SlideShare una empresa de Scribd logo
1 de 44
Descargar para leer sin conexión
ESE 570 MOS INVERTERS STATIC
       CHARACTERISTICS




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   1
Vin                                    Vout



                                                                Logic “0” = 0 V
                                                                Logic “1” = VDD V




                                   0

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                       2
VOH ≤ VDD

                                                                             VOL ≥ 0



                                                                VDD




                                                                                       VDD
                                                          0
                                                                VOL
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12         VT0n                   3
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   4
Slope of VTC
                                                                     or
                                                                inverter gain


Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                   5
Steady-State (Static) Output Voltage Behavior




                                                                                    (oC)
                                                                                    (oC)
     Tj = Ta + ΘP
                                                                Θ -> Thermal Resistance (oC/W)
      P → Pstatic, Pdynamic                                                            (W)

        Pstatic = VDD ID


                              V DD
                    P static=      [ I D V in =V OL I D V in =V OH ]
                               2
                        Minimum area nMOS, pMOS transistor layouts limited by design rules
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                               6
Minimum Area MOS Transistor Layouts

                       Minimum pMOS Layout
                                       24 


                                6            3 4 
                                                       3
                          4                                     14 
                                  2
                        5             2   5
                                               2            2
                         Area=24∗14  =336 

                             Minimum nMOS Layout
                                            16 
                                   6           3
                             4                                 8
                                     2                4               E2 = 2λ
                                    2
                                          2       2
                               Area=16∗8  =128 
                                                                                        1

                                                                                  Relevant Design Rules
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                                             7
VSB




          kn'
                                                                kn' = KPn


Kenneth R. Laker, University of Pennsylvania, updated 13Feb12               8
“Visual” Representation of the Resistive-Load Inverter
                                                                NMOS driver transistor




 A
 C

  B



Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                            9
CALCULTION OF VOH




                                                                VDD


Vin = VOL < VT0,n => nMOS Cut-off

                           Vout = VOH = VDD



Kenneth R. Laker, University of Pennsylvania, updated 13Feb12         10
CALCULTION OF VOL




                                                                          Vin = VDD
                                                                implies




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                         11
CALCULTION OF VIL




                                                                -1

                                                                     VIL

                     @ Vin = VIL




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12              12
CALCULTION OF VIH




                                                                VIH




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12         13
CALCULTION OF VIH CONT.




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   14
CALCULTION OF Vth




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   15
VDD




                                                  0                  VDD
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 VT0n         16
Take Limit as knRL -> ∞
                                                                                   -> VT0n

                                    -> VT0n

                                                          -> VT0n


                                                                                             -> 0

                                                       Vout
                                                       VDD
                                                                           knRL -> ∞
                                                                           semi-ideal VTC
                                                                                        Vin
                                                           0        VT0n         VDD
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                                   17
1


                             V DD
         P static average=      [ I D V in =V OL  I D V in =V OH ]
                              2



                               P(Vin = “0”) = 0


                                    Vout = VOL

             ID(Vin = “1”) = IL =




                            Pstatic (average)
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                   18
Multiplying by RL
           W        30 x 10−6 DD −V OL 
                          2V W                         25−0.2
           5−0.2= 2V −V R L [25−10.2−0.2 25−10.2−0.22  
              R L= '                        =         2
                                         2          −6 ]
           L      k n 2 DD LT0nV OL −V OL  30 x 10
                                          W
                                            R L=2.05 x 105     NO UNIQUE W/L, RL
                                          L
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                       19
W               5
                                                  R L =2.05 x 10 
                                                L

                                                                Pstatic (average) [mW]




                            V DD V DD −V OL
       P static average =
                             2       RL




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                            20
VOL = 0.147 V or 8.503 V ?



Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   21
Preferred Design
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   22
SATURATED NMOS ENHANCEMENT-LOAD INVERTER



                                   VSB,L ≠ 0




   VSB,d
   VSB,L




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   23
SATURATED NMOS ENHANCEMENT-LOAD INVERTER




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   24
NMOS DEPLETION-LOAD INVERTER




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   25
=> VGSp = Vin - VDD

                                                                       => VDSp = Vout - VDD

                                                           IDn = IDp




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                           26
“Visual” Representation of the CMOS Inverter
                                                                                            A




