PRACTICA LABORATORIO Nº 5
TEORIA DE MAQUINAS
12/05/2005 1 / 11
VERIFICACIÓN DE
ENGRANAJES
APELLIDOS:
NOMBRE:
APELLIDOS:
NO...
PRACTICA LABORATORIO 5
04/02/2004 2 / 11
PRACTICA 5: Verificación de engranajes
DURACIÓN:
2 HORAS
OBJETIVO:
Se pretende qu...
PRACTICA LABORATORIO 5
04/02/2004 3 / 11
c1) Dientes rectos
El valor del número de espacios C utilizado para la medición d...
PRACTICA LABORATORIO 5
04/02/2004 4 / 11
Método 2: Verificación con calibre especial.
Para determinar los valores de fijac...
PRACTICA LABORATORIO 5
04/02/2004 5 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 1
Croquis:
Medidas:
Módulo, (m) =
Paso, (p) =
Esp...
PRACTICA LABORATORIO 5
04/02/2004 6 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 2
Croquis:
Medidas:
Módulo, (m) =
Paso, (p) =
Esp...
PRACTICA LABORATORIO 5
04/02/2004 7 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 3
Croquis:
Medidas:
Módulo, (m) =
Paso, (p) =
Esp...
PRACTICA LABORATORIO 5
04/02/2004 8 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 4
Croquis:
Medidas:
Módulo, (m) =
Paso, (p) =
Esp...
PRACTICA LABORATORIO 5
04/02/2004 9 / 11
ENGRANAJE CILÍNDRICO RECTO TIPO 5
Croquis:
Medidas:
Módulo, (m) =
Paso, (p) =
Esp...
PRACTICA LABORATORIO 5
04/02/2004 10 / 11
ENGRANAJE CILÍNDRICO HELICOIDAL
Croquis:
Medidas:
Módulo aparente (ma = Dp / z) ...
PRACTICA LABORATORIO 5
04/02/2004 11 / 11
ANEXO I
PRACTICA DE LABORATORIO Nº 5
TEORIA DE MAQUINAS
12/05/2005 1 / 6
TRAZADO DEL PERFIL
TEORICO DE UNA
RUEDA DENTADA
APELLIDOS...
PRACTICA LABORATORIO 5
12/05/2005 2 / 6
PRACTICA 5: Trazado del perfil teórico de una rueda dentada
DURACIÓN:
2 HORAS
OBJE...
PRACTICA LABORATORIO 5
12/05/2005 3 / 6
FUNDAMETOS TEÓRICOS
Por las clases de teoría se conoce el siguiente esquema de gen...
PRACTICA LABORATORIO 5
12/05/2005 4 / 6
Algunos ejemplos reales de tallado de ruedas dentadas son:
PRACTICA LABORATORIO 5
12/05/2005 5 / 6
A continuación se presentan diferentes mecanizados pero con corrección, se puede
o...
PRACTICA LABORATORIO 5
12/05/2005 6 / 6
DESCRIPCION DE LA PRÁCTICA
Dada la cremallera de módulo 4 y longitud 200mm, se tal...
Próxima SlideShare
Cargando en…5
×

Procedimiento de verificacion de engranajes

600 visualizaciones

Publicado el

Procedimiento

Publicado en: Ingeniería
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
600
En SlideShare
0
De insertados
0
Número de insertados
8
Acciones
Compartido
0
Descargas
13
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Procedimiento de verificacion de engranajes

