República Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación
Universidad Fermín Toro Decanato Ingenie...
Método de Gauss-Jordan
El Método de Gauss – Jordan o también llamado eliminación de Gauss – Jordan,
es un método por el cu...
y verificaran la igualdad para cada una de las variables, correspondiéndose de la
siguiente forma:
 d1 = x
 d2 = y
 d3 ...
por debajo del 1 de la primera columna, en este caso el opuesto de 3 que será -3 y
el opuesto de 5 que será -5.
Una vez he...
Por lo tanto, si Ax = b, entonces LUx = b, de manera que
Ax = LUx = b.
PASOS PARA RESOLVER
UN SISTEMA DE ECUACIONES POR EL...
fila 3 = - (factor 2) * (fila 1) + (fila 3)
a11 = a11
a12 = a12
a13 = a13
a21 = - (1.25) * (4) + (5) = 0
a22 = - (1.25) * ...
Al resolver el sistema anterior, se obtienen los siguientes valores para y1, y2 y y3:
El último paso es resolver Ux = y pa...
factor 2 = (a31 / a11) = 4/11 = 0.3636363636
Encontrando [U]
fila 2 = - (factor 1) * (fila 1) + (fila 2)
fila 3 = - (facto...
Ly = b para encontrar la matriz y. En pocas palabras es como que se pidiera
resolver el siguiente sistema de ecuaciones, e...
Para resolver un sistema lineal Ax = b con A simétrica definida positiva y dada su
factorizaciòn de Cholesky , primero deb...
Una de las aplicaciones de la factorización de Cholesky es resolver las ecuaciones
normales de un problema de cuadrados mí...
Trabajo tema 3 Métodos de Eliminación Gaussina
Trabajo tema 3 Métodos de Eliminación Gaussina
Próxima SlideShare
Cargando en…5
×

Trabajo tema 3 Métodos de Eliminación Gaussina

201 visualizaciones

Publicado el

Métodos de Eliminación Gaussina

Publicado en: Ingeniería
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
201
En SlideShare
0
De insertados
0
Número de insertados
5
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Trabajo tema 3 Métodos de Eliminación Gaussina