                  Vout                                                  Vout = Vin - VT0p
                             A                                    E
                                           -1                           Vout = Vin - VT0n
                         LIN                      LIN                                           E
                                                            SAT
                          &
                         OFF
                                                      SAT
                                                            LIN
                                                                LIN
                                                                 &
                -VT0p                                           OFF
                                                      -1
                                                                             Vin
                                 VT0n          V th                   V DD
                 -VT0n                  V IL           V IH VDD+VT0p
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                                       27
“Visual” Representation of the CMOS Inverter




                  Vout                                                  Vout = Vin - VT0p
                             A                                    E
                                           -1                           Vout = Vin - VT0n
                                   LIN            LIN
                                    &
                                                           SAT
                                   SAT
                                                   SAT
                                         SAT                LIN
                                          &
                                         SAT              LIN
                -VT0p                                      &
                                                   -1     SAT
                                                                             Vin
                                 VT0n           V th                  V DD
                 -VT0n                  V IL           V IH VDD+VT0p
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                               28
IDn = IDp




                           -1                       Vout = Vin - VT0p

                                                       Vout = Vin - VT0n
V th−V T0p

     V th
V th−V T0n
                                          V out
                                                =∞ (iff λ = 0)
                                          V in
                                   -1
                                V th                  V DD
   -VT0n
                       V IL            V IH
    Kenneth R. Laker, University of Pennsylvania, updated 13Feb12          29
IDn = IDp = 0




          0=



                                  IDn = IDp = 0



                                                                =0
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12        30
IDn = IDp




                                                                Eq.(1)



Kenneth R. Laker, University of Pennsylvania, updated 13Feb12            31
(1)
                                                                  Eq.(1)



                                               VIL                    (-1)
   '      VIL                            '
 k W
   n                   k W                p                        d V out
     2V in −V T0n =   [2V out −V DD 2V in −V DD −V T0p          ]
 2 L n                 2 L p                                       d V in
                          d V out (-1)
       ¿[−2V out −V DD          ]
                          d V in




                                                                   Eq.(2)

SOLVE Eq. (1) and Eq. (2) for Vout and VIL or use simulation.
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12           32
IDn = IDp




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   33
Eq.(3)




                                                                Eq.(4)




     SOLVE Eq. (3) and Eq. (4) for Vout and VIH or use simulation.
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12        34
IDn = IDp




Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   35
Setting for Vin = Vth and solving for Vth


                                                                                              Eq.(5)

                                                                 where   k 'n W / Lnn W / Ln
                                                                   k R= '           =
                                                                       k p W / L p  p W / L p
                                                                         RECALL THAT
                                                                    n  p

                                                                 Usually Ln = Lp is set to min L:
                                                                          k 'n W / Ln n W n
                                                                     k R= '           =
                                                                         k p W / L p  p W p


 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                                   36
DESIGN OF CMOS INVERTERS

                          V th =
                                   V T0n 
                                                1
                                                 kR
                                                    V DD V T0p 
                                                                           Eq.(5)
                                                                        Eq.(5)
                                                 1
                                                    1
                                                     
                                                    kR
                                                                                  2   Important design
                                                            V DD V T0p −V th
   Solving Eq.(5) for kR                             k R =
                                                               V th −V T0n
                                                                                     Eq. for CMOS
                                                                                      inverter VTC.

                                                                                 1
                                   If Vth is         set to V th =V th ideal = 2 V DD Vth
                                                                                     ideal
                                                             0.5 V DD V T0p 2
                                                      k R =                   
                                                             0.5 V DD −V T0n
Symmetric CMOS Inverter
 If, also th(ideal) and VT0n = - VT0p = VT0
      If V                                                              k R symetric =1

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                                      37
Vth vs. 1/kR

                               1 p W p
                                  =
                               k R n W n
                             where Ln = Lp
         Vth (volts)




                                                        1/kR


                  V th =
                           V T0n 
                                  1
                                   kR
                                      V DD V T0p 
                                                                VDD = 5V; VT0n = - VT0p = 1 V
                                      1
                                              1
                                               kR
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                               38
Symmetric CMOS inverter Vth(ideal) and VT0n = - VT0p = VT0 => k R symetric =1




                                                                  W / L p ≈2.52 W / Ln

                                                                       FROM Eq. (1) and Eq. (2)


                                                                       FROM Eq. (3) and Eq. (4)




  Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                                   39
DERIVE:                                                for Symmetric CMOS Inverter
        Symmetric CMOS inverter: Vth = VDD/2, VT0n = - VT0p = VT0 and kR = 1


      Eq.(1)


                                                                                        1
        Eq.(2)                                                         => V IL =V out − 2 V DD
    Substitute V out =V IL  1 V DD , V = V and Sym-Inv Cond. into Eq.(1), i.e.
                             2         in  IL


