SlideShare una empresa de Scribd logo
1 de 13
EE462L, Spring 2012
PI Voltage Controller for DC-DC
        Boost Converter




                                  1
PI Controller for DC-DC Boost Converter Output
                    Voltage
                                                                                     !
          Vpwm                      PWM mod.           DC-DC       Vout
         (0-3.5V)                  and MOSFET           conv.    (0-120V)
                                       driver

                       Open Loop, DC-DC Converter Process



              error                Vpwm                         Hold to 90V

                         PI                PWM mod.    DC-DC
  Vset                controller          and MOSFET    conv.        Vout
         +                                    driver
          –
                                                                (scaled down
                                                                to about 1.3V)


         DC-DC Converter Process with Closed-Loop PI Controller
                                                                                 2
The Underlying Theory




              error                Vpwm                                      Hold to 90V

                         PI                PWM mod.    DC-DC
Vset                  controller          and MOSFET    conv.                           Vout
         +                                    driver
          –
                                                                                (scaled down
                                                                                to about 1.3V)




                                                                xisting boost process
       Proportional        Integral                                                              3
Theory, cont.
                                                                             !
                     error e(t)         Vpwm

                              PI                PWM mod.    DC-DC
         Vset              controller          and MOSFET    conv.   Vout
                +                                  driver
                 –



                                                   1
                            VPWM (t ) = K P e(t ) + ∫ e(t )dt
                                                   Ti
•   Proportional term: Immediate correction but steady state error (V pwm equals
    zero when there is no error (that is when Vset = Vout)).
•   Integral term: Gradual correction
                     Consider the integral as a continuous sum (Riemman’s sum)
                     Thank you to the sum action, Vpwm is not zero when the e = 0


                                                                             4
Theory, cont.




work!




                           Recommended in PI
                 Ti = 0.8T literature

                 ζ = 0.65 K p = 0.45
                From above curve – gives some
                overshoot

                                                5
Improperly Tuned PI Controller


                                                               Mostly Proportional Control – Sluggish,
Mostly Integral Control - Oscillation                                    Steady-State Error




                                                 90V                                                               90V




Figure 11. Closed Loop Response with Mostly Integral Control    Figure 12. Closed Loop Response with Mostly Proportional Control
                         (ringing)                                                         (sluggish)




                                                                                                                       6
!
                               Op Amps
                          I−
                     V−         –

                                               Vout
                          I+
                     V+         +


Assumptions for ideal op amp

   •   Vout = K(V+ − V− ), K large (hundreds of thousands, or one million)

   •   I+ = I− = 0

   • Voltages are with respect to power supply ground (not shown)

   • Output current is not limited


                                                                             7
!
               Example 1. Buffer Amplifier
(converts high impedance signal to low impedance signal)

                        Vout = K (V+ − V− ) = K(V – V )
                                                 in  out
         –
                Vout
  Vin    +              Vout + KVout = KVin

                        Vout (1 + K ) = KVin

                                       K
                        Vout = Vin •
                                     1+ K

                        K is large

                         Vout = Vin
                                                           8
!
           Example 2. Inverting Amplifier
        (used for proportional control signal)


                Rf
                                                               , so          .
      Rin
Vin         –
                     Vout            KCL at the – node is                            .
            +
                                     Eliminating    yields



                                                                      , so



                            . For large K, then              , so                .



                                                                                 9
Example 3. Inverting Difference
                                                                                                       !
                           (used for error signal)

                                                                        V        
               R           R                    Vout = K (V+ − V− ) = K  b − V−  , so
          Va                                                             2       
                       –                             V     V
                                   Vout         V− = b − out .
               R       +                              2     K
          Vb                                                          V− − Va V− − Vout
                                                KCL at the – node is           +          = 0 , so
                   R                                                     R           R
                                                                                        V + Vout
                                                V− − Va + V− − Vout = 0 , yielding V− = a          .
                                                                                            2
                                                Eliminating V− yields

         V   V + Vout               V         V − Va             K        V − Va 
Vout = K  b − a        , so Vout + K out = K  b       , or Vout 1 +  = K  b      .
          2     2                     2       2                    2        2 


                               For large K , then Vout = −( a − Vb )
                                                           V

                                                                                                  10
!
               Example 4. Inverting Sum
 (used to sum proportional and integral control signals)

                                                                                     − Vout
                         R                    Vout = K (0 − V− ) = − KV− , so V− =            .
                                                                                       K
             R
       Va            –

       Vb
             R                 Vout           KCL at the – node is
                     +

                                              V− − Va V− − Vb V− − Vout
                                                     +       +          = 0 , so
                                                 R       R        R

                                              3V− = Va + Vb + Vout .

