Your SlideShare is downloading. ×
Estadística matemática con aplicaciones 7e, Wackerly
Próxima SlideShare
Cargando en...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Estadística matemática con aplicaciones 7e, Wackerly

23,551
views

Published on

Published in: Educación

0 comentarios
31 Me gusta
Estadísticas
Notas
  • Sea el primero en comentar

Sin descargas
reproducciones
reproducciones totales
23,551
En SlideShare
0
De insertados
0
Número de insertados
0
Acciones
Compartido
0
Descargas
2,090
Comentarios
0
Me gusta
31
Insertados 0
No embeds

Denunciar contenido
Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
No notes for slide

Transcript

  • 1. 20-i ndice.indd 91220-i ndice.indd 912 24/7/09 17:08:1024/7/09 17:08:10
  • 2. Estadística matemática con aplicaciones Séptima Edición Wackerly, Dennis D./ William Mendenhall III/ Richard L. Scheaffer Presidente de Cengage Learning Latinoamérica: Javier Arellano Gutiérrez Director general México y Centroamérica: Pedro Turbay Garrido Director editorial Latinoamérica: José Tomás Pérez Bonilla Director de producción: Raúl D. Zendejas Espejel Coordinadora editorial: María Rosas López Editor: Sergio R. Cervantes González Editor de producción: Timoteo Eliosa García Ilustrador: Erik Adigard, Patricia McShane Diseño de portada: Grupo Insigne OTA Composición tipográfica: Ediciones OVA © D.R. 2010 por Cengage Learning Editores, S.A. de C.V., una Compañía de Cengage Learning, Inc. Corporativo Santa Fe Av. Santa Fe núm. 505, piso 12 Col. Cruz Manca, Santa Fe C.P. 05349, México, D.F. Cengage Learning™ es una marca registrada usada bajo permiso. DERECHOS RESERVADOS. Ninguna parte de este trabajo amparado por la Ley Federal del Derecho de Autor, podrá ser reproducida, transmitida, almacenada o utilizada en cualquier forma o por cualquier medio, ya sea gráfico, electrónico o mecánico, incluyendo, pero sin limitarse a lo siguiente: fotocopiado, reproducción, escaneo, digitalización, grabación en audio, distribución en Internet, distribución en redes de información o almacenamiento y recopilación en sistemas de información a excepción de lo permitido en el Capítulo III, Artículo 27 de la Ley Federal del Derecho de Autor, sin el consentimiento por escrito de la Editorial. Traducido del libro: Mathematical statistics with applications, 7th ed. Wackerly, Dennis D./William Mendenhall III/ Richard L. Scheaffer Publicado en inglés por Thomson/Brooks-Cole, © 2008 ISBN-13: 978-0-495-11081-1 ISBN-10: 0-495-11081-7 Datos para catalogación bibliográfica: Estadística matemática con aplicaciones Séptima Edición Wackerly, Dennis D./William Mendenhall III/ Richard L. Scheaffer ISBN-13: 978-607-481-399-9 Visite nuestro sitio en: http://latinoamerica.cengage.com Preliminares.indd ivPreliminares.indd iv 24/7/09 14:50:4824/7/09 14:50:48 ISBN-10: 607-481-399-X
  • 3. v Prefacio xiii Nota al estudiante xxi 1 ¿Qué es estadística? 1 1.1 Introducción 1 1.2 Caracterización de un conjunto de mediciones: métodos gráficos 3 1.3 Caracterización de un conjunto de mediciones: métodos numéricos 8 1.4 Forma en que se hacen inferencias 13 1.5 Teoría y realidad 14 1.6 Resumen 15 2 Probabilidad 20 2.1 Introducción 20 2.2 Probabilidad e inferencia 21 2.3 Un repaso de notación de conjuntos 23 2.4 Un modelo probabilístico para un experimento: el caso discreto 26 2.5 Cálculo de la probabilidad de un evento: el método de punto muestral 35 2.6 Herramientas para contar puntos muestrales 40 2.7 Probabilidad condicional y la independencia de eventos 51 2.8 Dos leyes de probabilidad 57 CONTENIDO Preliminares.indd vPreliminares.indd v 24/7/09 14:50:4824/7/09 14:50:48
  • 4. vi Contenido 2.9 Cálculo de la probabilidad de un evento: método de composición de evento 62 2.10 Ley de probabilidad total y regla de Bayes 70 2.11 Eventos numéricos y variables aleatorias 75 2.12 Muestreo aleatorio 77 2.13 Resumen 79 3 Variables aleatorias discretas y sus distribuciones de probabilidad 86 3.1 Definición básica 86 3.2 La distribución de probabilidad para una variable aleatoria discreta 87 3.3 El valor esperado de una variable aleatoria o una función de una variable aleatoria 91 3.4 La distribución de probabilidad binomial 100 3.5 La distribución de probabilidad geométrica 114 3.6 La distribución de probabilidad binomial negativa (opcional) 121 3.7 La distribución de probabilidad hipergeométrica 125 3.8 La distribución de probabilidad de Poisson 131 3.9 Momentos y funciones generadoras de momento 138 3.10 Funciones generadoras de probabilidad (opcional) 143 3.11 Teorema de Tchebysheff 146 3.12 Resumen 149 4 Variables continuas y sus distribuciones de probabilidad 157 4.1 Introducción 157 4.2 Distribución de probabilidad para una variable aleatoria continua 158 4.3 Valores esperados para variables aleatorias continuas 170 4.4 La distribución de probabilidad uniforme 174 4.5 La distribución de probabilidad normal 178 4.6 La distribución de probabilidad gamma 185 4.7 La distribución de probabilidad beta 194 Preliminares.indd viPreliminares.indd vi 24/7/09 14:50:4824/7/09 14:50:48