  V 2 −2V IL V T0 V 2
    IL               T0

                                                                                         1
          .=2 V 2 −2V IL V DD 2 V IL V T0 −V IL V DD V 2 −V T0 V DD −V 2 V IL V DD − V 2
                IL                                        DD               IL
                                                                                         4 DD
                                               3
  2 V IL V DD −4 V IL V T0 =−V T0 −V T0 V DD  V 2
                               2

                                               4 DD
                        3                                1 3V DD 2V T0 V DD −2V T0 
V IL 2 V DD −4V T0 = V 2 −V T0 V DD −V 2        V IL =
                        4   DD               T0                                           QED
                                                         8         V −2VDD     T0
  Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                                  40
EXAMPLE: Compute the noise margins for a symmetric CMOS
inverter has been designed to achieve Vth = VDD/2, where VDD = 5 V
and VT0n = - VT0p = 1 V.

                             V DD
                                    5      2       3      2
          NM H =V OH −V IH =V DD − V DD − V T0 = V DD  V T0
                                    8      8       8      8
                           0      3      2      3      2
          NM L =V IL −V OL =V IL = V DD  V T0 = V DD  V T0
                                  8      8      8      8



RECALL
      1.                                            NMH, NML > VDD/2 = 1.25 V
       2. Ideal        NM => NMH = NML = 2.5 V > VDD/2

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                   41
Pstatic




                                          Pstatic = 0
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12   42
If the inverter cell is part of a
standard cell library, it will adhere                           Smaller Area
to the cell layout protocols.                                     Layout



Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                  43
VDD ≥ Vout > - VT0p




                                                                Pstatic > 0
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12                 44

Más contenido relacionado

La actualidad más candente

Junctionless Transistor
Junctionless Transistor Junctionless Transistor
Junctionless Transistor Durgarao Gundu
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterIkhwan_Fakrudin
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
Analog Layout design
Analog Layout design Analog Layout design
Analog Layout design slpinjare
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)altaf423
 
MOS-Nonideal charecteristics
MOS-Nonideal charecteristicsMOS-Nonideal charecteristics
MOS-Nonideal charecteristicsShanmuga Raju
 
Low Power Design Techniques for ASIC / SOC Design
Low Power Design Techniques for ASIC / SOC DesignLow Power Design Techniques for ASIC / SOC Design
Low Power Design Techniques for ASIC / SOC DesignRajesh_navandar
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
Leakage effects in mos-fets
Leakage effects in mos-fetsLeakage effects in mos-fets
Leakage effects in mos-fetsArya Ls
 
VLSI Design(Fabrication)
VLSI Design(Fabrication)VLSI Design(Fabrication)
VLSI Design(Fabrication)Trijit Mallick
 

La actualidad más candente (20)

C-V characteristics of MOS Capacitor
C-V characteristics of MOS CapacitorC-V characteristics of MOS Capacitor
C-V characteristics of MOS Capacitor
 
Junctionless Transistor
Junctionless Transistor Junctionless Transistor
Junctionless Transistor
 
Layout02 (1)
Layout02 (1)Layout02 (1)
Layout02 (1)
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverter
 
Latch up
Latch upLatch up
Latch up
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
Analog Layout design
Analog Layout design Analog Layout design
Analog Layout design
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
True Differential S-Parameter Measurements
True Differential S-Parameter MeasurementsTrue Differential S-Parameter Measurements
True Differential S-Parameter Measurements
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Quantum Electronics Lecture 2
Quantum Electronics Lecture 2Quantum Electronics Lecture 2
Quantum Electronics Lecture 2
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 
MOS-Nonideal charecteristics
MOS-Nonideal charecteristicsMOS-Nonideal charecteristics
MOS-Nonideal charecteristics
 
Saw filters
Saw filtersSaw filters
Saw filters
 
Low Power Design Techniques for ASIC / SOC Design
Low Power Design Techniques for ASIC / SOC DesignLow Power Design Techniques for ASIC / SOC Design
Low Power Design Techniques for ASIC / SOC Design
 
bandgap ppt
bandgap pptbandgap ppt
bandgap ppt
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
Leakage effects in mos-fets
Leakage effects in mos-fetsLeakage effects in mos-fets
Leakage effects in mos-fets
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
VLSI Design(Fabrication)
VLSI Design(Fabrication)VLSI Design(Fabrication)
VLSI Design(Fabrication)
 

