FOTOSINTESIS
ALEJANDRO ÁNGEL BERJAN 20122010039
LAURA ESTRADA PORRAS 20122010041
ANDRÉS FELIPE PINTO ARIAS 20122010034
GRU...
1- Introducción:
+ Una descripción general del tema a desarrollar, en tercera persona y un breve
resumen de lo que desarro...
Separación de pigmentos
Por cromatografía se pueden separar cuatro clorofilasdistintas: La clorofila A constituye de
maner...
Figura 2. Bases de la fotosíntesis.
A su vez la fotosíntesis es un proceso que ocurre en dos fases.La primera fase es un
p...
lumínica de mayor longitud de onda, o puede provocar una reacción química, como
sucede en lafotosíntesis, lo cual depende ...
color verde azulado. Seguida por la clorofila b que fue la que se obtuvo en segundo lugar
en cantidad en color verde amari...
Próxima SlideShare
Cargando en…5
×

Fotosintesis

540 visualizaciones

Publicado el

Fotosíntesis, análisis, proceso, características y separación de pigmentos fotosintéticos mediante cromatografía

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
540
En SlideShare
0
De insertados
0
Número de insertados
6
Acciones
Compartido
0
Descargas
2
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Fotosintesis

  1. 1. FOTOSINTESIS ALEJANDRO ÁNGEL BERJAN 20122010039 LAURA ESTRADA PORRAS 20122010041 ANDRÉS FELIPE PINTO ARIAS 20122010034 GRUPO 423 WILLIAM ARIZA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE MEDIO AMBIENTE Y RECURSOS NATURALES BIOLOGÍA BOGOTÁ DC 8 DE DICIEMBRE DEL 2012
  2. 2. 1- Introducción: + Una descripción general del tema a desarrollar, en tercera persona y un breve resumen de lo que desarrollara en el laboratorio. 2- Objetivos: + Uno general y mínimo tres específicos. + Escritos en tercera persona, deben iniciar con un verbo en infinitivo. + Enfocados en el tema del laboratorio. 3- Materiales y métodos: + La lista de todos los materiales utilizados y la metodología por aparte de cada procedimiento realizado. Marco teórico Las células fotosintéticas tienen una serie de pigmentos asociados a sus membranas tilocoídales. Estos pigmentos, se agrupan en tres clases: Clorofilas:Molécula de porfirina que lleva unida una molécula hidrocarbonada. Hay algunos tipos: De acuerdo con Mancilla et al. (2009,)Están directamente implicadas en la producción de ATP y NADPH. De igual manera se encarga de absorber la luz necesaria para realizar la fotosíntesis, proceso que posibilita lasíntesis de sustancias orgánicas a partir de lasinorgánicas (CO2, H2O y sales minerales), mediante latransformación de la energía luminosa en energía química. Generalmente laabundancia de clorofila en las hojas y su presenciaocasional en otros tejidos vegetales, como los tallos, tiñen de verde estas partes de las plantas. Caratenoides: Incluyen a los carotenos (amarillos y anaranjados). Se encuentran en todas las células fotosintéticas. Ficobiliproteínas:Propias de las cianobacterias y las algas rojas. Este tipo integra al pigmento azul ficocianina y al rojo ficoeritina. Estos dos últimos, funcionan como pigmentos que absorben luz y traspasan esta energía de excitación a la clorofila a. Cada tipo de pigmento presenta un espectro particular de absorción. Esto depende de la estructura molecular, las cuales absorben ciertas longitudes de onda. (Santamaría et al, 2004)
  3. 3. Separación de pigmentos Por cromatografía se pueden separar cuatro clorofilasdistintas: La clorofila A constituye de manera aproximada el75% de toda la clorofila de las plantas verdes, estando presente también en las algas verdeazuladas y encélulas fotosintéticas más complejas. La clorofila B es un pigmento accesorio presente envegetales y otras células fotosintéticas complejas;absorbe luz de una longitud de onda diferente ytransfiere la energía a la clorofila A, que se encarga detransformarla en energía química. Las clorofilas C y la D son propias de algas y bacterias(Mancilla et al., 2009). Figura 1. Separación de pigmentos a través de cromatografía. Estos pigmentos se encuentran en el interior de las células vegetales específicamente en el cloroplasto. Loscompuestos clorofílicos están ligados químicamentecon las estructuras internas del cloroplasto y se hallan retenidos en estado coloidal (Gonzales, 2002). Fotosíntesis Según Dennis (1998), el proceso biológico más importante de la Tierra es lafotosíntesis de las plantas verdes. A partir de ésta se produce prácticamente toda la materia orgánica denuestro planeta y se garantiza toda la alimentación delos seres vivos. En las plantas, los cloroplastos llevan a cabo esas reacciones químicas que interactúan en el proceso de fotosíntesis, la cual básicamente se explica en la figura 2. ·
