SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
Class-G Headphone Driver in 65nm
CMOS Technology
Alex Lollio1, Giacomino Bollati2 and Rinaldo Castello1
1Università degli studi di Pavia, Pavia, Italy
2Marvell Italia, Pavia, Italy
1
Headphone audio amplifiers
Target application
Typical operating conditions
VIN
VHV
-VHV
Key objectives:
• Low distortion
• Low noise
• High efficiency
• Single ended
• RL = 32/16 Ω
• BW = 20Hz–20kHz
• PO,MAX = 40mW (on
16 Ω)
Modern cellular phones incorporates MP3 music playback
and users may wish to use this feature for many hours
2
Outline
• Headphone amplifier
(Class-AB, Class-D, Class-G PROs and CONs)
• Class-G headphone driver
(architecture, switching principle, distortion analysis)
• Prototype in 65nm CMOS technology
(implementation, results, comparison)
• Conclusions
3
Outline
• Headphone amplifier
(Class-AB, Class-D, Class-G PROs and CONs)
• Class-G headphone driver
(architecture, switching principle, distortion analysis)
• Prototype in 65nm CMOS technology
(implementation, results, comparison)
• Conclusions
4
 Class AB (Linear amplifier)
PROs: Best linearity
No EMI problems
CONs: Low efficiency
Typically the preferred solution in headphone application
 Class D (Switching amplifier)
PROs: Best efficiency
CONs: Less linearity than class AB
EMI problems
Emerging solution in headphone application
Headphone audio amplifiers
Alternative topologies
5
Headphone audio amplifiers
Alternative topologies
 Class G: It is a linear amplifier which uses two voltage supply
rails which switches to the appropriate voltage as required by
the instantaneous output voltage
PROs: High efficiency but less than class D
High linearity but less than class AB
No EMI problems
CONs: It needs two voltage supply rails
VIN
VLV
VHV
-VLV
-VHV
VHV
-VHV
VLV
-VLV
VOUT VOUT
6
Class G
alternative topologies
 Series topology
(classical)
 Parallel topology
• Only one
output stage
• Switches
are in series
with the
power
transistors
• Two output
stages work in
parallel
• No switches in
series with the
power transistors
• It needs a careful
switching circuit
design
VHV
-VHV
VLV
-VLV
VHV
VLV
-VHV
-VLV
RL
RL
This is the adopted solution
7
Class G: working principle
For Vout below the switching point the low voltage stage is active.
For Vout above the switching point both the low voltage and high voltage
stages drive the load (in different moments).
VHV
VLV
-VHV
-VLV
LV stage
HV stage
iHV
iLV
iLV
iHV
iLV
iHV
Iout[A]
Iout[A]
iLV
t t
Switching
point
8
Class G: switching distortion
Distortion caused by the
switching
Up to the switching point
the class G linearity is the
same as a class AB
Compared to class AB, class G has an additional source of
distortion.
9
Switching point
Class G: critical design choices
The implemented current based switching enables low distortion and
high efficiency
• Switching point
level:
To achieve high
efficiency, it must be
as close as possible
to the low voltage
supply
Switching point
close to low
voltage supply
Switching point
far from the low
voltage supply
• Switching strategy: to minimize the distortion, switching must be as
smooth as possible
10
Outline