Más de bheemsain

Wierless networks ch3 (1)
Wierless networks ch3 (1)Wierless networks ch3 (1)
Wierless networks ch3 (1)bheemsain
 
Last year paper2
Last year paper2Last year paper2
Last year paper2bheemsain
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation finalbheemsain
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101bheemsain
 
Ch 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsCh 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsbheemsain
 
Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)bheemsain
 
86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontrollerbheemsain
 

Más de bheemsain (20)

Wierless networks ch3 (1)
Wierless networks ch3 (1)Wierless networks ch3 (1)
Wierless networks ch3 (1)
 
Man
ManMan
Man
 
Last year paper2
Last year paper2Last year paper2
Last year paper2
 
Frame relay
Frame relayFrame relay
Frame relay
 
Foc ppt
Foc pptFoc ppt
Foc ppt
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation final
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Ch07 2
Ch07 2Ch07 2
Ch07 2
 
Ch07 1
Ch07 1Ch07 1
Ch07 1
 
Ch03 2
Ch03 2Ch03 2
Ch03 2
 
Ch03 1
Ch03 1Ch03 1
Ch03 1
 
Ch02 2
Ch02 2Ch02 2
Ch02 2
 
Ch02 1
Ch02 1Ch02 1
Ch02 1
 
Ch01
Ch01Ch01
Ch01
 
Ch 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsCh 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallings
 
Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)
 