  1. 1. PRACTICA LABORATORIO Nº 5 TEORIA DE MAQUINAS 12/05/2005 1 / 11 VERIFICACIÓN DE ENGRANAJES APELLIDOS: NOMBRE: APELLIDOS: NOMBRE: V4
  2. 2. PRACTICA LABORATORIO 5 04/02/2004 2 / 11 PRACTICA 5: Verificación de engranajes DURACIÓN: 2 HORAS OBJETIVO: Se pretende que el alumno consiga realizar la verificación de engranajes rectos y helicoidales utilizando como aparatos de medida tanto el calibre normal, como el especial para medir engranajes. DESARROLLO: Método 1: Verificación con calibre normal. a) Se procederá al cálculo del módulo del engranaje mediante la aplicación de la siguiente fórmula: De = diámetro exterior z = número de dientes El valor del diámetro exterior se obtiene directamente utilizando un calibre normal. b) Se comprobará que se trata de un módulo normalizado (Anexo I). c) A continuación y teniendo en cuenta el ángulo de presión se contrastará el valor del módulo obtenido anteriormente con el de la siguiente fórmula: Para α = 14º 30’ simplificada: Para α = 15º simplificada: Para α = 20º simplificada: Para cualquier ángulo de presión: siendo: M = módulo Y = número de espacios N = número de dientes α = ángulo de presión α1 = ángulo de presión en radianes.
  3. 3. PRACTICA LABORATORIO 5 04/02/2004 3 / 11 c1) Dientes rectos El valor del número de espacios C utilizado para la medición de K se obtiene de la siguiente tabla: c2) Dientes helicoidales La cota real sobre “k” dientes se mide sobre una recta tangente al cilindro base. Es la distancia entre las trazas rectilíneas de dos flancos anti-homólogos de “k dientes” consecutivos (ver figura adjunta). Se tomará siempre como valor la media al menos de tres valores. Medida real sobre k dientes
  4. 4. PRACTICA LABORATORIO 5 04/02/2004 4 / 11 Método 2: Verificación con calibre especial. Para determinar los valores de fijación en el calibre especial (altura de cabeza = ab; espesor = bc), éstos se han de multiplicar por el módulo utilizando la siguiente tabla: Los valores de esta tabla son para hacer la corrección por el número de dientes, hasta 45, siguiendo la diferencia entre la cuerda y el arco; a partir de 45 dientes, esta diferencia es insignificante, y, por tanto, dentro de la más exigente tolerancia. FÓRMULAS z = número de dientes p = paso m = módulo Dp =diámetro primitivo S = cuerda F = flecha del arco L = altura del diente a partir del diámetro primitivo γ = 90 / z S = Dp ⋅ sen γ F = [Dp (1 – cos γ)]/2 ab = L + F bc = S Para dentaduras interiores, ab = L – F γ
  5. 5. PRACTICA LABORATORIO 5 04/02/2004 5 / 11 ENGRANAJE CILÍNDRICO RECTO TIPO 1 Croquis: Medidas: Módulo, (m) = Paso, (p) = Espesor deinte, (e) = Espacio entre dientes, (c) = Profundidad del diente, (h) = Altura de cabeza, (hc) = Altura de pie, (hp) = Diámetro primitivo, (Dp) = Diámetro de cabeza, (Dc) = Diámetro de base, (Db) = Número de dientes, (z) = Ángulo de presión, (α) = Comentarios:
  6. 6. PRACTICA LABORATORIO 5 04/02/2004 6 / 11 ENGRANAJE CILÍNDRICO RECTO TIPO 2 Croquis: Medidas: Módulo, (m) = Paso, (p) = Espesor deinte, (e) = Espacio entre dientes, (c) = Profundidad del diente, (h) = Altura de cabeza, (hc) = Altura de pie, (hp) = Diámetro primitivo, (Dp) = Diámetro de cabeza, (Dc) = Diámetro de base, (Db) = Número de dientes, (z) = Ángulo de presión, (α) = Comentarios:
  7. 7. PRACTICA LABORATORIO 5 04/02/2004 7 / 11 ENGRANAJE CILÍNDRICO RECTO TIPO 3 Croquis: Medidas: Módulo, (m) = Paso, (p) = Espesor deinte, (e) = Espacio entre dientes, (c) = Profundidad del diente, (h) = Altura de cabeza, (hc) = Altura de pie, (hp) = Diámetro primitivo, (Dp) = Diámetro de cabeza, (Dc) = Diámetro de base, (Db) = Número de dientes, (z) = Ángulo de presión, (α) = Comentarios:
