SlideShare una empresa de Scribd logo
1 de 3
Descargar para leer sin conexión
Concordia University                                                                March 23, 2010

                        Applied Ordinary Differential Equations
                                ENGR 213 - Section F
                                   Prof. Alina Stancu

                                          Exam II (B)



   (1) (6 points) Solve the homogeneous ODE

                                      x2 y + 3xy + 5y = 0.

        Solution: The characteristic equation of this homogeneous Cauchy-Euler ODE is
      m(m − 1) + 3m + 5 = 0 or m2 + 2m + 5 = 0. It has complex roots r = −1 ± 2i. Hence
      the general solution of the ODE on x > 0 is
                y(x) = c1 x−1 cos(2 ln x) + c2 x−1 sin(2 ln x), c1,2 = constants.

   (2) (14 points) Solve the initial value problem

                           y − 6y + 9y = x,           y(0) = 0, y (0) = 1.

        Solution: Consider first the associated homogeneous ODE: y − 6y + 9y = 0 with
      the characteristic equation r2 − 6r + 9 = 0 with r = 3 as double root. Hence
                           yc (x) = c1 e3x + c2 xe3x , c1,2 = constants.

         We now look for a particular solution yp to the non-homogenous ODE. We’ll use here
      the method of undetermined coefficients by setting yp (x) = Ax + B. As yp (x) = A and
      yp (x) = 0, we deduce that −6A + 9Ax + 9B = x ⇒ A = 1/9, −6A + 9B = 0 thus
                                      x    2
      B = 2A/3 = 2/27 and yp (x) = + .
                                      9 27
         Thus
                                                       x  2
                   ygeneral (x) = c1 e3x + c2 xe3x +     + , c1,2 = constants.
                                                       9 27
        We’ll now use the initial conditions to find c1,2 . As y(0) = 0, we have c1 + 2/27 =
      0 ⇒ c1 = −2/27. Evaluating y (x) = c1 (3e3x ) + c2 (e3x + 3xe3x ) + 1/9, thus y (0) =
      3c1 + c2 + 1/9 = 1, implying c2 = 10/9.
         Therefore the solution of the IVP is
                                       2      10 3x x  2
                            y(x) = − e3x +      xe + + .
                                      27      9     9 27

                                                  1
2

    (3) (10 points) Use the variation of parameters to solve the differential equation

                                           y + y = sin2 x.

          Solution: The complementary part of the solution follows from r2 +1 = 0 ⇒ r = ±i
       and is
                                   yc (x) = c1 cos x + c2 sin x.
          Considering y1 (x) = cos x, y2 (x) = sin x, the Wronskian is W (x) = 1 = 0 for all real
                                                                                  0     sin x
       x’s. To find the complementary solution we calculate W1 (x) = det            2           =
                                                                               sin x cos x
                                     cos x      0
       − sin3 x and W2 (x) = det                      = sin2 x cos x.
                                    − sin x sin2 x
          The method of variation of parameters gives yp (x) = y1 (x)u1 (x) + y2 (x)u2 (x), where
       u1 (x) = W1 (x)/W (x) and u2 (x) = W2 (x)/W (x).
          Integrating (by taking u = sin x du = cos x dx) and taking the constant of integration
       to be zero, we have
                                                                     u3   sin3 x
                      u2 (x) =    (sin2 x cos x) dx =      u2 du =      =        .
                                                                     3      3
          On the other hand,

                                                                                     u3           cos3 x
u1 (x) = −      sin3 x dx = −    sin x (1 − cos2 x) dx =     (1 − u2 ) du = u −         = cos x −        ,
                                                                                     3              3
         where above we used the fundamental identity of trigonometry (sin2 x + cos2 x = 1)
       and the substitution u = cos x, du = − sin x dx.
         Consequently,
                                                    cos3 x                sin3 x
                         yp (x) = cos x · cos x −             + sin x ·
                                                      3                     3
          and
                                       cos4 x            sin4 x
        y(x) = c1 cos x + c2 sin x −          + cos2 x +        , c1,2 = arbitrary constants.
                                         3                 3

    (4) (10 points) A mass weighing 64 pounds stretches a spring 0.32 foot. Determine the
        equation of motion if the mass is initially released from a point 6 inches above the
        equilibrium position with a downward velocity of 5 ft/s. What is the instantaneous
        velocity at the first time when the mass passes through the equilibrium position?

