Fuentes De Campos Magnéticos
Upcoming SlideShare
Loading in...5
×
 

Fuentes De Campos Magnéticos

on

  • 16,520 reproducciones

 

Estadísticas

reproducciones

reproducciones totales
16,520
reproducciones en SlideShare
16,370
reproducciones incrustadas
150

Actions

Me gusta
1
Descargas
123
Comentarios
1

3 insertados 150

http://www.slideshare.net 145
http://webcache.googleusercontent.com 3
http://127.0.0.1 2

Accesibilidad

Categorias

Detalles de carga

Uploaded via as Microsoft PowerPoint

Derechos de uso

© Todos los derechos reservados

Report content

Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
  • Gracias por la informacion ... me sirvio de mucha ayuda para mi examen de elcetromagnetismo...Gracias man en hora buena ... sigue compartiendo tus conocimientos!! x)
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
Publicar comentario
Edite su comentario
  • http://www.icf.espol.edu.ec

Fuentes De Campos Magnéticos Fuentes De Campos Magnéticos Presentation Transcript

  • Fuentes de campo magnético
  • La ley de Biot-Savart Propiedades del campo magnético creado por una corriente eléctrica: El vector d B es perpendicular tanto a d s (que es un vector que tiene unidades de longitud y está en la dirección de la corriente) como del vector unitario dirigido del elemento a P La magnitud de d B es inversamente proporcional a r 2 , donde r es la distancia del elemento a P. La magnitud de d B es proporcional a la corriente y a la longitud ds del elemento. La magnitud de d B es proporcional a sen θ , donde θ es el ángulo entre los vectores d s y .  o : permeabilidad del espacio libre
  • Campo magnético alrededor de un conductor recto delgado
  • Si tenemos un alambre infinito recto: θ 1 = 0 y θ 2 =  .
  • Campo magnético sobre el eje de un lazo de corriente circular
  • En el centro del lazo (x = 0): En puntos muy lejanos (x >> a): Recordando que  = IA = I  a 2
  • Fuerza magnética entre dos conductores paralelos Dos alambres que conducen corriente ejercen fuerzas magnéticas entre sí. La dirección de la fuerza depende de la dirección de la corriente.
  • Conductores paralelos que conducen corriente en la misma dirección se atraen entre sí, en tanto que conductores paralelos que conducen corrientes en direcciones opuestas se repelen entre sí. Si dos alambres paralelos a 1 m de distancia conducen la misma corriente y la fuerza por unidad de longitud de cada alambre es de 2 × 10  7 N/m, entonces la corriente se define como 1 amperio (A) . Si un conductor conduce una corriente estable de 1 A, entonces la cantidad de carga que fluye por sección transversal del conductor en 1 s es 1 C.
  • Ley de Ampère La integral de línea de B · d s alrededor de cualquier trayectoria cerrada es igual a  0 I, donde I es la corriente estable total que pasa a través de cualquier superficie delimitada por la trayectoria cerrada.
  • Fuera del toroide ( r<R ): Dentro del toroide: Fuera del toroide ( r>R ):
  • Si suponemos que el solenoide es muy largo comparado con el radio de sus espiras, el campo es aproximadamente uniforme y paralelo al eje en el interior del solenoide y es nulo fuera del solenoide.
  • Campo magnético producido por un solenoide en un punto de su eje:
  • En el punto medio del solenoide, suponiendo que el solenoide es largo comparado con a: En el punto extremo del solenoide, suponiendo que el solenoide es largo comparado con a:
  • Corriente de desplazamiento y la forma general de la ley de Ampère La ley de Ampère de la forma anterior sólo es válida si el campo eléctrico es constante en el tiempo . Los campos magnéticos son producidos tanto por campos eléctricos constantes como por campos eléctricos que varían con el tiempo. Ley de Ampère-Maxwell: Se debe aclarar que la expresión anterior sólo es válida en el vacío. Si un material magnético está presente, se debe utilizar la permeabilidad y la permitividad características del material.
  • Vector de magnetización e intensidad de campo magnético El estado magnético de una sustancia se describe por medio de una cantidad denominada vector de magnetización M , cuya magnitud se define como el momento magnético por unidad de volumen de la sustancia. El campo magnético total en un punto en una sustancia depende tanto del campo externo aplicado como de la magnetización de la sustancia. La intensidad de campo magnético H de una sustancia representa el efecto de la corriente de conducción en alambres sobre una sustancia (B ext =  0 H)
  • Clasificación de sustancias magnéticas Ferromagnetismo Son sustancias cristalinas cuyos átomos tienen momentos magnéticos permanentes que muestran intensos efectos magnéticos. Todos los materiales ferromagnéticos están constituidos con regiones microscópicas llamadas dominios . Ejemplos: hierro, cobalto, níquel.
  • Si sobre un material ferromagnético se aplica una corriente, la magnitud del campo magnético H aumenta linealmente con I. La curva B versus H se denomina curva de magnetización : Este efecto se conoce como histéresis magnética . La forma y tamaño de la histéresis dependen de las propiedades de la sustancia ferromagnética y de la intensidad del campo aplicado. La histéresis para materiales ferromagnéticos “duros” es característicamente ancha, lo que corresponde a una gran magnetización remanente. El área encerrada por la curva de magnetización representa el trabajo requerido para llevar al material por el ciclo de histéresis .
  • Paramagnetismo y diamagnetismo Al igual que los ferromagnéticos, los materiales paramagnéticos están hechos de átomos que tienen momentos magnéticos permanentes, mientras que los diamagnéticos carecen de ellos. Aluminio, calcio, cromo son ejemplos de sustancias paramagnéticas mientras que el cobre, oro y plomo son ejemplos de sustancias diamagnéticas. Para las sustancias paramagnéticas y diamagnéticas, el vector de magnetización M es proporcional a la intensidad de campo magnético H: Donde  es un factor adimensional llamado susceptibilidad magnética . Para sustancias paramagnéticas  es positiva y para sustancias diamagnéticas  es negativa.