SlideShare una empresa de Scribd logo
1 de 40
Presented by Shrikant Athavale On 30 th Oct 2010 Hot Melt  Adhesives  and  Applications
The name itself suggests these type of adhesives. A adhesive which melts on application of heat is called as Hot Melt Adhesive Hot melt adhesives are thermoplastics, based on polymers that become liquid between temperatures of 80 – 220 °C and solidify again by cooling down.  They consist of 100 % dry substance and are applied in liquid state without using water or solvents.  With respective pre-melt systems, pumps and application units (slot die, hot roller and powder scattering) an exact dosage and adjustment is possible.  Due to the process only a short binding and setting time is requested in comparison with dispersions or solutions.
  1.       Thermoplastic Rubber (Block Copolymers) a) Styrene Isoprene Styrene b) Styrene Butadiene Styrene 2.      Poly amide 3.      Poly acrylate 4.      Ethylene Vinyl Acetate Copolymer 5.      Poly ethylene etc. 6.  Poly Urethane POLYMERS USED  Hot melts can basically be divided between different adhesives depending on the working temperature and the chemical composition like.  The main differences are regarding properties and handling, which determinate the final application.
Hot melts can  be further divided  into ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Advantages of HMA
[object Object],[object Object],[object Object],[object Object],[object Object],dis Advantages of HMA
[object Object],[object Object],Availability of HMA
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],COMPOUNDING OF HMA
The Thermoplastic Rubber / polymer is heated , in a closed vessel/ reactor , equipped with  uniform heat all around , to temperatures , above glass transition temperature of end block i.e. above 90 deg C . This  unlocks the physically Cross Linked polymer or Rubber network.   Domains soften at temperature above 90 deg c but do not melt or flow and the polymer remains viscous.  Mechanical Energy is applied ( that is a slow speed stirrer is used for mixing ,along with the addition of Resins and plasticizers , to reduce the viscosity and help the  processibility.   120 deg C to 180 deg C,  is normal temperature range for mixing/compounding of these adhesives.   COMPOUNDING OF HMA
COMPOUNDING OF HMA Temperature above 180 deg C will lead to excessive oxidation and above 220 deg C to thermal degradation. Therefore at this stage the antioxidant is added to protect the adhesive against oxidation.   Since oxidation degradation risk is lower at  lower temperature the preferred mixing method is  high shear / low speed equipment at 135 deg C to 160 deg C temperature.   As a further step of precaution to minimize oxidation , the  mixing is done under Nitrogen gas blanket , by replacing the atmosphere air inside the reaction vessel by Nitrogen gas , which is a inert gas. As we all know the air contains oxygen and by replacing this air the oxygen supply is cut off , which helps to a great extent in minimizing oxidation risk.
Hot melt  application machines ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],The hot applicator roller system bases on a standard three roller applicator system.
Dipping Roller metering Roller applicator Roller Molten adhesive
The integration of a lamination station a second substrate can be laminated.  Working with thermoplastic hot-melts it is important that the lamination point is very close to the coating point, because a cooling down of the hot melt should be prevented due to viscosity changes in order to ensure a good and sufficient penetration into the fabric.
The slot die system is suitable to coat continuously hot melts with a wide range of viscosity. In combination with the right “mask”, which determines the coating weight and width, a closed film > 10 g/m² or a porous film < 10 g/m² can be coated.  The thermoplastic polymer is heated via extruder / tank melting / barrel melting equipment and pumped to the coating head. In the die itself has, depending on the working width, up to four pneumatic operated valves, which supplies the hot melt from the tank.  In addition there are distributors and ducts to spread the adhesive to the die outlet equally over the width.  The slot  die  system
The position of the slot die to the counter roller is flexible.  A manual/motoric adjustment enables the movement of the die in horizontal and vertical position as well as angle adjustment.  The main advantage of this “closed system” is, that the hot melt is protected against any contact with oxygen and air humidity as well as temperature lost from the pre-melt system to the application point. So the hot melt has no chance to crack or to react if they would get in contact with air humidity, which is excluded by using the slot die system. The coating weight is determined by the pump, web speed and distance of die to substrate or web tension.  With this process it is important, that the substrate has a certain stability, because of the shear rate between  Because of the closed system, this coating method via slot die is most suitable to high speed coating of hot melts.
 