                             −V                              −3 
Substituting for V− yields 3 out  = Va + Vb + Vout , so Vout   − 1 = Va + Vb .
                             K                               K    


                             Thus, for large K , Vout = −( a + Vb )
                                                          V

                                                                                              11
Example 5. Inverting Integrator                                                      !
                  (used for integral control signal)
                                                                             ~             ~
                                                      Using phasor analysis, Vout = K (0 − V− ) , so

                        Ci                                  ~
            Ri                                        ~ = − Vout
                                                      V−         . KCL at the − node is
  Vin             –                                          K
                             Vout
                  +                                   ~     ~   ~     ~
                                                      V− − Vin V− − Vout
                                                              +          = 0.
                                                         Ri         1
                                                                  j ωC
                           ~
                         − Vout         ~
                                      − Vin              ~
                                                      − Vout ~ 
            ~                K                + jω C           
Eliminating V− yields
                                 Ri                   K − Vout  = 0 . Gathering terms yields
                                                               
                               ~
 ~  −1            1      Vin       ~  −1             1     ~
Vout 
      KR   − j ωC  + 1   =   , or Vout 
                                                − jωRi C  + 1  = Vin For large K , the
                                                                 
         i        K      Ri
                                          K             K    
                                                            ~
                      ~                  ~        ~       − Vin
expression reduces to Vout (− jωRi C ) = Vin , so Vout =        (thus, negative integrator action).
                                                         jωRi C
                                                                              ~
For a given frequency and fixed C , increasing Ri reduces the magnitude of Vout .
                                                                                                       12
Op Amp Implementation of PI Controller
                                       Signal flow



                –                                         error             Rp
    αVout
                +
                                              –
                                                                        –
                                              +              15kΩ                                      –             Vpwm
                –                                                       +
                                             Difference                                                +
      Vset                                                                   Proportional
                +                           (Gain = −1)                                                     Summer
                                                                            (Gain = −Kp)
                                                                                                           (Gain = −1)
                                                                                                                    1
                 Buffers
                (Gain = 1)
                                                                                 Ci
                                                                  Ri
Ri is a 500kΩ pot, Rp is a 100kΩ pot, and all other
                                                                        –
resistors shown are 100kΩ, except for the 15kΩ
resistor.                                                               +
                                                                         Inverting Integrator
The 500kΩ pot is marked “504” meaning 50 • 10 4 .                       (Time Constant = Ti)
The 100kΩ pot is marked “104” meaning 10 • 10 4 .


                (Note – net gain Kp is unity when, in the open loop condition and with the integrator disabled,
                                               Vpwm is at the desired value)
                                                                                                                         13

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Sarah
SarahSarah
Sarah
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
 
5
55
5
 
4057
40574057
4057
 
Comm008 e4 bani
Comm008 e4 baniComm008 e4 bani
Comm008 e4 bani
 
Exp5 tagasa
Exp5 tagasaExp5 tagasa
Exp5 tagasa
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
 
Exp5 agdon
Exp5 agdonExp5 agdon
Exp5 agdon
 
Pula
PulaPula
Pula
 
Exp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterExp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filter
 
L293b
L293bL293b
L293b
 
Oscilloscope
OscilloscopeOscilloscope
Oscilloscope
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
 
Valladolid, charles edison
Valladolid, charles edisonValladolid, charles edison
Valladolid, charles edison
 
Sock Puppet Sensors
Sock Puppet SensorsSock Puppet Sensors
Sock Puppet Sensors
 
Comm008 e4 cauan
Comm008 e4 cauanComm008 e4 cauan
Comm008 e4 cauan
 
Electrochem group 2
Electrochem group 2Electrochem group 2
Electrochem group 2
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 
E4 bani
E4 baniE4 bani
E4 bani
 
Morales
MoralesMorales
Morales
 

Similar a Ee462 l pi_controller_ppt

DC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.pptDC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.pptShivamMane14
 