• Headphone amplifier
(Class-AB, Class-D, Class-G PROs and CONs)
• Class-G headphone driver
(architecture, switching principle, distortion analysis)
• Prototype in 65nm CMOS technology
(implementation, results, comparison)
• Conclusions
11
Overall amplifier architecture
• Three stage
opamp with
differential input
and single ended
output.
• The two
identical second
stages, gm2, and
the third stages,
gm3L and gm3H,
work in parallel.
• Only the low voltage stage gm3L is supplied by the low voltage rail
±VLV. The rest of the circuit is supplied by the high voltage rail ±VHV
gm2
gm2
gm1
-gm3L
-gm3H
Switching
stage
R2
R1
R1
R2 RL
CM2
CM2CM1
VOUT
Main path
12
Amplifier architecture: main path
First stage
Input pairs
gm1
1313
VO
VLV
-VLV
VHV
-VHV
Floating
battery
VHV
VHV
-VHV
RL
Second stage
Amplifier architecture: main path
gm2
14
Floating battery ref: Renirie, Langen, Huijsing, 1995
VO
VLV
-VLV
VHV
-VHV
Floating
battery
VHV
VHV
-VHV
RL
Amplifier architecture: main path
Third
stage
LV stage
gm3L
HV stage
gm3H
15
RL
VO
VLV
-VLV
VHV
-VHV
-VHV
Floating
battery
VHV
VHV
Amplifier architecture: switching stage
conceptual schematic
PMOS
switching
stage
NMOS
switching
stage
RL
VO
VO
VLV - VTH
-VLV + VTHVO
VLV
-VLV
VHV
-VHV
-VHV
Floating
battery
VHV
VHV
Amplifier architecture: switching stage
conceptual schematic
PMOS
switching
stage
RL
VO
VO
VLV - VTH
-VLV + VTHVO
VLV
-VLV
VHV
-VHV
-VHV
Floating
battery
VHV
VHV
Switching principle details
• Switching point sensing is in
voltage domain.
A differential pair compares the
output voltage to the switching
point voltage VLV-VTH
• The switching between the
high voltage and low voltage
output stage is current based.
The switching circuit injects all
its bias current into the gate of
the MOS to be switched off.
VOUT
LV stage
HV stage
iJH
iJL
18
VOUT VLV - VTH
VHV
-VHV
-VLV
VLV
VHV
VHV
IBIAS
PMOS switching stage
Output currents during switching
t
Iout[A]
Outputcurrents
iLV
iHV
t
VLV -VTH
VLV
Vout[V]
• When VOUT is lower than the
switching point (VLV-VTH) the
switching circuit enables the LV stage
and disables the HV stage
• When VOUT is higher than the low
voltage supply VLV only the HV stage
drives the load
• When VOUT is between VLV-VTH and
VLV both stages drive the load
19
Switching distortion:
Amplifier model during the switching
• We use a simplified model of the amplifier during the switching.
This current is used to represent
the disturbance generated by the
switching stage.
gm1 gm2 -gm3
20
RL
VOUT
R1
R1
R2
CM1
CM2
IJ
gm2f
Cm2
s
f
s
1
/fs
gm2
1
iVout
T
2
T
T
J
Design criteria for distortion reduction
• From the model of previous slide we obtain the equation:
21
Where
21
1
T
RR
R
Cm1
gm1
f
time
ΔVOUT
VOUT
195u 200u
300m
305m
To minimize the distortion at the output we have to minimize ΔVout.
• Lower iJ value means better linearity and lower switching speed
• Higher amplifier bandwidth, fT, means higher linearity
Switching
point
Outline
• Headphone amplifier
(Class-AB, Class-D, Class-G PROs and CONs)
• Class-G headphone driver
(architecture, switching principle, distortion analysis)
• Prototype in 65nm CMOS technology
(implementation, results, comparison)