 
Slot Die section view displaying internal manifold                                                         Transfer flow of slot-bead coating                                                         Slot-bead Coating with applied vacuum.                                                        
Application Guns  that can melt polyester and polyamide like an extruder, but without the disadvantages of such.  The application by a PA-PET melter can be controlled, even used for intermittend application.  There is no burning and polluting of the glue and purchase costs are really low.  Application  Guns
Application guns There is a  choice of different application guns, for example pneumatic guns, circulating and uncirculating, coating applicators with and without metering pumps. They are used for Dots
The thermoplastic coating material as powder can be applied with a powder scattering device equally over the working width. After that, the powder needs to be melted, cooled down and/or smoothed.  For the application the powder is supplied in a pre-dosing unit and picked up by an engraved dosing roller.  In front of the dosing roller there is either an oscillating brush bar or a rotating brush roller, which clear the dosing roller so that the powder falls onto the substrate.  The engravure of the dosing roller and its rotation speed determines the amount of powder application.  The advantage of this system is the flexible working width up to 5 m.  Curtain coating system
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
You well know that glue application in contact has some disadvantages when producing even films whether very thin or with higher application weight. The surface of the material to be coated might be very irregluar with peaks and valleys. The plate of the coater, however, is straight and accurate. The glue therefore can only fill the valleys. Thus the thickness of the applied glue is not smooth. In order to have enough glue on the peaks there is only one possibility, namely put more glue onto the substrate.
In Curtain Coating the glue film falls out of the die without having any contact. It just follows the profile of the substrate to be coated with alway the same distance to it. Thus the glue film shows the same thickness allover the application width and length – no peaks, no valleys, no weak points. You’ll also save a lot of money as you only use the amount of glue that is really needed. As there is no contact minor abrasion and other pollutions lying on the substrate remain on the same spot and are not transported through the machine thus not wasting the whole material as the die is not pushing the dirt forward. The glue encloses the dirt and just a little spot can be seen. There is no fringing.
Films and Mats   Hot melt adhesives can be applied as free standing films (Figure 1) and mats. There are generally two types of hot melt adhesive films: unsupported and supported. If the adhesive film itself has sufficient cohesive strength to be handled as a free film then it can be used without reinforcement or support. If it has low cohesive strength or is used as a very thin film then it must be supported. The “support” is often a reinforcing textile web or fabric.  Figure 1:  Hot melt adhesive can be made into film and placed on a release liner Unsupported film of pure adhesive is cast onto release paper, usually in thickness of 0.05 to 0.08 mm. This adhesive form is used for bonding thin, lightweight, flat materials and parts that conform to the substrate to which they are bonded. Uses include attaching small components to printed circuit boards, bonding gaskets in place, and attaching nameplates and instruction panels to various types of equipment. These films can also be used as a protective film to cover scratch-susceptible components during production, transportation, or handling.
Hot Melt Laminating Adhesives   Hot melt laminating adhesives can either be in film form as described above, or they can be applied to a substrate as either a solution or extruded coating. Once applied to a substrate the adhesive is activated by mating with another substrate and applying heat and pressure (e.g., via a hot nip rolling operation). The temperature and pressure are sufficient to cause the adhesive to flow and create an instantaneous bond when it cools and gels. Hot melt adhesives used in the laminating process are 100% solid polyester, polyamides, ethylene vinyl acetates (EVAs), polypropylene, and urethane adhesives.  For many applications, such as flexible packaging, the use of a single material may not satisfy all of the properties demanded of the product. In these cases, a composite consisting of two or more layers of material may provide the desired performance. A particularly common means of creating such a composite is to laminate various polymeric films to other films, foils, papers, etc. with a hot melt adhesive.  Multilayer polymeric films have become valuable packaging materials from applications ranging from food preservation to pharmaceuticals. Along with the recognition of the importance of multi-layer films was the recognition that an effective adhesive system would be required in their manufacture. As most of the polymers are incompatible, an adhesive layer (also called a tie layer) is needed to obtain sufficient cohesion. Figure 2 shows an example of a generalized multi-layer structure. The use of multi-layer materials is not limited to packaging. Industrial applications such as fuel tanks, pipes, and electrical cables are using adhesive bonded layers to guarantee performance properties.
Figure 2:  Generalized design of a multilayer laminate Current laminate adhesives include acrylic polymers and copolymers, polyesters, vinyl acetate - vinyl chloride copolymers, waterborne polyvinylidene chloride, polyolefin copolymers, and polyurethanes.  Coextrusion is gaining popularity for manufacturing multi-layer films because of its lower overall cost, single-step processing, and environmental benefits. The materials best suited for coextrusion are low-density polyethylene, polypropylene, polyvinyl chloride, polyamides, and polystyrene. The coextrusion of polyethylene and ethylene vinyl acetates produces an especially low gas permeation rate required for many health care packaging applications. Sometimes an adhesive may not be required in the coextrusion process. However, usually a tie-layer is employed because of incompatibility between polymeric films.
Hot Melt Sealants  Hot melt sealants are a case where there has been a continuing evolution of both technology and market demands. Hot melt sealants have been available for decades, but until recent years the markets had been rather limited because of the well known deficits with thermoplastic hot melt adhesives (sag at elevated temperatures, equipment costs, low bond strength to certain substrates, etc.) However, developments over the last several years indicate that these materials will be seeing much larger, growing markets.  One of the primary developments in hot melt sealants has been the development of product in continuous rope form. In this form the hot melt can be extruded through a heated gun and applied in an outdoor environment. The immediate set time of the sealant eliminates problems due to traffic (e.g., pedestrian or automotive travel over road seals) or environment (e.g., rain or dust).
Foam able Hot Melt Adhesive and Sealants   Perhaps one of the most unique forms that a hot melt adhesive can take is as a cellular material. Foamable hot melt adhesives have been available since the 1980s. These adhesives use nitrogen or carbon dioxide gas to increase the volume of the adhesive by 20-70% as it is applied to the substrate. Processing equipment mixes the base polymer material with an inert gas that expands during dispensing, thereby forming a resilient adhesive or sealant. Because this process has no effect on the chemical properties of an adhesive, it works well with hot melt formulations of many types.  The foaming operation increases hot melt open time and provides for good gap filling properties. The elastic foam also tends to relieve stresses that might develop internally within the joint. Foamable hot melt formulations have been used as both adhesives and sealants.  Foamable hot melt adhesives can be used as formed-in-place gaskets as well as in many general purpose bonding applications. The typical benefits of foamed hot melt adhesives are shown in Table 3, but as thermoplastics, their service temperature range is limited.
Foamable hot melt adhesives are often preferred over standard hot melt adhesives because of their longer open times, stronger bond strengths, and lower material cost. These adhesives also produce less thermal distortion and can be used on many heat sensitive materials. Recently, these adhesives are enjoying success in several industries. In the construction industry, for example, foamable hot melt adhesives are used to join standing-seam metal roofs, porous particleboard cabinet walls, and attachment of insulation board. They are also commonly used for bookbinding and the production of filters and packaging.  Equipment and materials have also been developed that produce closed cell foam gaskets from a range of hot melt applied materials. Foam-in-place gaskets are more economical than conventional gasketing and provide more consistent quality and higher production rates. These foam-in-place gaskets are replacing many die-cut gaskets due to their lower costs (associated with waste, inventory, and labor) and more consistent quality.  While foam-in-place gasketing systems can handle many different sealing geometries, the most common configurations consist of a free standing exposed bead sandwiched between flat surfaces (Figure 3, left) or one that is dispensed into a groove with a tongue on the mating part (Figure 3, right). An application of a hot melt sealant being applied to an engine mounting is illustrated in Figure 4.
Figure 3:  Application of a hot melt sealant to an engine mounting
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Reactive Hot Melt Sealants   A reactive hot melt adhesive is any thermoplastic sealant that can be applied at elevated temperatures as a liquid melt, cools to become a solid at room temperature, and then subsequently reacts to become a thermosetting polymer with enhanced physical properties. Hot melt sealants can be made to be reactive in several ways.  Reactive hot melt adhesives and sealants have been available since the 1980s. Due to their thermoplastic nature during application, they have many of the desirable processing characteristics of conventional hot melts, such as no solvents present, no mixing requirements, and immediate green strength. Although conventional, nonreactive hot melts (e.g., ethylene vinyl acetate, polyalphaolefin, polyester, and polyamide) are widely used in many industrial applications, they have certain performance limitations, such as poor heat resistance, water or solvent permeation, and creep. These limitations generally prevent their use in many critical or structural sealing applications. For certain applications requiring unusually high bond strength and fast set time, reactive polyurethane hot melt sealants have been developed6,7. More recently reactive silicone hot melt adhesives and sealants have also been introduced8. These systems are applied like a hot melt, and the parts can be rapidly assembled within seconds. As a hot melt, this applied formulation has a high degree of initial handling strength.
One of the major advantages of a hot melt adhesive (being able to be applied as a molten liquid) is also one of its disadvantages. The heat required can cause oxidation of the adhesive before the bond is made. Excessive oxidation can result in short pot life, discoloration, viscosity changes, char formation, and loss of adhesion.  Hot melt adhesives are primarily made from thermoplastic polymers including ethylene vinyl acetate (EVA), block copolymers such as styrene butadiene styrene (SBS) or styrene isoprene styrene (SIS), and polyolefins. Of these, EVA is the most popular due to their high versatility and low cost. Unfortunately, these same resins are prone to oxidation, and this limits the amount of time that a hot melt adhesive can be held in the molten state.  This article will review the mechanism of oxidation in hot melt adhesives and their effect on both application and performance properties. Resolutions to this problem will also be identified. These primarily encompass: (1) the use of proper adhesive formulations (e.g., with antioxidants), (2) adhesive compounding methods, and (3) adjustments to the end-users' application processes.  Heat Stability of Hot melts
The Mechanism of Oxidation  Methods of Reducing Oxidation in Hot Melt Adhesive Systems  Oxidation can occur at all stages of an adhesive's life from synthesis to final end-use. It is usually recognized at high processing temperatures such as during mixing, compounding, or extrusion (in the case of hot melt adhesives). However, oxidation can also occur at relatively low temperatures including ambient storage and also on exposure to UV light
[object Object],extrusion coating
 