  • 5. Contenido vii 4.8 Algunos comentarios generales 201 4.9 Otros valores esperados 202 4.10 Teorema de Tchebysheff 207 4.11 Valores esperados de funciones discontinuas y distribuciones mixtas de probabilidad (opcional) 210 4.12 Resumen 214 5 Distribuciones de probabilidad multivariantes 223 5.1 Introducción 223 5.2 Distribuciones de probabilidad bivariantes y multivariantes 224 5.3 Distribuciones de probabilidad marginal y condicional 235 5.4 Variables aleatorias independientes 247 5.5 El valor esperado de una función de variables aleatorias 255 5.6 Teoremas especiales 258 5.7 Covarianza de dos variables aleatorias 264 5.8 Valor esperado y varianza de funciones lineales de variables aleatorias 270 5.9 Distribución de probabilidad multinomial 279 5.10 Distribución normal bivariante (opcional) 283 5.11 Valores esperados condicionales 285 5.12 Resumen 290 6 Funciones de variables aleatorias 296 6.1 Introducción 296 6.2 Determinación de la distribución de probabilidad de una función de variables aleatorias 297 6.3 Método de las funciones de distribución 298 6.4 Método de las transformaciones 310 6.5 Método de las funciones generadoras de momento 318 6.6 Transformaciones multivariantes usando jacobianos (opcional) 325 6.7 Estadísticos de orden 333 6.8 Resumen 341 Preliminares.indd viiPreliminares.indd vii 24/7/09 14:50:4824/7/09 14:50:48
  • 6. viii Contenido 7 Distribuciones muestrales y el teorema del límite central 346 7.1 Introducción 346 7.2 Distribuciones muestrales relacionadas con la distribución normal 353 7.3 Teorema del límite central 370 7.4 Una demostración del teorema del límite central (opcional) 377 7.5 Aproximación normal a la distribución binomial 378 7.6 Resumen 385 8 Estimación 390 8.1 Introducción 390 8.2 Sesgo y error cuadrático medio de estimadores puntuales 392 8.3 Algunos estimadores puntuales insesgados comunes 396 8.4 Evaluación de la bondad de un estimador puntual 399 8.5 Intervalos de confianza 406 8.6 Intervalos de confianza en una muestra grande 411 8.7 Selección del tamaño muestral 421 8.8 Intervalos de confianza de una muestra pequeña para m y m1 − m2 425 8.9 Intervalos de confianza para s2 434 8.10 Resumen 437 9 Propiedades de los estimadores puntuales y métodos de estimación 444 9.1 Introducción 444 9.2 Eficiencia relativa 445 9.3 Consistencia 448 9.4 Suficiencia 459 9.5 Teorema de Rao–Blackwell y estimación insesgada de varianza mínima 464 9.6 Método de momentos 472 9.7 Método de máxima verosimilitud 476 9.8 Algunas propiedades de los estimadores de máxima verosimilitud con muestras grandes (opcional) 483 9.9 Resumen 485 Preliminares.indd viiiPreliminares.indd viii 24/7/09 14:50:4824/7/09 14:50:48
  • 7. Contenido ix 10 Prueba de hipótesis 488 10.1 Introducción 488 10.2 Elementos de una prueba estadística 489 10.3 Pruebas comunes con muestras grandes 496 10.4 Cálculo de las probabilidades del error tipo II y determinación del tamaño muestral para la prueba Z 507 10.5 Relaciones entre los procedimientos de pruebas de hipótesis e intervalos de confianza 511 10.6 Otra forma de presentar los resultados de una prueba estadística: niveles de significancia alcanzados o valores p 513 10.7 Algunos comentarios respecto a la teoría de la prueba de hipótesis 518 10.8 Prueba de hipótesis con muestras pequeñas para m y m1 − m2 520 10.9 Pruebas de hipótesis referentes a varianzas 530 10.10 Potencia de las pruebas y el lema de Neyman-Pearson 540 10.11 Pruebas de razón de probabilidad 549 10.12 Resumen 556 11 Modelos lineales y estimación por mínimos cuadrados 563 11.1 Introducción 564 11.2 Modelos estadísticos lineales 566 11.3 Método de mínimos cuadrados 569 11.4 Propiedades de los estimadores de mínimos cuadrados: regresión lineal simple 577 11.5 Inferencias respecto a los parámetros bi 584 11.6 Inferencias respecto a funciones lineales de los parámetros del modelo: regresión lineal simple 589 11.7 Predicción de un valor particular de Y mediante regresión lineal simple 593 11.8 Correlación 598 11.9 Algunos ejemplos prácticos 604 11.10 Ajuste del modelo lineal mediante matrices 609 11.11 Funciones lineales de los parámetros del modelo: regresión lineal múltiple 615 11.12 Inferencias respecto a funciones lineales de los parámetros del modelo: regresión lineal múltiple 616 Preliminares.indd ixPreliminares.indd ix 24/7/09 14:50:4824/7/09 14:50:48
  • 8. x Contenido 11.13 Predicción de un valor particular de Y mediante regresión múltiple 622 11.14 Una prueba para H0: bg+1 = bg+2 = ⋅ ⋅ ⋅ = bk = 0 624 11.15 Resumen y conclusiones 633 12 Consideraciones al diseñar experimentos 640 12.1 Los elementos que afectan la información en una muestra 640 12.2 Diseño de experimentos para aumentar la precisión 641 12.3 El experimento de observaciones pareadas 644 12.4 Algunos diseños experimentales elementales 651 12.5 Resumen 657 13 El análisis de varianza 661 13.1 Introducción 661 13.2 Procedimiento del análisis de varianza 662 13.3 Comparación de más de dos medias: análisis de varianza para un diseño de un factor 667 13.4 Tabla de análisis de varianza para un diseño de un factor 671 13.5 Modelo estadístico para el diseño de un factor 677 13.6 Prueba de aditividad de las sumas de cuadrados y E(MST) para un diseño de un factor (opcional) 679 13.7 Estimación en un diseño de un factor 681 13.8 Modelo estadístico para el diseño de bloques aleatorizado 686 13.9 El análisis de varianza para el diseño de bloques aleatorizado 688 13.10 Estimación en el diseño de bloques aleatorizado 695 13.11 Selección del tamaño muestral 696 13.12 Intervalos de confianza simultáneos para más de un parámetro 698 13.13 Análisis de varianza usando modelos lineales 701 13.14 Resumen 705 14 Análisis de datos categóricos 713 14.1 Descripción del experimento 713 14.2 Prueba ji cuadrada 714 14.3 Prueba de una hipótesis con respecto a probabilidades especificadas por celda: una prueba de la bondad de ajuste 716 Preliminares.indd xPreliminares.indd x 24/7/09 14:50:4824/7/09 14:50:48