  1. 1. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universidad Fermín Toro Decanato Ingeniería Cabudare – Edo Lara Métodos de Eliminación Gaussina
  2. 2. Método de Gauss-Jordan El Método de Gauss – Jordan o también llamado eliminación de Gauss – Jordan, es un método por el cual pueden resolverse sistemas de ecuaciones lineales con n números de variables, encontrar matrices y matrices inversas, en este caso desarrollaremos la primera aplicación mencionada. Para resolver sistemas de ecuaciones lineales aplicando este método, se debe en primer lugar anotar los coeficientes de las variables del sistema de ecuaciones lineales en su notación matricial: Entonces, anotando como matriz (también llamada matriz aumentada): Una vez hecho esto, a continuación se procede a convertir dicha matriz en una matriz identidad, es decir una matriz equivalente a la original, la cual es de la forma: Esto se logra aplicando a las distintas filas y columnas de las matrices simples operaciones de suma, resta, multiplicación y división; teniendo en cuenta que una operación se aplicara a todos los elementos de la fila o de la columna, sea el caso. Obsérvese que en dicha matriz identidad no aparecen los términos independientes, esto se debe a que cuando nuestra matriz original alcance la forma de la matriz identidad, dichos términos resultaran ser la solución del sistema
  3. 3. y verificaran la igualdad para cada una de las variables, correspondiéndose de la siguiente forma:  d1 = x  d2 = y  d3 = z Ahora que están sentadas las bases, podemos explicar paso a paso la resolución de sistemas de ecuaciones lineales por medio de este método. Para ilustrarnos mejor lo analizaremos con un ejemplo concreto:  Sea el sistema de ecuaciones:  Procedemos al primer paso para encontrar su solución, anotarlo en su forma matricial:  Una vez hecho esto podemos empezar a operar con las distintas filas y columnas de la matriz para transformarla en su matriz identidad, teniendo siempre en cuenta la forma de la misma:  Lo primero que debemos hacer es transformar el 2 de la 1ª fila de la matriz original en el 1 de la 1ª fila de la matriz identidad; para hacer esto debemos multiplicar toda la 1ª fila por el inverso de 2, es decir ½.  Luego debemos obtener los dos ceros de la primera columna de la matriz identidad, para lograr esto, buscamos el opuesto de los números que se ubicaron
  4. 4. por debajo del 1 de la primera columna, en este caso el opuesto de 3 que será -3 y el opuesto de 5 que será -5. Una vez hecho esto, se procederá a multiplicar los opuestos de estos números por cada uno de los elemento de la 1ª fila y estos se sumaran a los números de su respectiva columna. Por ej.: en el caso de la 2º fila, se multiplicara a -3 (opuesto de 3) por cada uno de los elementos de la 1º fila y se sumara su resultado con el número que le corresponda en columna de la segunda fila. En el caso de la 3ª fila se multiplicara a -5 (opuesto de 5) por cada uno de los elementos de la 1º fila y se sumara su resultado con el número que le corresponda en columna de la tercera fila.  Nuestro siguiente paso es obtener el 1 de la 2ª fila de la matriz identidad, y procedemos de igual forma que antes, es decir multiplicamos toda la fila por el inverso del número que deseamos transformar en 1, en este caso -13/2, cuyo inverso es -2/13 Además si observamos la tercera fila, nos damos cuenta que todos los elementos poseen el mismo denominador, entonces podemos eliminarlos multiplicando todos los elementos de la 3º fila por 2 (el denominador); si bien este no es un paso necesario para el desarrollo del método, es útil para facilitar cálculos posteriores. Descomposición LU Originalmente se tenía: Debido a que [A] = [L][U], al encontrar [L] y [U] a partir de [A] no se altera en nada la ecuación y se tiene lo siguiente:
  5. 5. Por lo tanto, si Ax = b, entonces LUx = b, de manera que Ax = LUx = b. PASOS PARA RESOLVER UN SISTEMA DE ECUACIONES POR EL MÉTODO DE DESCOMPOSICIÓN LU 1. Obtener la matriz triangular inferior L y la matriz triangular superior U. 2. Resolver Ly = b (para encontrar y). 3. El resultado del paso anterior se guarda en una matriz nueva de nombre "y". 4. Realizar Ux = y (para encontrar x). 5. El resultado del paso anterior se almacena en una matriz nueva llamada "x", la cual brinda los valores correspondientes a las incógnitas de la ecuación. EJEMPLO 1 DE DESCOMPOSICIÓN LU PROBLEMA: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: NOTA: Recuérdese que si la matriz es 2x2 se hará 1 iteración; si es 3x3, 2 iteraciones; si es 4x4, 3 iteraciones; y así sucesivamente. SOLUCIÓN: 4 - 2 - 1 9 [A] = 5 1 - 1 [B] = 7 1 2 - 4 12 ITERACIÓN 1 factor 1 = (a21 / a11) = 5 / 4 = 1.25 factor 2 = (a31 / a11) = 1 / 4 = 0.25 Encontrando [U] fila 2 = - (factor 1) * (fila 1) + (fila 2)