Hot melt coater diagram

Más contenido relacionado

La actualidad más candente

05.adhesion and adhesives theory
05.adhesion and adhesives theory05.adhesion and adhesives theory
05.adhesion and adhesives theorySHRIKANT ATHAVALE
 
Ppt on Adhesives
Ppt on AdhesivesPpt on Adhesives
Ppt on AdhesivesAnees Khan
 
06.presentation on coating methods
06.presentation on coating methods06.presentation on coating methods
06.presentation on coating methodsSHRIKANT ATHAVALE
 
Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...
Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...
Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...Kelly.Wang (adhesive)
 
Additives in plastics
Additives in plasticsAdditives in plastics
Additives in plasticsVasudev Singh
 
Commodity plastics
Commodity plasticsCommodity plastics
Commodity plasticsmannukumar24
 
Plastic Compunding
Plastic CompundingPlastic Compunding
Plastic Compundingpalash350
 
Flammability Testing Of Plastics Jinish Doshi
Flammability Testing Of Plastics Jinish DoshiFlammability Testing Of Plastics Jinish Doshi
Flammability Testing Of Plastics Jinish DoshiJinish Doshi
 
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...Ajjay Kumar Gupta
 
Introduction to plastics
Introduction to plasticsIntroduction to plastics
Introduction to plasticsSaurabh Jaiswal
 
Phenolic Resin & Adhesives
Phenolic Resin & AdhesivesPhenolic Resin & Adhesives
Phenolic Resin & AdhesivesMaiti Tushar
 
How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...
How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...
How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...Ajjay Kumar Gupta
 
Fire retardant and environmental impact of polymer additives
Fire retardant and environmental impact of polymer additivesFire retardant and environmental impact of polymer additives
Fire retardant and environmental impact of polymer additivesMuin Ramli
 

La actualidad más candente (20)

05.adhesion and adhesives theory
05.adhesion and adhesives theory05.adhesion and adhesives theory
05.adhesion and adhesives theory
 
Ppt on Adhesives
Ppt on AdhesivesPpt on Adhesives
Ppt on Adhesives
 
Adhesives1
Adhesives1Adhesives1
Adhesives1
 
Additives
AdditivesAdditives
Additives
 
Adhesives
AdhesivesAdhesives
Adhesives
 
06.presentation on coating methods
06.presentation on coating methods06.presentation on coating methods
06.presentation on coating methods
 
Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...
Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...
Comens -No.1 flexible packaging lamination adhesive manufacturer in Asia- wfy...
 