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timeropamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timerAsif Iqbal
 
Half-wave-rectifier.pdf
Half-wave-rectifier.pdfHalf-wave-rectifier.pdf
Half-wave-rectifier.pdfKUMARS641064
 
Relaxation Oscillator: Schmitt Trigger Circuits.pptx
Relaxation Oscillator: Schmitt Trigger Circuits.pptxRelaxation Oscillator: Schmitt Trigger Circuits.pptx
Relaxation Oscillator: Schmitt Trigger Circuits.pptxSarmistaSengupta1
 
le roludes the tiofuture research directions
le roludes the tiofuture research directionsle roludes the tiofuture research directions
le roludes the tiofuture research directionsARNABPAL81
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfLiewChiaPing
 
SPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARKSPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARKTsuyoshi Horigome
 
Buck_Converter.ppt
Buck_Converter.pptBuck_Converter.ppt
Buck_Converter.pptYadYaseen
 
operational amplifiers
operational amplifiersoperational amplifiers
operational amplifiersPatel Jay
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusSteve Mappus
 
Relaxation oscillator
Relaxation oscillatorRelaxation oscillator
Relaxation oscillatorMoin Aman
 
3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)Tsuyoshi Horigome
 

Similar a Ee462 l pi_controller_ppt (20)

DC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.pptDC_DC_Buck_PPT.ppt
DC_DC_Buck_PPT.ppt
 
Slide bab op amp
Slide bab op ampSlide bab op amp
Slide bab op amp
 
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timeropamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
 
Ab45
Ab45Ab45
Ab45
 
Ne555
Ne555Ne555
Ne555
 
Half-wave-rectifier.pdf
Half-wave-rectifier.pdfHalf-wave-rectifier.pdf
Half-wave-rectifier.pdf
 
Relaxation Oscillator: Schmitt Trigger Circuits.pptx
Relaxation Oscillator: Schmitt Trigger Circuits.pptxRelaxation Oscillator: Schmitt Trigger Circuits.pptx
Relaxation Oscillator: Schmitt Trigger Circuits.pptx
 
le roludes the tiofuture research directions
le roludes the tiofuture research directionsle roludes the tiofuture research directions
le roludes the tiofuture research directions
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Buffer op amplifier
Buffer op amplifierBuffer op amplifier
Buffer op amplifier
 
Unit 3
Unit 3Unit 3
Unit 3
 
SPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARKSPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARK
 
Datasheet 555
Datasheet 555Datasheet 555
Datasheet 555
 
Buck_Converter.ppt
Buck_Converter.pptBuck_Converter.ppt
Buck_Converter.ppt
 
operational amplifiers
operational amplifiersoperational amplifiers
operational amplifiers
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
 
amplifier Engr332 1ba-chapter9
amplifier Engr332 1ba-chapter9amplifier Engr332 1ba-chapter9
amplifier Engr332 1ba-chapter9
 
Relaxation oscillator
Relaxation oscillatorRelaxation oscillator
Relaxation oscillator
 
1st course
1st course1st course
1st course
 
3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)
 

Último

How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 

Último (20)