  • 9. Contenido xi 14.4 Tablas de contingencia 721 14.5 Tablas r × c con totales fijos de renglón o columna 729 14.6 Otras aplicaciones 734 14.7 Resumen y conclusiones 736 15 Estadística no paramétrica 741 15.1 Introducción 741 15.2 Modelo general de desplazamiento (o cambio) de dos muestras 742 15.3 Prueba de signos para un experimento de observaciones pareadas 744 15.4 Prueba de rangos con signo de Wilcoxon para un experimento de observaciones pareadas 750 15.5 Uso de rangos para comparar dos distribuciones poblacionales: muestras aleatorias independientes 755 15.6 Prueba U de Mann–Whitney: muestras aleatorias independientes 758 15.7 La prueba de Kruskal–Wallis para un diseño de un factor 765 15.8 La prueba de Friedman para diseños de bloques aleatorizados 771 15.9 Prueba de corridas de ensayo: una prueba de aleatoriedad 777 15.10 Coeficiente de correlación de rangos 783 15.11 Comentarios generales sobre las pruebas estadísticas no paramétricas 789 16 Introducción a los métodos de Bayes para inferencia 796 16.1 Introducción 796 16.2 Bayesianos previos, posteriores y estimadores 797 16.3 Intervalos creíbles de Bayes 808 16.4 Pruebas de hipótesis de Bayes 813 16.5 Resumen y comentarios adicionales 816 Apéndice 1 Matrices y otros resultados matemáticos útiles 821 A1.1 Matrices y álgebra de matrices 821 A1.2 Suma de matrices 822 A1.3 Multiplicación de una matriz por un número real 823 A1.4 Multiplicación de matrices 823 Preliminares.indd xiPreliminares.indd xi 24/7/09 14:50:4824/7/09 14:50:48
  • 10. xii Contenido A1.5 Elementos identidad 825 A1.6 La inversa de una matriz 827 A1.7 La transpuesta de una matriz 828 A1.8 Una expresión matricial para un sistema de ecuaciones lineales simultáneas 828 A1.9 Inversión de una matriz 830 A1.10 Resolución de un sistema de ecuaciones lineales simultáneas 834 A1.11 Otros resultados matemáticos útiles 835 Apéndice 2 Distribuciones, medias, varianzas y funciones generadoras de momento de probabilidad común 837 Tabla 1 Distribuciones discretas 837 Tabla 2 Distribuciones continuas 838 Apéndice 3 Tablas 839 Tabla 1 Probabilidades binomiales 839 Tabla 2 Tabla de e–x 842 Tabla 3 Probabilidades de Poisson 843 Tabla 4 Áreas de curva normal 848 Tabla 5 Puntos porcentuales de las distribuciones t 849 Tabla 6 Puntos porcentuales de las distribuciones x2 850 Tabla 7 Puntos porcentuales de las distribuciones F 852 Tabla 8 Función de distribución de U 862 Tabla 9 Valores críticos de T en los pares acoplados de Wilcoxon: prueba de rangos con signo, n = 5(1)50 868 Tabla 10 Distribución del número total de corridas R en muestras de tamaño (n1, n2), P(R ≤ a) 870 Tabla 11 Valores críticos de coeficiente de correlación de rango de Spearman 872 Tabla 12 Números aleatorios 873 Respuestas 877 Índice 896 Preliminares.indd xiiPreliminares.indd xii 24/7/09 14:50:4824/7/09 14:50:48
  • 11. xiii El propósito y requisitos previos de este libro Estadística matemática con aplicaciones fue escrito para el uso de los estudiantes en cursos universitarios de un año (9 horas-trimestre o 6 horas-semestre) de estadística matemática. El propósito de este libro es presentar una sólida base al estudiante, de la teoría estadística y al mismo tiempo darle orientación de la relevancia e importancia de la teoría para resolver problemas prácticos del mundo real. Pensamos que un curso de este tipo es apropiado para casi todas las disciplinas de licenciatura, incluyendo matemáticas, donde el contacto con apli- caciones puede ser una experiencia motivadora y alentadora. El único requisito matemático previo es un conocimiento profundo de cálculo universitario de primer año, incluyendo sumas de series infinitas, derivadas e integración simple y doble. Nuestro método El hablar con estudiantes que estén tomando un curso inicial de estadística matemática, o lo hayan terminado, reveló una falla importante en numerosos cursos. Los estudiantes pueden tomar el curso y terminarlo sin entender claramente la naturaleza de la estadística. Muchos de ellos ven la teoría como un conjunto de temas, con una relación débil o fuerte entre ellos, pero no ven que la estadística es una teoría de información con inferencia como su meta. Además, pueden terminar el curso sin entender el importante papel que desempeñan las estadísticas en investigaciones científicas. Estas consideraciones nos llevaron a crear un texto que difiere de otros en tres formas: • Primero, la presentación de la probabilidad está precedida de un claro enunciado del objetivo de la estadística ⎯la inferencia estadística⎯ y su función en la investiga- ción científica. A medida que los estudiantes avanzan en la teoría de probabilidades (Capítulos 2 al 7), se les recuerda con frecuencia el papel que los temas principales desempeñan en la inferencia estadística. El efecto acumulativo es que la inferencia es- tadística es el tema dominante del curso. • La segunda característica del texto es su conectividad. Explicamos no sólo la forma en que los temas principales desempeñan un papel en inferencia estadística, sino que tam- bién cómo es que los temas están relacionados entre sí. Estas interesantes explicaciones aparecen con más frecuencia en las introducciones y conclusiones del capítulo. • Por último, el texto es único en su énfasis práctico, en ejercicios en todo el libro y en los útiles temas metodológicos estadísticos contenidos en los Capítulos del 11 al PREFACIO Preliminares.indd xiiiPreliminares.indd xiii 24/7/09 14:50:4824/7/09 14:50:48