water borne coatings
water borne coatingswater borne coatings
water borne coatings
 
Additives in plastics
Additives in plasticsAdditives in plastics
Additives in plastics
 
Commodity plastics
Commodity plasticsCommodity plastics
Commodity plastics
 
Resin transfer moulding in mocm
Resin transfer moulding in mocmResin transfer moulding in mocm
Resin transfer moulding in mocm
 
Plastic Compunding
Plastic CompundingPlastic Compunding
Plastic Compunding
 
Flammability Testing Of Plastics Jinish Doshi
Flammability Testing Of Plastics Jinish DoshiFlammability Testing Of Plastics Jinish Doshi
Flammability Testing Of Plastics Jinish Doshi
 
Adhesives
AdhesivesAdhesives
Adhesives
 
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...
Formulation and Manufacturing Process of Alkyd Resin, Amino Resin, Phenolic R...
 
Introduction to plastics
Introduction to plasticsIntroduction to plastics
Introduction to plastics
 
Phenolic Resin & Adhesives
Phenolic Resin & AdhesivesPhenolic Resin & Adhesives
Phenolic Resin & Adhesives
 
How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...
How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...
How to Manufacture Synthetic Resins (Actel Resins, Amino Resins, Casein Resin...
 
ABS
ABSABS
ABS
 
Fire retardant and environmental impact of polymer additives
Fire retardant and environmental impact of polymer additivesFire retardant and environmental impact of polymer additives
Fire retardant and environmental impact of polymer additives
 

Destacado

Hot melt extrusion
Hot melt extrusionHot melt extrusion
Hot melt extrusionmanmanasi
 
Hot Melt Extrusion Technology
Hot Melt Extrusion TechnologyHot Melt Extrusion Technology
Hot Melt Extrusion TechnologyKurt Kortokrax
 
AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]SEHER OZKAN
 
AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...
AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...
AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...mzhou45
 
Innovation in Excipients
Innovation in ExcipientsInnovation in Excipients
Innovation in ExcipientsBASF
 
Pak tec training presentation 8/20/14
Pak tec training presentation 8/20/14Pak tec training presentation 8/20/14
Pak tec training presentation 8/20/14Ryan Buchler
 
Hot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous FormulationsHot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous Formulationsasarode
 
Next Generation of implantable Polyurethanes
Next Generation of implantable Polyurethanes Next Generation of implantable Polyurethanes
Next Generation of implantable Polyurethanes UBMCanon
 
Demilec- spray polyurethane foam systems manufacturer
Demilec- spray polyurethane foam systems manufacturerDemilec- spray polyurethane foam systems manufacturer
Demilec- spray polyurethane foam systems manufacturerJeff Kemp
 
Moving Towards More Energy Efficient Building Enclosures - Part 9 and Beyond
Moving Towards More Energy Efficient Building Enclosures - Part 9 and BeyondMoving Towards More Energy Efficient Building Enclosures - Part 9 and Beyond
Moving Towards More Energy Efficient Building Enclosures - Part 9 and BeyondGraham Finch
 
CON 123 Session 6 - Physical Properties
CON 123 Session 6 - Physical PropertiesCON 123 Session 6 - Physical Properties
CON 123 Session 6 - Physical Propertiesalpenaccedu
 

Destacado (19)

Textile coating
Textile coatingTextile coating
Textile coating
 
Hot melt extrusion
Hot melt extrusionHot melt extrusion
Hot melt extrusion
 
Adhesives
AdhesivesAdhesives
Adhesives
 
Hot Melt Extrusion Technology
Hot Melt Extrusion TechnologyHot Melt Extrusion Technology
Hot Melt Extrusion Technology
 
Adhesives
AdhesivesAdhesives
Adhesives
 
AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]
 
Final Report_André Riscado
Final Report_André RiscadoFinal Report_André Riscado
Final Report_André Riscado
 
AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...
AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...
AAPS2011 Oral--Analytical Techniques To Characterize Excipient Stability &amp...
 
Ph.D. in Chemical Engineering Presentation
Ph.D. in Chemical Engineering PresentationPh.D. in Chemical Engineering Presentation
Ph.D. in Chemical Engineering Presentation
 
CSL Silicones Building Construction Brochure 2014
CSL Silicones Building  Construction Brochure 2014CSL Silicones Building  Construction Brochure 2014
CSL Silicones Building Construction Brochure 2014
 
Adhesive
AdhesiveAdhesive
Adhesive
 
Innovation in Excipients
Innovation in ExcipientsInnovation in Excipients
Innovation in Excipients
 
Pak tec training presentation 8/20/14
Pak tec training presentation 8/20/14Pak tec training presentation 8/20/14
Pak tec training presentation 8/20/14
 
Hot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous FormulationsHot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous Formulations
 
Pva glue
Pva gluePva glue
Pva glue
 
Next Generation of implantable Polyurethanes
Next Generation of implantable Polyurethanes Next Generation of implantable Polyurethanes
Next Generation of implantable Polyurethanes
 
Demilec- spray polyurethane foam systems manufacturer
Demilec- spray polyurethane foam systems manufacturerDemilec- spray polyurethane foam systems manufacturer
Demilec- spray polyurethane foam systems manufacturer
 
Moving Towards More Energy Efficient Building Enclosures - Part 9 and Beyond
Moving Towards More Energy Efficient Building Enclosures - Part 9 and BeyondMoving Towards More Energy Efficient Building Enclosures - Part 9 and Beyond
Moving Towards More Energy Efficient Building Enclosures - Part 9 and Beyond
 
CON 123 Session 6 - Physical Properties
CON 123 Session 6 - Physical PropertiesCON 123 Session 6 - Physical Properties
CON 123 Session 6 - Physical Properties
 