• Conclusions
22
Chip micrograph
• 65nm CMOS process
• 0.14mm2 active area per
channel
• Voltage supplies:
High voltage rail ±1.4V
Low voltage rail ±0.35V
• Switching point 50mV under
the low voltage supply
• Max load capacitance 1nF
23
Measurement results:
Power dissipation versus output power
Fin=1kHz
RL=32Ω
24
Measurement results:
THD+N and efficiency versus output power
• Sinusoidal input signal (fin=1kHz)
• About 6dB extra distortion due to switching
25
Measurement results:
THD+N versus frequency
RL=32Ω
BW= 20Hz – 20 kHz
26
Measurement results:
Spectrum at different output power
PO=20mW
Fin=1kHz
PO=1mW
Fin=1kHz
27
Performance summary and comparison
Parameter This work
JSSC 09
[1]
ESSCIRC 06
[2]
Technology 65nm 130nm 65nm
Supply voltage
±1.4V
±0.35V
±1V
±0.6V
2.5V
Quiescent power (per
channel)
0.41mW 1.2mW 12.5mW
Peak load power (16Ω) 90mW 40mW 53.5mW
THD+N @ PRMS (32Ω)
-80dB @
16mW
-84dB @
10mW
-68dB @
27mW (16Ω)
SNR A-weighted 101dB
92dB (un-
weighted)
-
FOM=
Peak load power
Quiescent power
219.5 33.3 4.3
28
Performance summary and comparison
Parameter This work
MAX9725
[3]
TPA6141
[4]
LM48824
[5]
Supply voltage
1.4V with two
charge pumps + 1
buck
1.5V with a
charge pump
3.6V with 1
charge pump +
1 buck
3.6V with 1
charge pump +
1 buck
Quiescent power (per
channel)
0.41mW + 0.5mW
(2 CPs + 1 buck)
1.57mW 2.16mW 1.62mW
PSUP @ PL=0.1mW 0.87mW + 0.6mW - 4.5mW 3.24mW
PSUP @ PL=0.5mW 1.63mW + 0.8mW - 7.2mW 5.58mW
Peak load power
(16Ω)
90mW 50mW 50mW 74mW
THD+N @ PRMS
(32Ω)
-80dB @ 16mW -84dB @12mW -80dB @20mW -69dB@20mW
SNR A-weighted 101dB 92dB 105dB 102dB
FOM=
Peak load power
Quiescent power
90 31.8 23.2 45.6 29
Outline
• Headphone amplifier
(Class-AB, Class-D, Class-G PROs and CONs)
• Class-G headphone driver
(architecture, switching principle, distortion analysis)
• Prototype in 65nm CMOS technology
(implementation, results, comparison)
• Conclusions
30
Conclusions
• A class-G headphone driver has been presented. It
shows 50% less power consumption than the
competitors.
• The class-G amplifier is very suitable in low voltage
systems which require high efficiency and low
distortion.
• A class-G headphone prototype with charge pumps
and a buck converter is in progress
31
References
[1] Vijay Dhanasekaran; Jose Silva-Martinez; Edgar Sanchez-Sinencio, "Design of
Three-Stage Class-AB 16Ohm Headphone Driver Capable of Handling Wide Range
of Load Capacitance," Solid-State Circuits, IEEE Journal of , vol.44, no.6, pp.1734-
1744, Jun 2009.
[2] P. Bogner, H. Habibovic and T. Hartig, ‘‘A High Signal Swing Class AB Earpiece
Amplifier in 65nm CMOS Technology,’’ Proc. ESSCIRC, pp.372-375, 2006.
[3] Maxim, ‘‘1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with
Shutdown,’’ Rev. 3; 8/08, accessed on Jul. 7, 2009 < http://datasheets.maximic.
com/en/ds/MAX9725.pdf>
[4] Texas Instrument, ‘‘Class-G Directpath Stereo Headphone Amplifier,’’ 3/09,
accessed on Jul. 7, 2009 < http://focus.ti.com/lit/ds/symlink/tpa6141a2.pdf>
[5] National Semiconductor ”Class G Headphone Amplifier with I2C Volume Control,”
August 31,2009, accessed on Jan. 25, 2010
< http://www.national.com/ds/LM/LM48824.pdf >
32