  8. 8. PRACTICA LABORATORIO 5 04/02/2004 8 / 11 ENGRANAJE CILÍNDRICO RECTO TIPO 4 Croquis: Medidas: Módulo, (m) = Paso, (p) = Espesor deinte, (e) = Espacio entre dientes, (c) = Profundidad del diente, (h) = Altura de cabeza, (hc) = Altura de pie, (hp) = Diámetro primitivo, (Dp) = Diámetro de cabeza, (Dc) = Diámetro de base, (Db) = Número de dientes, (z) = Ángulo de presión, (α) = Comentarios:
  9. 9. PRACTICA LABORATORIO 5 04/02/2004 9 / 11 ENGRANAJE CILÍNDRICO RECTO TIPO 5 Croquis: Medidas: Módulo, (m) = Paso, (p) = Espesor deinte, (e) = Espacio entre dientes, (c) = Profundidad del diente, (h) = Altura de cabeza, (hc) = Altura de pie, (hp) = Diámetro primitivo, (Dp) = Diámetro de cabeza, (Dc) = Diámetro de base, (Db) = Número de dientes, (z) = Ángulo de presión, (α) = Comentarios:
  10. 10. PRACTICA LABORATORIO 5 04/02/2004 10 / 11 ENGRANAJE CILÍNDRICO HELICOIDAL Croquis: Medidas: Módulo aparente (ma = Dp / z) = Módulo real, (mr = ma cos β) = Paso aparente, (pa = πDp / z) = Paso real, (pr = pa cos β) = Espesor deinte, (e) = Espacio entre dientes, (c) = Profundidad del diente, (h) = Altura de cabeza, (hc = mr) = Altura de pie, (hp) = Diámetro primitivo, (Dp) = Diámetro de cabeza, (Dc) = Diámetro de base, (Db) = Número de dientes, (z) = Ángulo de presión, (α) = Ángulo de inclinación, (β) = Comentarios:
  11. 11. PRACTICA LABORATORIO 5 04/02/2004 11 / 11 ANEXO I
  12. 12. PRACTICA DE LABORATORIO Nº 5 TEORIA DE MAQUINAS 12/05/2005 1 / 6 TRAZADO DEL PERFIL TEORICO DE UNA RUEDA DENTADA APELLIDOS: NOMBRE: V6
  13. 13. PRACTICA LABORATORIO 5 12/05/2005 2 / 6 PRACTICA 5: Trazado del perfil teórico de una rueda dentada DURACIÓN: 2 HORAS OBJETIVO El objetivo de esta práctica es que el alumno dibuje el perfil de una rueda dentada, para ello se reparte a cada alumno una cremallera tallada en policarbonato. Sobre esta cremallera es posible hacer rodar sin deslizar las circunferencias primitivas de ruedas de diferentes tamaños de tal forma que se pueda ir trazando el perfil resultante con cada una de las ruedas. También se realizarán desplazamientos relativos entre la cremallera y la rueda para obtener las correcciones utilizadas en el tallado real de ruedas dentadas. PRIMITIVA CREMALLERA PRIMITIVAS RUEDAS CREMALLERA
  14. 14. PRACTICA LABORATORIO 5 12/05/2005 3 / 6 FUNDAMETOS TEÓRICOS Por las clases de teoría se conoce el siguiente esquema de generación de una rueda dentada: La generación de esta rueda se realiza con el siguiente perfil de cremallera (m=1): h = p/4 ha =a = 1 hf = b = 1.25 e = Π/2
  15. 15. PRACTICA LABORATORIO 5 12/05/2005 4 / 6 Algunos ejemplos reales de tallado de ruedas dentadas son:
  16. 16. PRACTICA LABORATORIO 5 12/05/2005 5 / 6 A continuación se presentan diferentes mecanizados pero con corrección, se puede observar como el diente es más robusto al aumentar la corrección positiva.
  17. 17. PRACTICA LABORATORIO 5 12/05/2005 6 / 6 DESCRIPCION DE LA PRÁCTICA Dada la cremallera de módulo 4 y longitud 200mm, se tallarán 4 ruedas dentadas de M = 4, de diferente número de dientes y por tanto de diferentes diámetros primitivos, tal y como aparecen en el siguiente cuadro, primero con corrección y posteriormente corregidas, esto se consigue con un desplazamiento relativo entre la primitiva de la cremallera y la cremallara: CREMALLERA M 4 PASO 12,5663706 hf 5 LONGITUD 250 Z 19,8943679 RUEDA 10 M 4 Z 10 DP 40 DESARROLLO 125,664 ANG PRES 20 DCABEZA 48 DBSE 37,5876937 RUEDA 12 X 0,3 DP' 41,2 M 4 Z 12 DP 48 DESARROLLO 150,7968 ANG PRES 20 DCABEZA 56 DBSE 45,1052324 RUEDA 14 X 0,3 DP' 49,2 M 4 Z 14 DP 56 DESARROLLO 175,9296 ANG PRES 20 DCABEZA 64 DBSE 52,6227711 RUEDA 16 X 0,3 DP' 57,2 M 4 Z 16 DP 64 DESARROLLO 201,0624 ANG PRES 20 DCABEZA 72 DBSE 60,1403099 X 0,3 DP' 65,2 Cada alumno deberá entregar 8 ruedas correctamente dibujadas, 4 sin corregir y 4 corregidas.

×