Similar a 08.hm adhesives and appln

Heidelbergpresentation - coating
Heidelbergpresentation - coatingHeidelbergpresentation - coating
Heidelbergpresentation - coatingHeidelberg India
 
Slide Presentation on coating not cracking
Slide Presentation on coating not crackingSlide Presentation on coating not cracking
Slide Presentation on coating not crackingSukhbir Singh
 
Slides Presentation on coating not cracking
Slides Presentation on coating not crackingSlides Presentation on coating not cracking
Slides Presentation on coating not crackingSukhbir Singh
 
ArmorThane Pu 104 a polyurethane sealants, adhesives, and binders
ArmorThane Pu 104 a polyurethane sealants, adhesives, and bindersArmorThane Pu 104 a polyurethane sealants, adhesives, and binders
ArmorThane Pu 104 a polyurethane sealants, adhesives, and bindersct1054
 
MSE-4105-Chapter-2-Manufacturing of Composites.pdf
MSE-4105-Chapter-2-Manufacturing of Composites.pdfMSE-4105-Chapter-2-Manufacturing of Composites.pdf
MSE-4105-Chapter-2-Manufacturing of Composites.pdfShamahaKhondoker
 
Adhesive Coating methods part 1 copy
Adhesive Coating methods  part 1   copyAdhesive Coating methods  part 1   copy
Adhesive Coating methods part 1 copySHRIKANT ATHAVALE
 
Klubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.comKlubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.comĐỗ Bá Tùng
 
Heidelberg Tips & Tricks - Printing with Uncoated Paper
 Heidelberg Tips & Tricks - Printing with Uncoated Paper Heidelberg Tips & Tricks - Printing with Uncoated Paper
Heidelberg Tips & Tricks - Printing with Uncoated PaperHeidelberg India
 
Asphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptx
Asphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptxAsphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptx
Asphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptxCanandianAsphalt
 
Composite structure manufacturing
Composite structure manufacturingComposite structure manufacturing
Composite structure manufacturingMohamed Adawy
 
Inverted Flat Roof Waterproofing - Mariseal 650 flash
Inverted Flat Roof Waterproofing - Mariseal 650 flashInverted Flat Roof Waterproofing - Mariseal 650 flash
Inverted Flat Roof Waterproofing - Mariseal 650 flashOrfeas Aggelou
 
Fundamentals of cast film extrusion technology
Fundamentals of cast film extrusion technologyFundamentals of cast film extrusion technology
Fundamentals of cast film extrusion technologyAlmir De Souza Machado
 
Unit ii coating.of textile fabric ppt
Unit ii coating.of textile fabric pptUnit ii coating.of textile fabric ppt
Unit ii coating.of textile fabric pptROHIT SINGH
 
Klubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.comKlubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.comĐỗ Bá Tùng
 
Klubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.comKlubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.comĐỗ Bá Tùng
 
Merged document 4
Merged document 4Merged document 4
Merged document 4Ekeeda
 

Similar a 08.hm adhesives and appln (20)

Heidelbergpresentation - coating
Heidelbergpresentation - coatingHeidelbergpresentation - coating
Heidelbergpresentation - coating
 
Slide Presentation on coating not cracking
Slide Presentation on coating not crackingSlide Presentation on coating not cracking
Slide Presentation on coating not cracking
 
Slides Presentation on coating not cracking
Slides Presentation on coating not crackingSlides Presentation on coating not cracking
Slides Presentation on coating not cracking
 
ArmorThane Pu 104 a polyurethane sealants, adhesives, and binders
ArmorThane Pu 104 a polyurethane sealants, adhesives, and bindersArmorThane Pu 104 a polyurethane sealants, adhesives, and binders
ArmorThane Pu 104 a polyurethane sealants, adhesives, and binders
 
Coating Not Cracking
Coating Not CrackingCoating Not Cracking
Coating Not Cracking
 
MSE-4105-Chapter-2-Manufacturing of Composites.pdf
MSE-4105-Chapter-2-Manufacturing of Composites.pdfMSE-4105-Chapter-2-Manufacturing of Composites.pdf
MSE-4105-Chapter-2-Manufacturing of Composites.pdf
 
Adhesive Coating methods part 1 copy
Adhesive Coating methods  part 1   copyAdhesive Coating methods  part 1   copy
Adhesive Coating methods part 1 copy
 
Klubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.comKlubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tp-41-n-a-b Mr Tùng - 0987 988 407 | www.khodaumo.com
 
Heidelberg Tips & Tricks - Printing with Uncoated Paper
 Heidelberg Tips & Tricks - Printing with Uncoated Paper Heidelberg Tips & Tricks - Printing with Uncoated Paper
Heidelberg Tips & Tricks - Printing with Uncoated Paper
 
Asphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptx
Asphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptxAsphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptx
Asphalt Crack Sealing in Parking Lots CRACKS OCCUR.pptx
 
Composite structure manufacturing
Composite structure manufacturingComposite structure manufacturing
Composite structure manufacturing
 
processing.pdf
processing.pdfprocessing.pdf
processing.pdf
 
Inverted Flat Roof Waterproofing - Mariseal 650 flash
Inverted Flat Roof Waterproofing - Mariseal 650 flashInverted Flat Roof Waterproofing - Mariseal 650 flash
Inverted Flat Roof Waterproofing - Mariseal 650 flash
 
advanced materials.docx
advanced materials.docxadvanced materials.docx
advanced materials.docx
 
Fundamentals of cast film extrusion technology
Fundamentals of cast film extrusion technologyFundamentals of cast film extrusion technology
Fundamentals of cast film extrusion technology
 