         Solution: The equation of motion is mx + kx = 0, where m = 64/32 slug and
       k = 64/0.32 = 200 ft/lb. Thus
                x + 100x = 0 ⇒ x(t) = c1 cos 10t + c2 sin 10t, c1,2 = constants.
        To determine the constants, use the initial conditions. As x(0) = −1/2 ft, c1 = −1/2.
       Additionally, x (t) = −10c1 sin 10t + 10c2 cos 10t, thus x (0) = 5 ft/sec and 10c2 = 5.
3

   Consequently, x(t) = − 1 cos 10t + 1 sin 10t and x (t) = 5 sin 10t + 5 cos 10t. To find
                           2           2
the time when the mass passes through the equilibrium position, set x(t) = 0. Note
that this implies tan(10t) = 1 whose first positive solution is for 10t = π/4. So
                                  √        √
                                     2       2    √
                     x (π/40) = 5      +5      = 5 2 ft/sec
                                    2       2
is the answer needed.

Más contenido relacionado

La actualidad más candente

Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
akabaka12
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
A Jorge Garcia
 
Mathématiques - Fonction génératrice
Mathématiques - Fonction génératriceMathématiques - Fonction génératrice
Mathématiques - Fonction génératrice
Loïc Dilly
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
Sharon Henry
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
Pokkarn Narkhede
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 

La actualidad más candente (20)

Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
Antiderivadas
AntiderivadasAntiderivadas
Antiderivadas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
Mathématiques - Fonction génératrice
Mathématiques - Fonction génératriceMathématiques - Fonction génératrice
Mathématiques - Fonction génératrice
 
FM calculus
FM calculusFM calculus
FM calculus
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
 
Introduction à la transformée en z et convolution discrète (GEII MA32)
Introduction à la transformée en z et convolution discrète (GEII MA32)Introduction à la transformée en z et convolution discrète (GEII MA32)
Introduction à la transformée en z et convolution discrète (GEII MA32)
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul Hamid
 
FRACCIONES ·3ªESO
FRACCIONES ·3ªESOFRACCIONES ·3ªESO
FRACCIONES ·3ªESO
 
Problemas resueltos-derivadas
Problemas resueltos-derivadasProblemas resueltos-derivadas
Problemas resueltos-derivadas
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 
Differentiation jan 21, 2014
Differentiation jan 21, 2014Differentiation jan 21, 2014
Differentiation jan 21, 2014
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Diamond and box factoring student version
Diamond and box factoring student versionDiamond and box factoring student version
Diamond and box factoring student version
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 

Destacado

Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
akabaka12
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
akabaka12
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
akabaka12
 
Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009
akabaka12
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
akabaka12
 
Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009
akabaka12
 

Destacado (6)

Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009
 

Similar a Engr 213 midterm 2b sol 2010

Similar a Engr 213 midterm 2b sol 2010 (20)

Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Week 2
Week 2 Week 2
Week 2
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Sect5 2
Sect5 2Sect5 2
Sect5 2
 
整卷
整卷整卷
整卷
 
Torsion of circular shafts
Torsion of circular shaftsTorsion of circular shafts
Torsion of circular shafts
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
Sect5 1
Sect5 1Sect5 1
Sect5 1
 
Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 

Más de akabaka12

Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
akabaka12
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009
akabaka12
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
akabaka12
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
akabaka12
 
Engr 213 final 2007
Engr 213 final 2007Engr 213 final 2007
Engr 213 final 2007
akabaka12
 
Emat 213 final fall 2005
Emat 213 final fall 2005Emat 213 final fall 2005
Emat 213 final fall 2005
akabaka12
 
Engr 213 final sol 2007
Engr 213 final sol 2007Engr 213 final sol 2007
Engr 213 final sol 2007
akabaka12
 

Más de akabaka12 (7)

Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Engr 213 final 2007
Engr 213 final 2007Engr 213 final 2007
Engr 213 final 2007
 
Emat 213 final fall 2005
Emat 213 final fall 2005Emat 213 final fall 2005
Emat 213 final fall 2005
 
Engr 213 final sol 2007
Engr 213 final sol 2007Engr 213 final sol 2007
Engr 213 final sol 2007
 