  • 12. xiv Prefacio 15, cuya meta es reforzar la base elemental pero sólida desarrollada en los capítulos iniciales. El libro se puede usar en varias formas y adaptarse a los gustos de estudiantes y profesores. La dificultad del material puede aumentar o disminuir si se controla la asignación de los ejer- cicios, se eliminan algunos temas y si se hace variar el tiempo dedicado a cada tema. Se puede dar un toque de más aplicación al eliminar algunos temas, por ejemplo algunas secciones de los Capítulos 6 y 7, y dedicar más tiempo a los capítulos aplicados al final. Cambios en la séptima edición Existe una gran cantidad de estudiantes que aprovechan la información visual de conceptos y resultados. Algo nuevo en esta edición es la inclusión de aplicaciones breves de computadora, todas ellas disponibles en línea para su uso en el sitio web Cengage, www.cengage.com/statis- tics/wackerly. Algunas de estas aplicaciones se utilizan para demostrar conceptos estadísticos, otras permiten a los usuarios evaluar el impacto de selecciones de parámetro en la forma de funciones de densidad y el resto de aplicaciones se pueden usar para hallar probabilidades exactas y cuantiles asociados con variables aleatorias gamma, beta, normal, χ2 , t y F distri- buidas, todo ello información importante cuando se construyen intervalos de confianza o se realizan pruebas de hipótesis. Algunas de las aplicaciones aportan información existente por medio del uso de otros paquetes de software. Destacan entre éstas, el lenguaje R y el ambiente para computación y gráficas estadísticas (disponibles gratis en http://www.r-project.org/) se puede usar para obtener los cuantiles y probabilidades asociados con las distribuciones dis- cretas y continuas ya antes citadas. Los comandos R apropiados se presentan en las secciones respectivas de los Capítulos 3 y 4. La ventaja de las aplicaciones breves de computadora es que son de estilo “apunte y dispare”, dan gráficas adjuntas y son considerablemente más fá- ciles de usar. No obstante, R es mucho más potente que estas aplicaciones y se puede usar para muchos otros fines estadísticos. Dejamos otras aplicaciones de R al usuario interesado o profesor. El Capítulo 2 introduce la primera aplicación breve (applet), Bayes’ Rule as a Tree (la Regla de Bayes como Árbol), demostración que permite a los usuarios ver por qué a veces se obtienen resultados sorprendentes cuando se aplica la regla de Bayes (vea Figura 1). Al igual que en la sexta edición, las estimaciones de máxima verosimilitud se introducen en el Capítulo 3 mediante ejemplos para las estimaciones de los parámetros de las distribuciones binomiales, geométricas y binomiales negativas basadas en valores numéricos específicos observados de variables aleatorias que poseen estas distribuciones. Los problemas de seguimiento al final de las secciones respectivas se amplían en estos ejemplos. En el Capítulo 4, la aplicación Normal Probabilities (Probabilidades Normales) se usa para calcular la probabilidad de que cualquier variable aleatoria normalmente distribuida, especificada por el usuario, caiga en cualquier intervalo especificado. También proporciona una gráfica de la función de densidad normal seleccionada y un refuerzo visual del hecho de que las probabilidades asociadas con cualquier variable aleatoria normalmente distribuida son Preliminares.indd xivPreliminares.indd xiv 24/7/09 14:50:4824/7/09 14:50:48
  • 13. Prefacio xv equivalentes a probabilidades asociadas con la distribución normal estándar. La aplicación Normal Probabilities (One Tail) (Probabilidades Normales (Una Cola)) proporciona áreas de cola superior asociadas con cualquier distribución normal, especificada por el usuario y tam- bién se puede usar para establecer el valor que corta un área, especificada por un usuario, en la cola superior para cualquier variable aleatoria normalmente distribuida. Las probabilidades y cuantiles asociados con variables aleatorias normales estándar se obtienen al seleccionar la media de valores de parámetro = 0 y desviación estándar = 1. Las distribuciones beta y gamma se exploran más a fondo en este capítulo. Los usuarios pueden al mismo tiempo graficar tres densidades gamma (o beta) (todas con valores de parámetros seleccionados por el usuario) y evaluar el impacto que los valores de parámetro tienen en las formas de funciones de densidad gamma (o beta) (vea Figura 2). Esto se logra con el uso de las aplicaciones breves Comparison F I G U R A 1 Ilustración de una aplicación breve de la regla de Bayes F I G U R A 2 Comparación de aplicación breve de tres densidades beta Preliminares.indd xvPreliminares.indd xv 24/7/09 14:50:4824/7/09 14:50:48