  6. 6. fila 3 = - (factor 2) * (fila 1) + (fila 3) a11 = a11 a12 = a12 a13 = a13 a21 = - (1.25) * (4) + (5) = 0 a22 = - (1.25) * (- 2) + (1) = 3.5 a23 = - (1.25) + (- 1) + (- 1) = 0.25 a31 = - (0.25) * (4) + (1) = 0 a32 = - (0.25) * (- 2) + (2) = 2.5 a33 = - (0.25) * (- 1) + (- 1) = - 0.75 4 - 2 - 1 [U] = 0 3.5 0.25 0 2.5 - 0.75 Encontrando [L] 1 0 0 [L] = 1.25 0 0 0.25 0 0 ITERACIÓN 2 factor 3 = (u32 / u22) = 2.5 / 3.5 = 0.7142857143 Encontrando [U] fila 3 = - (factor 3) * (fila 2) + (fila 3) a31 = - (2.5 / 3.5) * (0) + (0) = 0 a32 = - (2.5 / 3.5) * (3.5) + (2.5) = 0 a33 = - (2.5 / 3.5) * (0.25) + (- 0.75) = - 0.9285714286 4 - 2 - 1 [U] = 0 3.5 0.25 0 0 - 0.9285714286 Encontrando [L] 1 0 0 [L] = 1.25 1 0 0.25 0.7142857143 1 Ahora ya se tiene la matriz [U] y la matriz [L]. El siguiente paso es resolver Ly = b para encontrar la matriz y. En pocas palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de y1, y2 y y3:
  7. 7. Al resolver el sistema anterior, se obtienen los siguientes valores para y1, y2 y y3: El último paso es resolver Ux = y para encontrar la matriz x. En otras palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de x1, x2 y x3: La solución del sistema es: Este es finalmente el valor de x1, x2 y x3; es decir, la respuesta del ejercicio utilizando la descomposición LU. EJEMPLO 2 DE DESCOMPOSICIÓN LU PROBLEMA: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: SOLUCIÓN: 11 - 3 - 2 18 [A] = 5 - 2 - 8 [B] = 13 4 - 7 2 2 ITERACIÓN 1 factor 1 = (a21 / a11) = 5/11 = 0.4545454545
  8. 8. factor 2 = (a31 / a11) = 4/11 = 0.3636363636 Encontrando [U] fila 2 = - (factor 1) * (fila 1) + (fila 2) fila 3 = - (factor 2) * (fila 1) + (fila 3) a11 = a11 a12 = a12 a13 = a13 a21 = - (0.4545454545) * (11) + (5) = 0 a22 = - (0.4545454545) * (- 3) + (- 2) = - 0.6363636365 a23 = - (0.4545454545) + (- 2) + (- 8) = - 7.0909090919 a31 = - (0.3636363636) * (11) + (4) = 0 a32 = - (0.3636363636) * (- 3) + (- 7) = - 5.909090909 a33 = - (0.3636363636) * (- 2) + (2) = 2.7272727272 11 -3 -2 [U] = 0 - 0.6363636365 - 7.0909090919 0 - 5.909090909 2.7272727272 Encontrando [L] 1 0 0 [L] = 0.45454545 0 0 0.36363636 0 0 ITERACIÓN 2 Factor 3 = (u32/u22) = - 5.909090909 / - 0.6363636365 = 9.285714284 Encontrando [U] Fila 3 = - (factor 3) * (fila 2) + (fila 3) a31 = - (9.285714284) * (0) + (0) = 0 a32 = - (9.285714284) * (- 0.6363636365) + (- 5.909090909) = 0 a33 = - (9.285714284) * (- 7.0909090919) + (2.7272727272) = 68.57142857 11 - 3 - 2 [U] = 0 - 0.6363636365 - 7.0909090919 0 0 68.57142857 Encontrando [L] 1 0 0 [L] = 0.4545454545 1 0 0.3636363636 9.285714284 1 Ahora ya se tiene la matriz [U] y la matriz [L]. El siguiente paso es resolver
  9. 9. Ly = b para encontrar la matriz y. En pocas palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de y1, y2 y y3: Al resolver el sistema anterior, se obtienen los siguientes valores para y1, y2 y y3: El último paso es resolver Ux = y para encontrar la matriz x. En otras palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de x1, x2 y x3: La solución del sistema es: Este es finalmente el valor de x1, x2 y x3; es decir, la respuesta del ejercicio utilizando la descomposición LU. Factorización de Cholesky Una matriz A simétrica y positiva definida puede ser factorizada de manera eficiente por medio de una matrz triangular infereior y una matriz triangular superior. Para una matriz no singular la descomposición LU nos lleva a considerar una descomposición de tal tipo A = LU; dadas las condiciones de A, simétrica y definida positiva, no es necesario hacer pivoteo, por lo que ésta factorización se hace eficientemente y en un número de operaciones la mitad de LU tomando la forma , donde L (la cual podemos "verla" como la raíz cuadrada de A) es una matriz triangular inferior donde los elementos de la diagonal son positivos.
  10. 10. Para resolver un sistema lineal Ax = b con A simétrica definida positiva y dada su factorizaciòn de Cholesky , primero debemos resolver Ly = b y entonces resolver para lograr x. Una variante de la factorización de Cholesky es de la forma , donde R es una matriz triangular superior, en algunas aplicaciones se desea ver la matriz en esa forma y no de otra. Para encontrar la factorización , bastaría ver la forma de L y observar las ecuaciones que el producto derecho nos conduce al igualar elementos: Así obtendríamos que: a11 = l112 a21 = l21l11 a22=l212 + l222 a32=l31l21+l32l22 l32=(a32-l31l21)/l22, etc. y de manera general, para y : Ahora bien, ya que A es simétrica y definida positiva, podemos asegurar que los elementos sobre la diagonal de L son positivos y los restantes elementos reales desde luego.
  11. 11. Una de las aplicaciones de la factorización de Cholesky es resolver las ecuaciones normales de un problema de cuadrados mínimos, esas ecuaciones son: , en la que es simétrica y definida positiva. Factorización de QR, Householder

×