Engr 213 midterm 2b sol 2010

  • 1. Concordia University March 23, 2010 Applied Ordinary Differential Equations ENGR 213 - Section F Prof. Alina Stancu Exam II (B) (1) (6 points) Solve the homogeneous ODE x2 y + 3xy + 5y = 0. Solution: The characteristic equation of this homogeneous Cauchy-Euler ODE is m(m − 1) + 3m + 5 = 0 or m2 + 2m + 5 = 0. It has complex roots r = −1 ± 2i. Hence the general solution of the ODE on x > 0 is y(x) = c1 x−1 cos(2 ln x) + c2 x−1 sin(2 ln x), c1,2 = constants. (2) (14 points) Solve the initial value problem y − 6y + 9y = x, y(0) = 0, y (0) = 1. Solution: Consider first the associated homogeneous ODE: y − 6y + 9y = 0 with the characteristic equation r2 − 6r + 9 = 0 with r = 3 as double root. Hence yc (x) = c1 e3x + c2 xe3x , c1,2 = constants. We now look for a particular solution yp to the non-homogenous ODE. We’ll use here the method of undetermined coefficients by setting yp (x) = Ax + B. As yp (x) = A and yp (x) = 0, we deduce that −6A + 9Ax + 9B = x ⇒ A = 1/9, −6A + 9B = 0 thus x 2 B = 2A/3 = 2/27 and yp (x) = + . 9 27 Thus x 2 ygeneral (x) = c1 e3x + c2 xe3x + + , c1,2 = constants. 9 27 We’ll now use the initial conditions to find c1,2 . As y(0) = 0, we have c1 + 2/27 = 0 ⇒ c1 = −2/27. Evaluating y (x) = c1 (3e3x ) + c2 (e3x + 3xe3x ) + 1/9, thus y (0) = 3c1 + c2 + 1/9 = 1, implying c2 = 10/9. Therefore the solution of the IVP is 2 10 3x x 2 y(x) = − e3x + xe + + . 27 9 9 27 1
  • 2. 2 (3) (10 points) Use the variation of parameters to solve the differential equation y + y = sin2 x. Solution: The complementary part of the solution follows from r2 +1 = 0 ⇒ r = ±i and is yc (x) = c1 cos x + c2 sin x. Considering y1 (x) = cos x, y2 (x) = sin x, the Wronskian is W (x) = 1 = 0 for all real 0 sin x x’s. To find the complementary solution we calculate W1 (x) = det 2 = sin x cos x cos x 0 − sin3 x and W2 (x) = det = sin2 x cos x. − sin x sin2 x The method of variation of parameters gives yp (x) = y1 (x)u1 (x) + y2 (x)u2 (x), where u1 (x) = W1 (x)/W (x) and u2 (x) = W2 (x)/W (x). Integrating (by taking u = sin x du = cos x dx) and taking the constant of integration to be zero, we have u3 sin3 x u2 (x) = (sin2 x cos x) dx = u2 du = = . 3 3 On the other hand, u3 cos3 x u1 (x) = − sin3 x dx = − sin x (1 − cos2 x) dx = (1 − u2 ) du = u − = cos x − , 3 3 where above we used the fundamental identity of trigonometry (sin2 x + cos2 x = 1) and the substitution u = cos x, du = − sin x dx. Consequently, cos3 x sin3 x yp (x) = cos x · cos x − + sin x · 3 3 and cos4 x sin4 x y(x) = c1 cos x + c2 sin x − + cos2 x + , c1,2 = arbitrary constants. 3 3 (4) (10 points) A mass weighing 64 pounds stretches a spring 0.32 foot. Determine the equation of motion if the mass is initially released from a point 6 inches above the equilibrium position with a downward velocity of 5 ft/s. What is the instantaneous velocity at the first time when the mass passes through the equilibrium position? Solution: The equation of motion is mx + kx = 0, where m = 64/32 slug and k = 64/0.32 = 200 ft/lb. Thus x + 100x = 0 ⇒ x(t) = c1 cos 10t + c2 sin 10t, c1,2 = constants. To determine the constants, use the initial conditions. As x(0) = −1/2 ft, c1 = −1/2. Additionally, x (t) = −10c1 sin 10t + 10c2 cos 10t, thus x (0) = 5 ft/sec and 10c2 = 5.
  • 3. 3 Consequently, x(t) = − 1 cos 10t + 1 sin 10t and x (t) = 5 sin 10t + 5 cos 10t. To find 2 2 the time when the mass passes through the equilibrium position, set x(t) = 0. Note that this implies tan(10t) = 1 whose first positive solution is for 10t = π/4. So √ √ 2 2 √ x (π/40) = 5 +5 = 5 2 ft/sec 2 2 is the answer needed.