  • 14. xvi Prefacio of Gamma Density Functions and Comparison of Beta Density Functions, (Comparación de Funciones de Densidad Gamma y Comparación de Funciones de Densidad Beta), respec- tivamente. Las probabilidades y cuantiles asociados con variables aleatorias de distribución gamma y beta se obtienen usando las aplicaciones Gamma Probabilities and Quantiles or Beta Probabilities and Quantiles (Probabilidades y Cuantiles Gamma o Probabilidades y Cuantiles Beta). Se proporcionan conjuntos de Ejercicios de Aplicaciones Breves para guiar al usuario a descubrir resultados interesantes e informativos asociados con variables aleatorias de distribución normal, beta y gamma (incluyendo las exponenciales y de χ2 ). Mantenemos el énfasis en la distribución χ2 , incluyendo algunos resultados teóricos que son útiles en el posterior desarrollo de las distribuciones t y F. En el Capítulo 5 se deja claro que las densidades condicionales no están definidas para valores de la variable condicionante donde la densidad marginal es cero. También hemos re- tenido el análisis de la “varianza condicional” y su uso para hallar la varianza de una variable aleatoria. Brevemente se estudian modelos jerárquicos. Al igual que en la edición anterior, el Capítulo 6 introduce el concepto del apoyo de una densidad y resalta que se puede usar un mé- todo de transformación cuando ésta es monótona en la región de apoyo. El método jacobiano está incluido para la implementación de una transformación bivariada. En el Capítulo 7, la aplicación breve Comparison of Student’s t and Normal Distributions (Comparación de Distribuciones t de Student y Normales) permite la visualización de simi- litudes y diferencias en funciones de densidad t y estándar normal y las aplicaciones bre- ves Probabilidades y Cuantiles Ji cuadrada, Probabilidades y Cuantiles t de Student y las Probabilidades y Cuantiles de Razón F proporcionan probabilidades y cuantiles asociados con las distribuciones respectivas, todos con grados de libertad especificados por el usuario. La aplicación breve DiceSample utiliza el conocido ejemplo de lanzar dados a una mesa para introducir el concepto de una distribución de muestreo. Los resultados para diferentes tama- ños muestrales permiten al usuario evaluar el impacto del tamaño de la muestra en la distribu- ción muestral de la media. La aplicación breve también permite la visualización de la forma en que la distribución muestral es afectada si el dado no está balanceado. Bajo el encabezado general de “Distribuciones Muestrales y el Teorema del Límite Central”, cuatro aplicaciones breves diferentes ilustran conceptos diferentes: • Básica ilustra que, cuando se muestrea de una población normalmente distribuida, la media muestral está normalmente distribuida. • TamañoMuestral exhibe el efecto del tamaño de la muestra en la distribución mues- tral de la media. La distribución muestral para dos tamaños muestrales (seleccionados por el usuario) son generados y mostrados simultáneamente uno al lado del otro. Las similitudes y diferencias de las distribuciones muestrales se hacen evidentes. Pueden generarse muestras de poblaciones con distribuciones “normales”, uniformes, en forma de U y sesgadas. Las distribuciones asociadas que aproximan un muestreo normal pue- den recubrirse en las distribuciones simuladas resultantes, permitiendo una inmediata evaluación visual de la calidad de la aproximación normal (vea Figura 3). • La Varianza simula la distribución muestral de la varianza muestral cuando se muestrea de una población con una distribución “normal”. La distribución teórica (proporcional a la de una variable aleatoria χ2 ) puede recubrirse con el clic de un botón, dando de nuevo confirmación visual de que la teoría realmente funciona. • El Tamaño de Varianza permite una comparación del efecto del tamaño muestral sobre la distribución de la varianza muestral (de nuevo, el muestreo de una población normal). La densidad teórica asociada puede recubrirse para ver que la teoría realmente funcio- na. Además, se ve que para grandes tamaños muestrales la varianza muestral tiene una distribución normal aproximada. Preliminares.indd xviPreliminares.indd xvi 24/7/09 14:50:4824/7/09 14:50:48
  • 15. Prefacio xvii La aplicación Normal Approximation to the Binomial (Aplicación Normal a la Binomial) permite al usuario evaluar la calidad de la aproximación normal (continua) para probabilida- des binomiales (discretas). Al igual que en capítulos anteriores, una secuencia de ejercicios de aplicación breve (applet) lleva al usuario a descubrir importantes e interesantes respuestas y conceptos. Desde un punto de vista más teórico, establecemos la independencia de la media muestral y varianza muestral para una muestra de tamaño 2 desde una distribución normal. Como antes, la prueba de este resultado para n general está contenida en un ejercicio opcio- nal. Los ejercicios contienen deducciones paso a paso de la media y varianza para variables aleatorias con distribuciones t y F. En todo el Capítulo 8 hemos resaltado las suposiciones asociadas con intervalos de confian- za basados en las distribuciones t. También hemos incluido un breve examen de la robustez de los procedimientos t y la falta de éstos para los intervalos basados en las distribuciones χ2 y F. La aplicación ConfidenceIntervalP (IntervalodeConfianzaP) ilustra propiedades de intervalos de confianza con muestras grandes para una proporción de población. En el Capítulo 9, las aplicaciones PointSingle, PointbyPoint¸ y PointEstimation en última instancia llevan a una ilustración muy interesante de convergencia en probabilidad. En el Capítulo 10, la aplicación F I G U R A 3 Ilustración de Aplicación Breve del teorema de límite central. Distribución: Población: En forma de U Tamaño muestral: A seleccionar abajo 1 muestra 1000 muestras Alternancia normal Restablecer Tamaño muestral: Tamaño muestral: Preliminares.indd xviiPreliminares.indd xvii 24/7/09 14:50:4824/7/09 14:50:48
