat) ±0.1% (sys) Non-classical light generation Daniel W.C. Brooks, et al, Nature 488, 476 (2012) Sub-shot-noise optical squeezing observed • Collective atomic motion is driven by quantum fluctuations in radiation pressure • The back-action of this motion onto the cavity light field produces ponderomotive squeezing
  • 26. 26DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Next: Cavity optomechanics with a mechanical array widerinitialcloud • Nearby lattice sites given different resonances using optical superlattice • Sideband asymmetry for each oscillator • 6 mechanically distinct oscillators demonstrated • Motional state of one oscillator can be selectively addressed • Nanometer-scale spatial resolution of each mechanical element “Optical read-out of the quantum motion of an array of atoms-based mechanical oscillators,” arXiv:1210.5218 (2012)
  • 27. 27DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Outline • Quantum Communication: Quantum Memories and Light-Matter Interfaces (FY11 MURI) • Strongly Interacting Photons: Vladan Vuletic (MIT) • Cavity-based single-photon transistor where one photon can switch 1000 photons: Wenlan Chen, et al, preprint • Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban, et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber-coupled chip for atom-light coupling: J. D. Cohen, S. M. Meenehan, O. J. Painter (in preparation) • Nitrogen-Vacancy (NV) Centers in Diamond : Marko Lončar, Misha Lukin (Harvard) • Free-standing mechanical and photonic nanostructures in single-crystal diamond: M. J. Burek, et al, Nano Lett. 12, 6084 (2012) • PMMA-diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with cold atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light generation: Daniel W.C. Brooks, et al, Nature 488, 476 (2012) • Quantization of collective atomic motion: N. Brahms, et al, Phys. Rev. Lett. 108, 133601 (2012) • Cavity optomechanics with a mechanical array: Thierry Botter, et al, arXiv:1210.5218 (2012) • Ultracold Molecules: Jun Ye, John Bohn (JILA) • Evaporative Cooling of OH: Benjamin K. Stuhl, et al, Nature 492, 396 (2012)
  • 28. 28DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Science with Ultracold Moleculeslog10(density[cm-3]) log10(temperature [K]) -9 -6 -3 0 3 6 9 12 Novel phases & quantum many-body Dipolar quantum gas Quantum information Ultracold Chemistry Molecule optics & circuitry Cold controlled chemistry Novel collisions Fundamental tests Precision measurement Phase space density Carr, DeMille, Krems, Ye, New. J. Phys. 2009
  • 29. 29DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Evaporative Cooling of OH Jun Ye, John Bohn, JILA Cooling by at least an order of magnitude in temperature and three orders in phase space density!! Benjamin K. Stuhl, et al, Nature 492, 396 (2012)