Autoclave molding
Autoclave moldingAutoclave molding
Autoclave molding
 
Unit ii coating.of textile fabric ppt
Unit ii coating.of textile fabric pptUnit ii coating.of textile fabric ppt
Unit ii coating.of textile fabric ppt
 
Klubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.comKlubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 2 Mr Tùng - 0987 988 407 | www.khodaumo.com
 
Klubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.comKlubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.com
Klubertop tm-06-111 Mr Tùng - 0987 988 407 | www.khodaumo.com
 
Merged document 4
Merged document 4Merged document 4
Merged document 4
 

Más de SHRIKANT ATHAVALE

Más de SHRIKANT ATHAVALE (15)

15.2.1. psa tape for building and construction
15.2.1. psa tape for building and construction15.2.1. psa tape for building and construction
15.2.1. psa tape for building and construction
 
15.1.1. psa tapes for automobile
15.1.1. psa tapes for  automobile15.1.1. psa tapes for  automobile
15.1.1. psa tapes for automobile
 
1.27. the microsphere adhesive technology
1.27. the microsphere adhesive technology1.27. the microsphere adhesive technology
1.27. the microsphere adhesive technology
 
Anti slip tapes coatings mats
Anti slip tapes coatings matsAnti slip tapes coatings mats
Anti slip tapes coatings mats
 
Release liners a fresh review
Release liners a fresh reviewRelease liners a fresh review
Release liners a fresh review
 
Atma Nirbhar Bharat 260820
Atma Nirbhar Bharat 260820Atma Nirbhar Bharat 260820
Atma Nirbhar Bharat 260820
 
024.b.corona treatment more details
024.b.corona treatment more details024.b.corona treatment more details
024.b.corona treatment more details
 
Pumps How do they work
Pumps How do they workPumps How do they work
Pumps How do they work
 
I will fly
I will flyI will fly
I will fly
 
010.sealing tapes
010.sealing tapes010.sealing tapes
010.sealing tapes
 
Pp present on lables
Pp present on lablesPp present on lables
Pp present on lables
 
02.multi layer composite films
02.multi layer composite films02.multi layer composite films
02.multi layer composite films
 
7. coatings lacqures and varnishes
7. coatings lacqures and varnishes7. coatings lacqures and varnishes
7. coatings lacqures and varnishes
 
Marking and coding 22 03 2011
Marking and coding 22 03 2011Marking and coding 22 03 2011
Marking and coding 22 03 2011
 
Mayer Rod Coating
Mayer Rod CoatingMayer Rod Coating
Mayer Rod Coating
 

Último

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 

Último (20)