  • 16. xviii Prefacio Hypotesis Testing (for Proportions) ilustra conceptos importantes asociados con pruebas de hipótesis que incluyen lo siguiente: • ¿Qué es lo que exactamente significa a? • Pruebas basadas en tamaños de muestra más grande por lo general tienen probabilida- des más pequeñas de cometer errores tipo II si el nivel de las pruebas permanece fijo. • Para un tamaño muestral fijo, la función de potencia aumenta cuando el valor del pará- metro se mueve más desde los valores especificados por la hipótesis nula. Una vez que los usuarios visualicen estos conceptos, los subsiguientes desarrollos teóricos son más importantes y significativos. Las aplicaciones para las distribuciones χ2 , t, y F se usan para obtener valores p exactos para pruebas asociadas de hipótesis. También ilustramos de manera explícita que la potencia de una prueba uniformemente más poderosa puede ser menor (aun cuando es la más grande posible) de lo que se desea. En el Capítulo 11, el modelo de regresión lineal simple se analiza en su totalidad (inclu- yendo intervalos de confianza, intervalos de predicción, y correlación) antes de introducir el método matricial al modelo de regresión lineal múltiple. Las aplicaciones Fitting a Line Using Least Squares y Removing Points from Regression ilustran que se logra el criterio de mínimos cuadrados y que unos cuantos puntos de información poco comunes pueden tener un considerable impacto en la línea de regresión ajustada. Los coeficientes de determinación y determinación múltiple se introducen, analizan y relacionan con las estadísticas t y F relevan- tes. Los ejercicios demuestran que los coeficientes altos (bajos) de valores de determinación (múltiples) no necesariamente corresponden a resultados que sean estadísticamente significa- tivos (insignificantes). El Capítulo 12 incluye una sección separada sobre el experimento de observaciones parea- das. Aunque se pueden usar numerosos conjuntos posibles de variables ficticias para llevar el análisis de varianza en un contexto de regresión, en el Capítulo 13 nos concentramos en las variables ficticias que por lo general se emplean en el SAS y otros paquetes de cómputo de análisis estadístico. El texto todavía se concentra básicamente en el diseño de bloques aleatorizado con efectos de bloque (no aleatorios). Si el profesor así lo desea, se puede usar una serie de ejercicios complementarios que se refieren al diseño de bloques aleatorizado con efectos de bloque aleatorio, para ilustrar las similitudes y diferencias de estas dos versiones del diseño de bloques aleatorizado. El nuevo Capítulo 16 contiene una breve introducción a métodos de Bayes de inferencia estadística. El capítulo se concentra en el uso de datos y la distribución previa para obtener la posterior y en el uso de la posterior para obtener estimaciones, intervalos de credibilidad y pruebas de hipótesis para parámetros. La aplicación Binomial Revision (Revisión Binomial) facilita la comprensión del proceso por el que se usa información para actualizar la previa y obtener la posterior. Muchas de las distribuciones posteriores son distribuciones beta o gamma y las aplicaciones ya antes estudiadas son instrumentos para obtener intervalos de credibilidad o para calcular la probabilidad de varias hipótesis. Los ejercicios Esta edición contiene más de 350 nuevos ejercicios, muchos de los cuales usan las aplicacio- nes previamente citadas para guiar al usuario por una serie de pasos que llevan a más com- prensión de conceptos importantes. Otros usan las aplicaciones breves (applets) para obtener intervalos de confianza o valores p que pudieran sólo aproximarse con el uso de tablas del Preliminares.indd xviiiPreliminares.indd xviii 24/7/09 14:50:4824/7/09 14:50:48
  • 17. Prefacio xix apéndice. En la misma forma que en ediciones previas, parte de los nuevos ejercicios son teóricas mientras que otros contienen información de fuentes documentadas que se refieren a investigaciones realizadas en varios campos. Seguimos pensando que los ejercicios basados en datos reales, o en situaciones experimentales reales, permiten que el estudiante vea los usos prácticos de los diversos métodos estadísticos y de probabilística presentados en el texto. Al resolver estos ejercicios, los estudiantes adquieren conocimientos de aplicaciones reales de los resultados teóricos desarrollados en el texto. Este conocimiento hace que el aprendizaje de la teoría necesaria se disfrute más y produzca una más profunda comprensión de los méto- dos teóricos. Al igual que en ediciones previas, los ejercicios de grado de dificultad más alto están marcados con un asterisco (∗). Las respuestas a los ejercicios de número impar aparecen al final del libro. Tablas y apéndice Hemos conservado el uso de tablas normales de cola superior porque los usuarios del texto las encuentran más cómodas. También hemos conservado el formato de la tabla de las distribucio- nes F que introdujimos en ediciones anteriores. Esta tabla de las distribuciones F dan valores críticos correspondientes a áreas de cola superior de .100, .050, .025, .010 y .005 en una sola tabla. Como las pruebas basadas en estadísticos que poseen la distribución F se presentan con mucha frecuencia, esta tabla