Más contenido relacionado

La actualidad más candente

Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
aicdesign
 
Iai psep asep_controller_specsheet
Iai psep asep_controller_specsheetIai psep asep_controller_specsheet
Iai psep asep_controller_specsheet
Electromate
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
aicdesign
 
Kikusui electronic load_plz-5w
Kikusui electronic load_plz-5wKikusui electronic load_plz-5w
Kikusui electronic load_plz-5w
NIHON DENKEI SINGAPORE
 
FEBFAN7688_I00250A
FEBFAN7688_I00250AFEBFAN7688_I00250A
FEBFAN7688_I00250A
Steve Mappus
 
FAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsFAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration Instructions
Steve Mappus
 

La actualidad más candente (20)

Iai rcp2 gr3_ls_specsheet
Iai rcp2 gr3_ls_specsheetIai rcp2 gr3_ls_specsheet
Iai rcp2 gr3_ls_specsheet
 
Simple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpiceSimple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpice
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
ETAP - Ac networks
ETAP - Ac networksETAP - Ac networks
ETAP - Ac networks
 
VFD Delta L series
VFD Delta L series VFD Delta L series
VFD Delta L series
 
PMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspicePMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspice
 
Iai psep asep_controller_specsheet
Iai psep asep_controller_specsheetIai psep asep_controller_specsheet
Iai psep asep_controller_specsheet
 
LTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーションLTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーション
 
Novel RF Power Amplifier Linearization Proof-Of-Concept Bipolar Ne46134
Novel RF Power Amplifier Linearization Proof-Of-Concept Bipolar Ne46134Novel RF Power Amplifier Linearization Proof-Of-Concept Bipolar Ne46134
Novel RF Power Amplifier Linearization Proof-Of-Concept Bipolar Ne46134
 
Digital tachometers ono sokki
Digital tachometers ono sokkiDigital tachometers ono sokki
Digital tachometers ono sokki
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
NTU2018_01_26_Ph.D._oral_defence_YC
NTU2018_01_26_Ph.D._oral_defence_YCNTU2018_01_26_Ph.D._oral_defence_YC
NTU2018_01_26_Ph.D._oral_defence_YC
 
ArvindP3
ArvindP3ArvindP3
ArvindP3
 
Kikusui electronic load_plz-5w
Kikusui electronic load_plz-5wKikusui electronic load_plz-5w
Kikusui electronic load_plz-5w
 
FEBFAN7688_I00250A
FEBFAN7688_I00250AFEBFAN7688_I00250A
FEBFAN7688_I00250A
 
FAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsFAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration Instructions
 
Matery training ICT ( IN Circuit Test Machine)
Matery training ICT ( IN Circuit Test Machine)Matery training ICT ( IN Circuit Test Machine)
Matery training ICT ( IN Circuit Test Machine)
 
Harmonic dcj series_catalog
Harmonic dcj series_catalogHarmonic dcj series_catalog
Harmonic dcj series_catalog
 

Similar a Class G ISSCC 2012

Lollio10 r
Lollio10 rLollio10 r
Lollio10 r
alexzio
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & Mohammad
Kaveh Dehno
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IR
Parviz Parto
 
Drvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light FixDrvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light Fix
Steve Mappus
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
Steve Mappus
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
Waleedrazzaq721
 
Advanced motion controls azbe25a20
Advanced motion controls azbe25a20Advanced motion controls azbe25a20
Advanced motion controls azbe25a20
Electromate
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
Steven Ernst, PE
 
Advanced motion controls azbe10a20
Advanced motion controls azbe10a20Advanced motion controls azbe10a20
Advanced motion controls azbe10a20
Electromate
 

Similar a Class G ISSCC 2012 (20)

Lollio10 r
Lollio10 rLollio10 r
Lollio10 r
 
Physical designing of low power operational amplifier
Physical designing of low power operational amplifierPhysical designing of low power operational amplifier
Physical designing of low power operational amplifier
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & Mohammad
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IR
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
Webinar: Desmistificando projetos de fontes chaveadas
Webinar: Desmistificando projetos de fontes chaveadasWebinar: Desmistificando projetos de fontes chaveadas
Webinar: Desmistificando projetos de fontes chaveadas
 
Seminar302
Seminar302Seminar302
Seminar302
 
Drvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light FixDrvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light Fix
 
ECE_468_Report_Sid_AB
ECE_468_Report_Sid_ABECE_468_Report_Sid_AB
ECE_468_Report_Sid_AB
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
 
PMIC_V3
PMIC_V3PMIC_V3
PMIC_V3
 
unit4.pdf
unit4.pdfunit4.pdf
unit4.pdf
 
Voltage Regulation
Voltage RegulationVoltage Regulation
Voltage Regulation
 
Advanced motion controls azbe25a20
Advanced motion controls azbe25a20Advanced motion controls azbe25a20
Advanced motion controls azbe25a20
 
LIC UNIT II.pptx
LIC UNIT II.pptxLIC UNIT II.pptx
LIC UNIT II.pptx
 
Ahmed.ppt
Ahmed.pptAhmed.ppt
Ahmed.ppt
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
 
Advanced motion controls azbe10a20
Advanced motion controls azbe10a20Advanced motion controls azbe10a20
Advanced motion controls azbe10a20
 

Más de alexzio (11)