How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 

08.hm adhesives and appln

  • 1. Presented by Shrikant Athavale On 30 th Oct 2010 Hot Melt Adhesives and Applications
  • 2. The name itself suggests these type of adhesives. A adhesive which melts on application of heat is called as Hot Melt Adhesive Hot melt adhesives are thermoplastics, based on polymers that become liquid between temperatures of 80 – 220 °C and solidify again by cooling down. They consist of 100 % dry substance and are applied in liquid state without using water or solvents. With respective pre-melt systems, pumps and application units (slot die, hot roller and powder scattering) an exact dosage and adjustment is possible. Due to the process only a short binding and setting time is requested in comparison with dispersions or solutions.
  • 3.   1.      Thermoplastic Rubber (Block Copolymers) a) Styrene Isoprene Styrene b) Styrene Butadiene Styrene 2.      Poly amide 3.      Poly acrylate 4.      Ethylene Vinyl Acetate Copolymer 5.      Poly ethylene etc. 6. Poly Urethane POLYMERS USED Hot melts can basically be divided between different adhesives depending on the working temperature and the chemical composition like. The main differences are regarding properties and handling, which determinate the final application.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. The Thermoplastic Rubber / polymer is heated , in a closed vessel/ reactor , equipped with uniform heat all around , to temperatures , above glass transition temperature of end block i.e. above 90 deg C . This unlocks the physically Cross Linked polymer or Rubber network.   Domains soften at temperature above 90 deg c but do not melt or flow and the polymer remains viscous. Mechanical Energy is applied ( that is a slow speed stirrer is used for mixing ,along with the addition of Resins and plasticizers , to reduce the viscosity and help the processibility.   120 deg C to 180 deg C, is normal temperature range for mixing/compounding of these adhesives.   COMPOUNDING OF HMA
  • 10. COMPOUNDING OF HMA Temperature above 180 deg C will lead to excessive oxidation and above 220 deg C to thermal degradation. Therefore at this stage the antioxidant is added to protect the adhesive against oxidation.   Since oxidation degradation risk is lower at lower temperature the preferred mixing method is high shear / low speed equipment at 135 deg C to 160 deg C temperature. As a further step of precaution to minimize oxidation , the mixing is done under Nitrogen gas blanket , by replacing the atmosphere air inside the reaction vessel by Nitrogen gas , which is a inert gas. As we all know the air contains oxygen and by replacing this air the oxygen supply is cut off , which helps to a great extent in minimizing oxidation risk.
  • 11.
  • 12.
  • 13. Dipping Roller metering Roller applicator Roller Molten adhesive
  • 14. The integration of a lamination station a second substrate can be laminated. Working with thermoplastic hot-melts it is important that the lamination point is very close to the coating point, because a cooling down of the hot melt should be prevented due to viscosity changes in order to ensure a good and sufficient penetration into the fabric.
  • 15. The slot die system is suitable to coat continuously hot melts with a wide range of viscosity. In combination with the right “mask”, which determines the coating weight and width, a closed film > 10 g/m² or a porous film < 10 g/m² can be coated. The thermoplastic polymer is heated via extruder / tank melting / barrel melting equipment and pumped to the coating head. In the die itself has, depending on the working width, up to four pneumatic operated valves, which supplies the hot melt from the tank. In addition there are distributors and ducts to spread the adhesive to the die outlet equally over the width. The slot die system
  • 16. The position of the slot die to the counter roller is flexible. A manual/motoric adjustment enables the movement of the die in horizontal and vertical position as well as angle adjustment. The main advantage of this “closed system” is, that the hot melt is protected against any contact with oxygen and air humidity as well as temperature lost from the pre-melt system to the application point. So the hot melt has no chance to crack or to react if they would get in contact with air humidity, which is excluded by using the slot die system. The coating weight is determined by the pump, web speed and distance of die to substrate or web tension. With this process it is important, that the substrate has a certain stability, because of the shear rate between Because of the closed system, this coating method via slot die is most suitable to high speed coating of hot melts.
  • 17.  
  • 18.  
  • 19. Slot Die section view displaying internal manifold                                                         Transfer flow of slot-bead coating                                                         Slot-bead Coating with applied vacuum.                                                        
  • 20. Application Guns that can melt polyester and polyamide like an extruder, but without the disadvantages of such. The application by a PA-PET melter can be controlled, even used for intermittend application. There is no burning and polluting of the glue and purchase costs are really low. Application Guns
  • 21. Application guns There is a choice of different application guns, for example pneumatic guns, circulating and uncirculating, coating applicators with and without metering pumps. They are used for Dots
  • 22. The thermoplastic coating material as powder can be applied with a powder scattering device equally over the working width. After that, the powder needs to be melted, cooled down and/or smoothed. For the application the powder is supplied in a pre-dosing unit and picked up by an engraved dosing roller. In front of the dosing roller there is either an oscillating brush bar or a rotating brush roller, which clear the dosing roller so that the powder falls onto the substrate. The engravure of the dosing roller and its rotation speed determines the amount of powder application. The advantage of this system is the flexible working width up to 5 m. Curtain coating system
  • 23.  
  • 24.
  • 25. You well know that glue application in contact has some disadvantages when producing even films whether very thin or with higher application weight. The surface of the material to be coated might be very irregluar with peaks and valleys. The plate of the coater, however, is straight and accurate. The glue therefore can only fill the valleys. Thus the thickness of the applied glue is not smooth. In order to have enough glue on the peaks there is only one possibility, namely put more glue onto the substrate.
  • 26. In Curtain Coating the glue film falls out of the die without having any contact. It just follows the profile of the substrate to be coated with alway the same distance to it. Thus the glue film shows the same thickness allover the application width and length – no peaks, no valleys, no weak points. You’ll also save a lot of money as you only use the amount of glue that is really needed. As there is no contact minor abrasion and other pollutions lying on the substrate remain on the same spot and are not transported through the machine thus not wasting the whole material as the die is not pushing the dirt forward. The glue encloses the dirt and just a little spot can be seen. There is no fringing.
  • 27. Films and Mats Hot melt adhesives can be applied as free standing films (Figure 1) and mats. There are generally two types of hot melt adhesive films: unsupported and supported. If the adhesive film itself has sufficient cohesive strength to be handled as a free film then it can be used without reinforcement or support. If it has low cohesive strength or is used as a very thin film then it must be supported. The “support” is often a reinforcing textile web or fabric. Figure 1: Hot melt adhesive can be made into film and placed on a release liner Unsupported film of pure adhesive is cast onto release paper, usually in thickness of 0.05 to 0.08 mm. This adhesive form is used for bonding thin, lightweight, flat materials and parts that conform to the substrate to which they are bonded. Uses include attaching small components to printed circuit boards, bonding gaskets in place, and attaching nameplates and instruction panels to various types of equipment. These films can also be used as a protective film to cover scratch-susceptible components during production, transportation, or handling.