facilita el cálculo de niveles de significancia alcanzados, o valo- res p, asociados con valores observados de estos estadísticos. También hemos continuado nuestra práctica de dar fácil acceso a información que se usa con frecuencia. Debido a que las tablas t y normales son las tablas estadísticas que se usan con más frecuencia en el texto, en el Apéndice 3 del texto se dan copias de estas tablas. Los usuarios de ediciones anteriores con frecuencia nos han hablado favorablemente de la utili- dad de tablas de las distribuciones comunes de probabilidad, medias, varianzas y funciones generadoras de momento dadas en el Apéndice 2 del libro. Además, en un suplemento al Apéndice 1 hemos incluido algunos resultados matemáticos que se usan con frecuencia. Estos resultados incluyen la expansión binomial de (x + y)n , la expansión serie de ex , sumas de se- ries geométricas, definiciones de las funciones gamma y beta, y así sucesivamente. Al igual que antes, cada capítulo se inicia con un resumen que contiene los títulos de las principales secciones de ese capítulo. Reconocimientos Los autores desean agradecer a numerosos colegas, amigos y estudiantes que han dado útiles sugerencias respecto a los cambios de este texto. En particular, estamos en deuda con P. V. Rao, J. G. Saw, Malay Ghosh, Andrew Rosalsky y Brett Presnell por sus comentarios técni- cos. Gary McClelland, Universidad de Colorado, hizo un excelente trabajo de desarrollo de las aplicaciones breves (applets) que se emplearon en el texto. Jason Owen, de la Universidad de Richmond, escribió el manual de soluciones; Mary Mortlock, Cal Poly, San Luis Obispo, comprobaron la exactitud de estas soluciones. Deseamos agradecer a E. S. Pearson, W. H. Beyer, I. Olkin, R. A. Wilcox, C. W. Dunnett y A. Hald. Nos beneficiamos grandemente con las sugerencias de los revisores de las edi- ciones actual y previas del texto: Roger Abernathy, Arkansas State University; Elizabeth S. Allman, University of Southern Maine; Robert Berk, Rutgers University; Albert Bronstein, Preliminares.indd xixPreliminares.indd xix 24/7/09 14:50:4824/7/09 14:50:48
  • 18. xx Prefacio Purdue University; Subha Chakraborti, University of Alabama; Rita Chattopadhyay, Eastern Michigan University; EricChicken, Florida State University; Charles Dunn, Linfield College; Eric Eide, BrighamYoung University; Nelson Fong, Creighton University; Dr. GailP. Greene, Indiana Wesleyan University; Barbara Hewitt, University of Texas, San Antonio; Richard Iltis, Willamette University; K. G. Janardan, Eastern Michigan University; Mark Janeba, Willamette University; Rick Jenison, Univeristy of Wisconsin, Madison; Jim Johnston, Concord University; Bessie H. Kirkwood, Sweet Briar College; Marc L. Komrosky, San Jose State University; Dr. Olga Korosteleva, California State University, Long Beach; Teck Ky, Evegreen Valley College; Matthew Lebo, Stony Brook University; Phillip Lestmann, Bryan College;Tamar London, Pennsylvania State University; Lisa Madsen, Oregon State University; Martin Magid, Wellesley College; Hosam M. Mahmoud, George Washington University; Kim Maier, Michigan State University; David W. Matolak, Ohio University; James Edward Mays, Virginia Commonwealth University; Katherine Mc Givney, Shippensburg Univesity; Sanjog Misra, Universityof Rochester; Donald F. Morrison, University of Pennsylvania, Wharton; Mir A. Mortazavi, Eastern New Mexico University; Abdel-Razzaq Mugdadi, Southern Illinois University; Ollie Nanyes, Bradley University; Joshua Naranjo, Western Michigan University; Sharon Navard, The College of New Jersey; Roger B. Nelsen, Lewis & Clark College; David K. Park, Washington University; Cheng Peng, University of Southern Maine; Selwyn Piramuthu, University of Florida, Gainesville; Robert Martin Price, Jr., East Tennessee State University; Daniel Rabinowitz, Columbia University; Julianne Rainbolt, Saint Louis University; Timothy A. Riggle, Baldwin-Wallace College; Mark Rizzardi, Humboldt State University; Jesse Rothstein, Princeton University; Katherine Schindler, Eastern Michigan University; Michael E. Schuckers, St. Lawrence University; Jean T. Sells, Sacred Heart University; Qin Shao, The University of Toledo; Alan Shuchat, Wellesley College; Laura J. Simon, Pennsylvania State University; Satyanand Singh, New York City College of Technology; Randall J. Swift, California State Polytechnic University, Pomona; David Sze, Monmouth University; Bruce E. Trumbo, California State University, East Bay; Harold Dean Victory, Jr., Texas Tech University; Thomas O. Vinson, Washington & Lee University; Vasant Waikar, Miami University, Ohio; Bette Warren, Eastern Michigan University; Steve White, Jacksonville State University; Shirley A. Wilson, North Central College; Lan Xue, OregonState University; y Elaine Zanutto, The Wharton School, University of Pennsylvania. Deseamos también agradecer las contribuciones de Carolyn Crockett, nuestra edito- ra; Catie Ronquillo, asistente de la editora; Ashley Summers, asistente editorial; Jennifer Liang, gerente de proyectos tecnológicos; Mandy Jellerichs, gerente de marketing; Ashley Pickering, asistente de marketing; y a todos los involucrados en la producción del texto; Hal Humphrey, gerente de producción; Betty Duncan, copyeditor, y Merrill Peterson y Sara Planck, coordinadoras de producción. Finalmente, apreciamos el apoyo de nuestras familias durante el desarrollo de las varias ediciones de este texto. Dennis D. Wackerly William Mendenhall III Richard L. Scheaffer Preliminares.indd xxPreliminares.indd xx 24/7/09 14:50:4824/7/09 14:50:48