US20160218611A1
US20160218611A1US20160218611A1
US20160218611A1
 
US20160172295A1
US20160172295A1US20160172295A1
US20160172295A1
 
eBike Sensorless Motor Control
eBike Sensorless Motor ControleBike Sensorless Motor Control
eBike Sensorless Motor Control
 
Validation Test for IC Digital Design
Validation Test for IC Digital DesignValidation Test for IC Digital Design
Validation Test for IC Digital Design
 
Nord-Est Italy Seminars 2012
Nord-Est Italy Seminars 2012Nord-Est Italy Seminars 2012
Nord-Est Italy Seminars 2012
 
Us8164383 b1
Us8164383 b1Us8164383 b1
Us8164383 b1
 
Continuous buffered generation
Continuous buffered generationContinuous buffered generation
Continuous buffered generation
 
Jssc2076450 rev2
Jssc2076450 rev2Jssc2076450 rev2
Jssc2076450 rev2
 
First GREP Project
First GREP ProjectFirst GREP Project
First GREP Project
 
Vibration Measurements In Wind Power Turbines
Vibration Measurements In Wind Power TurbinesVibration Measurements In Wind Power Turbines
Vibration Measurements In Wind Power Turbines
 
Amplificatore audio integrato per telefoni cellulari
Amplificatore audio integrato per telefoni cellulariAmplificatore audio integrato per telefoni cellulari
Amplificatore audio integrato per telefoni cellulari
 

Último

Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
daisycvs
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
Matteo Carbone
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
lizamodels9
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Sheetaleventcompany
 
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Anamikakaur10
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
amitlee9823
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
amitlee9823
 

Último (20)

Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
 
Value Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsValue Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and pains
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentation
 
Falcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in indiaFalcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in india
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
 
Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023Mondelez State of Snacking and Future Trends 2023
Mondelez State of Snacking and Future Trends 2023
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 