  • 28. Hot Melt Laminating Adhesives Hot melt laminating adhesives can either be in film form as described above, or they can be applied to a substrate as either a solution or extruded coating. Once applied to a substrate the adhesive is activated by mating with another substrate and applying heat and pressure (e.g., via a hot nip rolling operation). The temperature and pressure are sufficient to cause the adhesive to flow and create an instantaneous bond when it cools and gels. Hot melt adhesives used in the laminating process are 100% solid polyester, polyamides, ethylene vinyl acetates (EVAs), polypropylene, and urethane adhesives. For many applications, such as flexible packaging, the use of a single material may not satisfy all of the properties demanded of the product. In these cases, a composite consisting of two or more layers of material may provide the desired performance. A particularly common means of creating such a composite is to laminate various polymeric films to other films, foils, papers, etc. with a hot melt adhesive. Multilayer polymeric films have become valuable packaging materials from applications ranging from food preservation to pharmaceuticals. Along with the recognition of the importance of multi-layer films was the recognition that an effective adhesive system would be required in their manufacture. As most of the polymers are incompatible, an adhesive layer (also called a tie layer) is needed to obtain sufficient cohesion. Figure 2 shows an example of a generalized multi-layer structure. The use of multi-layer materials is not limited to packaging. Industrial applications such as fuel tanks, pipes, and electrical cables are using adhesive bonded layers to guarantee performance properties.
  • 29. Figure 2: Generalized design of a multilayer laminate Current laminate adhesives include acrylic polymers and copolymers, polyesters, vinyl acetate - vinyl chloride copolymers, waterborne polyvinylidene chloride, polyolefin copolymers, and polyurethanes. Coextrusion is gaining popularity for manufacturing multi-layer films because of its lower overall cost, single-step processing, and environmental benefits. The materials best suited for coextrusion are low-density polyethylene, polypropylene, polyvinyl chloride, polyamides, and polystyrene. The coextrusion of polyethylene and ethylene vinyl acetates produces an especially low gas permeation rate required for many health care packaging applications. Sometimes an adhesive may not be required in the coextrusion process. However, usually a tie-layer is employed because of incompatibility between polymeric films.
  • 30. Hot Melt Sealants Hot melt sealants are a case where there has been a continuing evolution of both technology and market demands. Hot melt sealants have been available for decades, but until recent years the markets had been rather limited because of the well known deficits with thermoplastic hot melt adhesives (sag at elevated temperatures, equipment costs, low bond strength to certain substrates, etc.) However, developments over the last several years indicate that these materials will be seeing much larger, growing markets. One of the primary developments in hot melt sealants has been the development of product in continuous rope form. In this form the hot melt can be extruded through a heated gun and applied in an outdoor environment. The immediate set time of the sealant eliminates problems due to traffic (e.g., pedestrian or automotive travel over road seals) or environment (e.g., rain or dust).
  • 31. Foam able Hot Melt Adhesive and Sealants Perhaps one of the most unique forms that a hot melt adhesive can take is as a cellular material. Foamable hot melt adhesives have been available since the 1980s. These adhesives use nitrogen or carbon dioxide gas to increase the volume of the adhesive by 20-70% as it is applied to the substrate. Processing equipment mixes the base polymer material with an inert gas that expands during dispensing, thereby forming a resilient adhesive or sealant. Because this process has no effect on the chemical properties of an adhesive, it works well with hot melt formulations of many types. The foaming operation increases hot melt open time and provides for good gap filling properties. The elastic foam also tends to relieve stresses that might develop internally within the joint. Foamable hot melt formulations have been used as both adhesives and sealants. Foamable hot melt adhesives can be used as formed-in-place gaskets as well as in many general purpose bonding applications. The typical benefits of foamed hot melt adhesives are shown in Table 3, but as thermoplastics, their service temperature range is limited.
  • 32. Foamable hot melt adhesives are often preferred over standard hot melt adhesives because of their longer open times, stronger bond strengths, and lower material cost. These adhesives also produce less thermal distortion and can be used on many heat sensitive materials. Recently, these adhesives are enjoying success in several industries. In the construction industry, for example, foamable hot melt adhesives are used to join standing-seam metal roofs, porous particleboard cabinet walls, and attachment of insulation board. They are also commonly used for bookbinding and the production of filters and packaging. Equipment and materials have also been developed that produce closed cell foam gaskets from a range of hot melt applied materials. Foam-in-place gaskets are more economical than conventional gasketing and provide more consistent quality and higher production rates. These foam-in-place gaskets are replacing many die-cut gaskets due to their lower costs (associated with waste, inventory, and labor) and more consistent quality. While foam-in-place gasketing systems can handle many different sealing geometries, the most common configurations consist of a free standing exposed bead sandwiched between flat surfaces (Figure 3, left) or one that is dispensed into a groove with a tongue on the mating part (Figure 3, right). An application of a hot melt sealant being applied to an engine mounting is illustrated in Figure 4.
  • 33. Figure 3: Application of a hot melt sealant to an engine mounting
  • 34.
  • 35. Reactive Hot Melt Sealants A reactive hot melt adhesive is any thermoplastic sealant that can be applied at elevated temperatures as a liquid melt, cools to become a solid at room temperature, and then subsequently reacts to become a thermosetting polymer with enhanced physical properties. Hot melt sealants can be made to be reactive in several ways. Reactive hot melt adhesives and sealants have been available since the 1980s. Due to their thermoplastic nature during application, they have many of the desirable processing characteristics of conventional hot melts, such as no solvents present, no mixing requirements, and immediate green strength. Although conventional, nonreactive hot melts (e.g., ethylene vinyl acetate, polyalphaolefin, polyester, and polyamide) are widely used in many industrial applications, they have certain performance limitations, such as poor heat resistance, water or solvent permeation, and creep. These limitations generally prevent their use in many critical or structural sealing applications. For certain applications requiring unusually high bond strength and fast set time, reactive polyurethane hot melt sealants have been developed6,7. More recently reactive silicone hot melt adhesives and sealants have also been introduced8. These systems are applied like a hot melt, and the parts can be rapidly assembled within seconds. As a hot melt, this applied formulation has a high degree of initial handling strength.
  • 36. One of the major advantages of a hot melt adhesive (being able to be applied as a molten liquid) is also one of its disadvantages. The heat required can cause oxidation of the adhesive before the bond is made. Excessive oxidation can result in short pot life, discoloration, viscosity changes, char formation, and loss of adhesion. Hot melt adhesives are primarily made from thermoplastic polymers including ethylene vinyl acetate (EVA), block copolymers such as styrene butadiene styrene (SBS) or styrene isoprene styrene (SIS), and polyolefins. Of these, EVA is the most popular due to their high versatility and low cost. Unfortunately, these same resins are prone to oxidation, and this limits the amount of time that a hot melt adhesive can be held in the molten state. This article will review the mechanism of oxidation in hot melt adhesives and their effect on both application and performance properties. Resolutions to this problem will also be identified. These primarily encompass: (1) the use of proper adhesive formulations (e.g., with antioxidants), (2) adhesive compounding methods, and (3) adjustments to the end-users' application processes. Heat Stability of Hot melts
  • 37. The Mechanism of Oxidation Methods of Reducing Oxidation in Hot Melt Adhesive Systems Oxidation can occur at all stages of an adhesive's life from synthesis to final end-use. It is usually recognized at high processing temperatures such as during mixing, compounding, or extrusion (in the case of hot melt adhesives). However, oxidation can also occur at relatively low temperatures including ambient storage and also on exposure to UV light
  • 38.
  • 39.  
  • 40. Hot melt coater diagram