  4. 4. Figura 2. Bases de la fotosíntesis. A su vez la fotosíntesis es un proceso que ocurre en dos fases.La primera fase es un proceso que depende de la energía directa de laluz. La fase independiente de la luz, se realiza cuando los productos de las reacciones de luz son utilizados paraformar enlaces carbono-carbono, delos carbohidratos. Las reacciones oscuras puedenrealizarse en la oscuridad, con la condición de que lafuente de energía (ATP) y el poder reductor (NADPH)formados en la luz se encuentren presentes. Las varias enzimasdel ciclo de Calvin, son activadas por la luz mediante laformación de grupos -SH; de tal forma que el terminoreacción de oscuridad no es del todo correcto. Lasreacciones de oscuridad se efectúan en el estroma;mientras que las de luz ocurren en los tilacoides(Mathews y Holde, 1998). Cuando un pigmento absorbe un fotón o cuanto de luz,un electrón de la molécula de pigmento es lanzado a unnivel energético más alto; se dice entonces que estáexcitado. Este estado de excitación puede mantenersesólo por períodos muy cortos de tiempo y puede disiparse como calor; también, puede emitirseinmediatamente comoenergía CO2 absorbido en los estomas, y junto con agua es absorbida por la raíz, llegan a los clorplastos que con la ayuda de luz produce glucosa. Se produce O2, emitido al aire o agua, es utilizado para la respiración. A partir de la glucosa, se produce conpuestos que sirven como alimentos para herbivoros o para la misma planta. La energía solar es acumulada en forma de compuestos químicos, que al ser consumidos por los seres vivos liberan esa energía y sirven para mantener los procesos vitales en las células
  5. 5. lumínica de mayor longitud de onda, o puede provocar una reacción química, como sucede en lafotosíntesis, lo cual depende no sólo de la estructuradel pigmento dado, sino también de su relación con lasmoléculas vecinas. Resultados y discusión Tras varios minutos de poner el papel en la solución de carbonato y etanol, la cromatografía muestra la variación de colores de mayor a menor intensidad de arriba a abajo respectivamente, como se muestra en la figura 3. Figura 3. Cromatografía de pigmentos. Todas estas sustancias presentan un grado diferente de solubilidad en disolventes apolares, lo que permite suseparación cuando una solución de las mismas desciende por a través de una columna de cromatografíaverticalmente sobre una película de un disolvente orgánico, ya que las más solubles se desplazarán a mayor velocidad, pues acompañarán fácilmente al disolvente a medida que éste desciende. Las menos solubles avanzaránmenos en la columna. (Mancilla et al., 2009). Aparecieron varias bandas de diferentes coloresque estuvieron más o menos alejados de ladisolución de etanol segúnla mayor o menor solubilidad de los pigmentos endicha disolución. De acuerdo con Mancillaet al. (2009) estas bandas tenían diferentegrosor, dependiendo de la abundancia del pigmentoen la disolución. Las que tenían más afinidad por eldisolvente bajaban más rápido que los otros pigmentos. Los primeros pigmentos que se extrajeron fueron lasxantofilas, las cuáles son de color amarillo.Estas se obtuvieron en pequeña cantidad cada unode sus coloraciones diferentes. Después se obtuvo la clorofila a la cual predomina en el papel filtrado, ya que esta es la que constituye aproximadamente el 75% de toda la clorofila en las plantas verdes y es de
  6. 6. color verde azulado. Seguida por la clorofila b que fue la que se obtuvo en segundo lugar en cantidad en color verde amarillento (Mancilla, et al. 2009). Finalmente se obtuvieron el pigmentode los carotenos que fueronde color amarillo más intenso que las xantofilas yestos se obtuvieron al final debido a que eranmenos afines al disolvente empleado. Conclusiones La gran presencia de clorofila, está relacionada con la importancia tan fundamental que tiene al ser uno de los principales protagonistas de la fotosíntesis que como se sabe es la base fundamental para obtener materia y energía para desarrollar sus funciones vitales. Bibliografía Santamarina, P., ,J. y García, F.(2004). Prácticas de biología y botánica. Valencia: Universitat Politècnica de València, p. 235. Mancilla, C., Castrejón, C., Rosas, T., Blanco, E.y Pérez, S. (2009). Extracción y separación de pigmentos vegetales. México: Universidad del Valle de México, Campus Chapultepec. CFGM Farmacia. (2007). Los pigmentos vegetales. Buenos Aires: Blafar.blogia. González, C. (2002). Pigmentos fotosintéticos. México: Botánica CNBA. Dennis, D. &Turpin, D. (1998).Plantmetabolism. Plant physiology, Biochemistry, andMolecular Biology. Orlando: Academic Press. Mathews, C. y Holde, K. Bioquímica2ªED. Madrid: McGraw Hill-Interamericana,

×