Class G ISSCC 2012

  • 1. Class-G Headphone Driver in 65nm CMOS Technology Alex Lollio1, Giacomino Bollati2 and Rinaldo Castello1 1Università degli studi di Pavia, Pavia, Italy 2Marvell Italia, Pavia, Italy 1
  • 2. Headphone audio amplifiers Target application Typical operating conditions VIN VHV -VHV Key objectives: • Low distortion • Low noise • High efficiency • Single ended • RL = 32/16 Ω • BW = 20Hz–20kHz • PO,MAX = 40mW (on 16 Ω) Modern cellular phones incorporates MP3 music playback and users may wish to use this feature for many hours 2
  • 3. Outline • Headphone amplifier (Class-AB, Class-D, Class-G PROs and CONs) • Class-G headphone driver (architecture, switching principle, distortion analysis) • Prototype in 65nm CMOS technology (implementation, results, comparison) • Conclusions 3
  • 4. Outline • Headphone amplifier (Class-AB, Class-D, Class-G PROs and CONs) • Class-G headphone driver (architecture, switching principle, distortion analysis) • Prototype in 65nm CMOS technology (implementation, results, comparison) • Conclusions 4
  • 5.  Class AB (Linear amplifier) PROs: Best linearity No EMI problems CONs: Low efficiency Typically the preferred solution in headphone application  Class D (Switching amplifier) PROs: Best efficiency CONs: Less linearity than class AB EMI problems Emerging solution in headphone application Headphone audio amplifiers Alternative topologies 5
  • 6. Headphone audio amplifiers Alternative topologies  Class G: It is a linear amplifier which uses two voltage supply rails which switches to the appropriate voltage as required by the instantaneous output voltage PROs: High efficiency but less than class D High linearity but less than class AB No EMI problems CONs: It needs two voltage supply rails VIN VLV VHV -VLV -VHV VHV -VHV VLV -VLV VOUT VOUT 6
  • 7. Class G alternative topologies  Series topology (classical)  Parallel topology • Only one output stage • Switches are in series with the power transistors • Two output stages work in parallel • No switches in series with the power transistors • It needs a careful switching circuit design VHV -VHV VLV -VLV VHV VLV -VHV -VLV RL RL This is the adopted solution 7
  • 8. Class G: working principle For Vout below the switching point the low voltage stage is active. For Vout above the switching point both the low voltage and high voltage stages drive the load (in different moments). VHV VLV -VHV -VLV LV stage HV stage iHV iLV iLV iHV iLV iHV Iout[A] Iout[A] iLV t t Switching point 8
  • 9. Class G: switching distortion Distortion caused by the switching Up to the switching point the class G linearity is the same as a class AB Compared to class AB, class G has an additional source of distortion. 9 Switching point
  • 10. Class G: critical design choices The implemented current based switching enables low distortion and high efficiency • Switching point level: To achieve high efficiency, it must be as close as possible to the low voltage supply Switching point close to low voltage supply Switching point far from the low voltage supply • Switching strategy: to minimize the distortion, switching must be as smooth as possible 10
  • 11. Outline • Headphone amplifier (Class-AB, Class-D, Class-G PROs and CONs) • Class-G headphone driver (architecture, switching principle, distortion analysis) • Prototype in 65nm CMOS technology (implementation, results, comparison) • Conclusions 11
  • 12. Overall amplifier architecture • Three stage opamp with differential input and single ended output. • The two identical second stages, gm2, and the third stages, gm3L and gm3H, work in parallel. • Only the low voltage stage gm3L is supplied by the low voltage rail ±VLV. The rest of the circuit is supplied by the high voltage rail ±VHV gm2 gm2 gm1 -gm3L -gm3H Switching stage R2 R1 R1 R2 RL CM2 CM2CM1 VOUT Main path 12
  • 13. Amplifier architecture: main path First stage Input pairs gm1 1313 VO VLV -VLV VHV -VHV Floating battery VHV VHV -VHV RL
  • 14. Second stage Amplifier architecture: main path gm2 14 Floating battery ref: Renirie, Langen, Huijsing, 1995 VO VLV -VLV VHV -VHV Floating battery VHV VHV -VHV RL
  • 15. Amplifier architecture: main path Third stage LV stage gm3L HV stage gm3H 15 RL VO VLV -VLV VHV -VHV -VHV Floating battery VHV VHV
  • 16. Amplifier architecture: switching stage conceptual schematic PMOS switching stage NMOS switching stage RL VO VO VLV - VTH -VLV + VTHVO VLV -VLV VHV -VHV -VHV Floating battery VHV VHV
  • 17. Amplifier architecture: switching stage conceptual schematic PMOS switching stage RL VO VO VLV - VTH -VLV + VTHVO VLV -VLV VHV -VHV -VHV Floating battery VHV VHV