How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 

Ee462 l pi_controller_ppt

  • 1. EE462L, Spring 2012 PI Voltage Controller for DC-DC Boost Converter 1
  • 2. PI Controller for DC-DC Boost Converter Output Voltage ! Vpwm PWM mod. DC-DC Vout (0-3.5V) and MOSFET conv. (0-120V) driver Open Loop, DC-DC Converter Process error Vpwm Hold to 90V PI PWM mod. DC-DC Vset controller and MOSFET conv. Vout + driver – (scaled down to about 1.3V) DC-DC Converter Process with Closed-Loop PI Controller 2
  • 3. The Underlying Theory error Vpwm Hold to 90V PI PWM mod. DC-DC Vset controller and MOSFET conv. Vout + driver – (scaled down to about 1.3V) xisting boost process Proportional Integral 3
  • 4. Theory, cont. ! error e(t) Vpwm PI PWM mod. DC-DC Vset controller and MOSFET conv. Vout + driver – 1 VPWM (t ) = K P e(t ) + ∫ e(t )dt Ti • Proportional term: Immediate correction but steady state error (V pwm equals zero when there is no error (that is when Vset = Vout)). • Integral term: Gradual correction Consider the integral as a continuous sum (Riemman’s sum) Thank you to the sum action, Vpwm is not zero when the e = 0 4
  • 5. Theory, cont. work! Recommended in PI Ti = 0.8T literature ζ = 0.65 K p = 0.45 From above curve – gives some overshoot 5
  • 6. Improperly Tuned PI Controller Mostly Proportional Control – Sluggish, Mostly Integral Control - Oscillation Steady-State Error 90V 90V Figure 11. Closed Loop Response with Mostly Integral Control Figure 12. Closed Loop Response with Mostly Proportional Control (ringing) (sluggish) 6
  • 7. ! Op Amps I− V− – Vout I+ V+ + Assumptions for ideal op amp • Vout = K(V+ − V− ), K large (hundreds of thousands, or one million) • I+ = I− = 0 • Voltages are with respect to power supply ground (not shown) • Output current is not limited 7
  • 8. ! Example 1. Buffer Amplifier (converts high impedance signal to low impedance signal) Vout = K (V+ − V− ) = K(V – V ) in out – Vout Vin + Vout + KVout = KVin Vout (1 + K ) = KVin K Vout = Vin • 1+ K K is large Vout = Vin 8
  • 9. ! Example 2. Inverting Amplifier (used for proportional control signal) Rf , so . Rin Vin – Vout KCL at the – node is . + Eliminating yields , so . For large K, then , so . 9
  • 10. Example 3. Inverting Difference ! (used for error signal) V  R R Vout = K (V+ − V− ) = K  b − V−  , so Va  2  – V V Vout V− = b − out . R + 2 K Vb V− − Va V− − Vout KCL at the – node is + = 0 , so R R R V + Vout V− − Va + V− − Vout = 0 , yielding V− = a . 2 Eliminating V− yields V V + Vout  V  V − Va   K  V − Va  Vout = K  b − a  , so Vout + K out = K  b  , or Vout 1 +  = K  b .  2 2  2  2   2  2  For large K , then Vout = −( a − Vb ) V 10
  • 11. ! Example 4. Inverting Sum (used to sum proportional and integral control signals) − Vout R Vout = K (0 − V− ) = − KV− , so V− = . K R Va – Vb R Vout KCL at the – node is + V− − Va V− − Vb V− − Vout + + = 0 , so R R R 3V− = Va + Vb + Vout .  −V  −3  Substituting for V− yields 3 out  = Va + Vb + Vout , so Vout  − 1 = Va + Vb .  K  K  Thus, for large K , Vout = −( a + Vb ) V 11
  • 12. Example 5. Inverting Integrator ! (used for integral control signal) ~ ~ Using phasor analysis, Vout = K (0 − V− ) , so Ci ~ Ri ~ = − Vout V− . KCL at the − node is Vin – K Vout + ~ ~ ~ ~ V− − Vin V− − Vout + = 0. Ri 1 j ωC ~ − Vout ~ − Vin ~  − Vout ~  ~ K + jω C   Eliminating V− yields Ri  K − Vout  = 0 . Gathering terms yields   ~ ~  −1 1   Vin ~  −1 1  ~ Vout   KR − j ωC  + 1   = , or Vout   − jωRi C  + 1  = Vin For large K , the   i K   Ri  K K  ~ ~ ~ ~ − Vin expression reduces to Vout (− jωRi C ) = Vin , so Vout = (thus, negative integrator action). jωRi C ~ For a given frequency and fixed C , increasing Ri reduces the magnitude of Vout . 12
  • 13. Op Amp Implementation of PI Controller Signal flow – error Rp αVout + – – + 15kΩ – Vpwm – + Difference + Vset Proportional + (Gain = −1) Summer (Gain = −Kp) (Gain = −1) 1 Buffers (Gain = 1) Ci Ri Ri is a 500kΩ pot, Rp is a 100kΩ pot, and all other – resistors shown are 100kΩ, except for the 15kΩ resistor. + Inverting Integrator The 500kΩ pot is marked “504” meaning 50 • 10 4 . (Time Constant = Ti) The 100kΩ pot is marked “104” meaning 10 • 10 4 . (Note – net gain Kp is unity when, in the open loop condition and with the integrator disabled, Vpwm is at the desired value) 13