  • 19. xxi Como lo sugiere el título de Estadística matemática con aplicaciones, este libro se refiere a estadísticas, en teoría y aplicaciones, y sólo contiene matemáticas como una herramienta ne- cesaria para dar al estudiante una firme comprensión de técnicas estadísticas. Las siguientes sugerencias para usar el texto aumentarán el aprendizaje y ahorrarán tiempo. La conectividad del libro está dada por las introducciones y resúmenes de cada capítulo. Estas secciones explican la forma en que cada capítulo se ajusta en la imagen general de la inferencia estadística y cómo es que cada capítulo se relaciona con los precedentes. NOTA AL ESTUDIANTE F I G U R A 4 Cálculo de aplica- ción breve de la pro- babilidad de que una variable aleatoria de distribución gamma excede de su media Preliminares.indd xxiPreliminares.indd xxi 24/7/09 14:50:4824/7/09 14:50:48
  • 20. xxii Nota al estudiante Dentro de los capítulos, se ponen de relieve importantes conceptos como definiciones. Éstas deben ser leídas varias veces hasta que sean entendidas con toda claridad porque forman la estructura sobre la que se construye todo lo demás. Los principales resultados teóricos se destacan como teoremas. Aun cuando no es necesario entender la prueba de cada uno de los teoremas, una clara comprensión del significado e implicaciones de éstos es esencial. También es fundamental que el estudiante trabaje muchos de los ejercicios, al menos por cuatro razones: • El lector puede estar seguro que entiende lo que ha leído sólo si pone su conocimiento a prueba en problemas de trabajo. • Muchos de los ejercicios son de una naturaleza práctica y arrojan luz sobre las aplica- ciones de probabilidad y estadística. • Algunos de los ejercicios presentan nuevos conceptos y así amplían el material cubierto en el capítulo. • Muchos de los ejercicios de aplicaciones breves ayudan a aumentar la intuición, facilitar la comprensión de conceptos y dar respuestas que no pueden (prácticamente) obtenerse con el uso de las tablas de los apéndices (vea la Figura 4). D. D. W. W. M. R. L. S. Preliminares.indd xxiiPreliminares.indd xxii 24/7/09 14:50:4924/7/09 14:50:49
  • 21. ¿Qué es estadística? 1.1 Introducción 1.2 Caracterización de un conjunto de mediciones: métodos gráficos 1.3 Caracterización de un conjunto de mediciones: métodos numéricos 1.4 Forma en que se hacen inferencias 1.5 Teoría y realidad 1.6 Resumen Bibliografía y lecturas adicionales 1.1 Introducción Se emplean técnicas estadísticas en casi todas las fases de la vida. Se diseñan encuestas para recabar los primeros informes en un día de elecciones y pronosticar el resultado de una elec- ción. Se hacen muestreos de consumidores para obtener información para predecir preferen- cias de productos. Médicos investigadores realizan experimentos para determinar el efecto de diversos medicamentos y condiciones ambientales controladas en seres humanos para inferir el tratamiento adecuado para varias enfermedades. Los ingenieros muestrean la característica de calidad de un producto y diversas variables de procesos controlables para identificar va- riables clave relacionadas con la calidad de un producto. Aparatos electrónicos recién manu- facturados se muestrean antes de enviarlos para decidir si se embarcan o se mantienen lotes individuales. Los economistas observan varios índices del estado de la economía en un pe- riodo y usan la información para pronosticar las condiciones de la economía en el futuro. Las técnicas estadísticas desempeñan un importante papel para alcanzar la meta de cada una de estas situaciones prácticas. El perfeccionamiento de la teoría que sirve de base a estas técnicas es el objetivo de este texto. Un requisito previo para un examen de la teoría de estadística es una definición de estadística y un enunciado de sus objetivos. El Webster’s New Collegiate Dictionary define estadística como “rama de las matemáticas que estudia la recolección, análisis, interpretación y presen- tación de masas de información numérica”. Stuart y Ord (1991) expresan: “Estadística es la rama del método científico que estudia los datos obtenidos por contar o medir las propiedades de poblaciones”. Rice (1995), comentando sobre experimentación y aplicaciones estadísticas, expresa que la estadística se “ocupa esencialmente de procedimientos para analizar infor- mación, en especial aquella que en algún sentido vago tenga un carácter aleatorio”. Freund y Walpole (1987), entre otros, ven la estadística como una disciplina que abarca “la ciencia 1 CAPÍTULO 1 W-cap-01.indd 1W-cap-01.indd 1 24/7/09 14:55:1824/7/09 14:55:18
  • 22. 2 Capítulo 1 ¿Qué es estadística? de basar inferencias en datos observados y todo el problema de tomar decisiones frente a una incertidumbre”.Y Mood, Graybill y Boes 1974) definen la estadística como “la tecnología del método científico” y agregan que la estadística se ocupa de “(1) el diseño de experimentos e investigaciones, (2) inferencia estadística”. Un examen superficial de estas definiciones sugie- re una falta importante de acuerdo, pero todas poseen elementos comunes. Cada descripción implica que los datos se recolectan, con la inferencia como objetivo. Cada una requiere selec- cionar un subconj