  • 18. Switching principle details • Switching point sensing is in voltage domain. A differential pair compares the output voltage to the switching point voltage VLV-VTH • The switching between the high voltage and low voltage output stage is current based. The switching circuit injects all its bias current into the gate of the MOS to be switched off. VOUT LV stage HV stage iJH iJL 18 VOUT VLV - VTH VHV -VHV -VLV VLV VHV VHV IBIAS PMOS switching stage
  • 19. Output currents during switching t Iout[A] Outputcurrents iLV iHV t VLV -VTH VLV Vout[V] • When VOUT is lower than the switching point (VLV-VTH) the switching circuit enables the LV stage and disables the HV stage • When VOUT is higher than the low voltage supply VLV only the HV stage drives the load • When VOUT is between VLV-VTH and VLV both stages drive the load 19
  • 20. Switching distortion: Amplifier model during the switching • We use a simplified model of the amplifier during the switching. This current is used to represent the disturbance generated by the switching stage. gm1 gm2 -gm3 20 RL VOUT R1 R1 R2 CM1 CM2 IJ
  • 21. gm2f Cm2 s f s 1 /fs gm2 1 iVout T 2 T T J Design criteria for distortion reduction • From the model of previous slide we obtain the equation: 21 Where 21 1 T RR R Cm1 gm1 f time ΔVOUT VOUT 195u 200u 300m 305m To minimize the distortion at the output we have to minimize ΔVout. • Lower iJ value means better linearity and lower switching speed • Higher amplifier bandwidth, fT, means higher linearity Switching point
  • 22. Outline • Headphone amplifier (Class-AB, Class-D, Class-G PROs and CONs) • Class-G headphone driver (architecture, switching principle, distortion analysis) • Prototype in 65nm CMOS technology (implementation, results, comparison) • Conclusions 22
  • 23. Chip micrograph • 65nm CMOS process • 0.14mm2 active area per channel • Voltage supplies: High voltage rail ±1.4V Low voltage rail ±0.35V • Switching point 50mV under the low voltage supply • Max load capacitance 1nF 23
  • 24. Measurement results: Power dissipation versus output power Fin=1kHz RL=32Ω 24
  • 25. Measurement results: THD+N and efficiency versus output power • Sinusoidal input signal (fin=1kHz) • About 6dB extra distortion due to switching 25
  • 26. Measurement results: THD+N versus frequency RL=32Ω BW= 20Hz – 20 kHz 26
  • 27. Measurement results: Spectrum at different output power PO=20mW Fin=1kHz PO=1mW Fin=1kHz 27
  • 28. Performance summary and comparison Parameter This work JSSC 09 [1] ESSCIRC 06 [2] Technology 65nm 130nm 65nm Supply voltage ±1.4V ±0.35V ±1V ±0.6V 2.5V Quiescent power (per channel) 0.41mW 1.2mW 12.5mW Peak load power (16Ω) 90mW 40mW 53.5mW THD+N @ PRMS (32Ω) -80dB @ 16mW -84dB @ 10mW -68dB @ 27mW (16Ω) SNR A-weighted 101dB 92dB (un- weighted) - FOM= Peak load power Quiescent power 219.5 33.3 4.3 28
  • 29. Performance summary and comparison Parameter This work MAX9725 [3] TPA6141 [4] LM48824 [5] Supply voltage 1.4V with two charge pumps + 1 buck 1.5V with a charge pump 3.6V with 1 charge pump + 1 buck 3.6V with 1 charge pump + 1 buck Quiescent power (per channel) 0.41mW + 0.5mW (2 CPs + 1 buck) 1.57mW 2.16mW 1.62mW PSUP @ PL=0.1mW 0.87mW + 0.6mW - 4.5mW 3.24mW PSUP @ PL=0.5mW 1.63mW + 0.8mW - 7.2mW 5.58mW Peak load power (16Ω) 90mW 50mW 50mW 74mW THD+N @ PRMS (32Ω) -80dB @ 16mW -84dB @12mW -80dB @20mW -69dB@20mW SNR A-weighted 101dB 92dB 105dB 102dB FOM= Peak load power Quiescent power 90 31.8 23.2 45.6 29
  • 30. Outline • Headphone amplifier (Class-AB, Class-D, Class-G PROs and CONs) • Class-G headphone driver (architecture, switching principle, distortion analysis) • Prototype in 65nm CMOS technology (implementation, results, comparison) • Conclusions 30
  • 31. Conclusions • A class-G headphone driver has been presented. It shows 50% less power consumption than the competitors. • The class-G amplifier is very suitable in low voltage systems which require high efficiency and low distortion. • A class-G headphone prototype with charge pumps and a buck converter is in progress 31
  • 32. References [1] Vijay Dhanasekaran; Jose Silva-Martinez; Edgar Sanchez-Sinencio, "Design of Three-Stage Class-AB 16Ohm Headphone Driver Capable of Handling Wide Range of Load Capacitance," Solid-State Circuits, IEEE Journal of , vol.44, no.6, pp.1734- 1744, Jun 2009. [2] P. Bogner, H. Habibovic and T. Hartig, ‘‘A High Signal Swing Class AB Earpiece Amplifier in 65nm CMOS Technology,’’ Proc. ESSCIRC, pp.372-375, 2006. [3] Maxim, ‘‘1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown,’’ Rev. 3; 8/08, accessed on Jul. 7, 2009 < http://datasheets.maximic. com/en/ds/MAX9725.pdf> [4] Texas Instrument, ‘‘Class-G Directpath Stereo Headphone Amplifier,’’ 3/09, accessed on Jul. 7, 2009 < http://focus.ti.com/lit/ds/symlink/tpa6141a2.pdf> [5] National Semiconductor ”Class G Headphone Amplifier with I2C Volume Control,” August 31,2009, accessed on Jan. 25, 2010 < http://www.national.com/ds/LM/LM48824.pdf > 32