86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller
 
802.11
802.11802.11
802.11
 

Ese570 inv stat12

  • 1. ESE 570 MOS INVERTERS STATIC CHARACTERISTICS Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 1
  • 2. Vin Vout Logic “0” = 0 V Logic “1” = VDD V 0 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 2
  • 3. VOH ≤ VDD VOL ≥ 0 VDD VDD 0 VOL Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 VT0n 3
  • 4. Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 4
  • 5. Slope of VTC or inverter gain Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 5
  • 6. Steady-State (Static) Output Voltage Behavior (oC) (oC) Tj = Ta + ΘP Θ -> Thermal Resistance (oC/W) P → Pstatic, Pdynamic (W) Pstatic = VDD ID V DD P static= [ I D V in =V OL I D V in =V OH ] 2 Minimum area nMOS, pMOS transistor layouts limited by design rules Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 6
  • 7. Minimum Area MOS Transistor Layouts Minimum pMOS Layout 24  6 3 4  3 4 14  2 5 2 5 2 2 Area=24∗14  =336  Minimum nMOS Layout 16  6 3 4 8 2 4 E2 = 2λ 2 2 2 Area=16∗8  =128  1 Relevant Design Rules Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 7
  • 8. VSB kn' kn' = KPn Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 8
  • 9. “Visual” Representation of the Resistive-Load Inverter NMOS driver transistor A C B Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 9
  • 10. CALCULTION OF VOH VDD Vin = VOL < VT0,n => nMOS Cut-off Vout = VOH = VDD Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 10
  • 11. CALCULTION OF VOL Vin = VDD implies Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 11
  • 12. CALCULTION OF VIL -1 VIL @ Vin = VIL Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 12
  • 13. CALCULTION OF VIH VIH Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 13
  • 14. CALCULTION OF VIH CONT. Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 14
  • 15. CALCULTION OF Vth Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 15
  • 16. VDD 0 VDD Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 VT0n 16
  • 17. Take Limit as knRL -> ∞ -> VT0n -> VT0n -> VT0n -> 0 Vout VDD knRL -> ∞ semi-ideal VTC Vin 0 VT0n VDD Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 17
  • 18. 1 V DD P static average= [ I D V in =V OL  I D V in =V OH ] 2 P(Vin = “0”) = 0 Vout = VOL ID(Vin = “1”) = IL = Pstatic (average) Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 18
  • 19. Multiplying by RL W 30 x 10−6 DD −V OL  2V W 25−0.2 5−0.2= 2V −V R L [25−10.2−0.2 25−10.2−0.22   R L= ' = 2 2 −6 ] L k n 2 DD LT0nV OL −V OL  30 x 10 W R L=2.05 x 105  NO UNIQUE W/L, RL L Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 19
  • 20. W 5 R L =2.05 x 10  L Pstatic (average) [mW] V DD V DD −V OL P static average = 2 RL Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 20
  • 21. VOL = 0.147 V or 8.503 V ? Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 21
  • 22. Preferred Design Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 22
  • 23. SATURATED NMOS ENHANCEMENT-LOAD INVERTER VSB,L ≠ 0 VSB,d VSB,L Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 23
  • 24. SATURATED NMOS ENHANCEMENT-LOAD INVERTER Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 24
  • 25. NMOS DEPLETION-LOAD INVERTER Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 25
  • 26. => VGSp = Vin - VDD => VDSp = Vout - VDD IDn = IDp Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 26
  • 27. “Visual” Representation of the CMOS Inverter A Vout Vout = Vin - VT0p A E -1 Vout = Vin - VT0n LIN LIN E SAT & OFF SAT LIN LIN & -VT0p OFF -1 Vin VT0n V th V DD -VT0n V IL V IH VDD+VT0p Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 27
  • 28. “Visual” Representation of the CMOS Inverter Vout Vout = Vin - VT0p A E -1 Vout = Vin - VT0n LIN LIN & SAT SAT SAT SAT LIN & SAT LIN -VT0p & -1 SAT Vin VT0n V th V DD -VT0n V IL V IH VDD+VT0p Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 28
  • 29. IDn = IDp -1 Vout = Vin - VT0p Vout = Vin - VT0n V th−V T0p V th V th−V T0n V out =∞ (iff λ = 0) V in -1 V th V DD -VT0n V IL V IH Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 29
  • 30. IDn = IDp = 0 0= IDn = IDp = 0 =0 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 30
  • 31. IDn = IDp Eq.(1) Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 31
  • 32. (1) Eq.(1) VIL (-1) ' VIL ' k W n k W p d V out   2V in −V T0n =   [2V out −V DD 2V in −V DD −V T0p  ] 2 L n 2 L p d V in d V out (-1) ¿[−2V out −V DD  ] d V in Eq.(2) SOLVE Eq. (1) and Eq. (2) for Vout and VIL or use simulation. Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 32
  • 33. IDn = IDp Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 33
  • 34. Eq.(3) Eq.(4) SOLVE Eq. (3) and Eq. (4) for Vout and VIH or use simulation. Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 34
  • 35. IDn = IDp Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 35
  • 36. Setting for Vin = Vth and solving for Vth Eq.(5) where k 'n W / Lnn W / Ln k R= ' = k p W / L p  p W / L p RECALL THAT n  p Usually Ln = Lp is set to min L: k 'n W / Ln n W n k R= ' = k p W / L p  p W p Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 36
  • 37. DESIGN OF CMOS INVERTERS V th = V T0n   1 kR V DD V T0p  Eq.(5) Eq.(5) 1 1  kR 2 Important design V DD V T0p −V th Solving Eq.(5) for kR k R = V th −V T0n  Eq. for CMOS inverter VTC. 1 If Vth is set to V th =V th ideal = 2 V DD Vth ideal 0.5 V DD V T0p 2 k R =  0.5 V DD −V T0n Symmetric CMOS Inverter If, also th(ideal) and VT0n = - VT0p = VT0 If V k R symetric =1 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 37
  • 38. Vth vs. 1/kR 1 p W p = k R n W n where Ln = Lp Vth (volts) 1/kR V th = V T0n  1 kR V DD V T0p  VDD = 5V; VT0n = - VT0p = 1 V 1  1 kR Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 38
  • 39. Symmetric CMOS inverter Vth(ideal) and VT0n = - VT0p = VT0 => k R symetric =1 W / L p ≈2.52 W / Ln FROM Eq. (1) and Eq. (2) FROM Eq. (3) and Eq. (4) Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 39
  • 40. DERIVE: for Symmetric CMOS Inverter Symmetric CMOS inverter: Vth = VDD/2, VT0n = - VT0p = VT0 and kR = 1 Eq.(1) 1 Eq.(2) => V IL =V out − 2 V DD Substitute V out =V IL  1 V DD , V = V and Sym-Inv Cond. into Eq.(1), i.e. 2 in IL V 2 −2V IL V T0 V 2 IL T0 1 .=2 V 2 −2V IL V DD 2 V IL V T0 −V IL V DD V 2 −V T0 V DD −V 2 V IL V DD − V 2 IL DD IL 4 DD 3 2 V IL V DD −4 V IL V T0 =−V T0 −V T0 V DD  V 2 2 4 DD 3 1 3V DD 2V T0 V DD −2V T0  V IL 2 V DD −4V T0 = V 2 −V T0 V DD −V 2 V IL = 4 DD T0 QED 8 V −2VDD T0 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 40
  • 41. EXAMPLE: Compute the noise margins for a symmetric CMOS inverter has been designed to achieve Vth = VDD/2, where VDD = 5 V and VT0n = - VT0p = 1 V. V DD 5 2 3 2 NM H =V OH −V IH =V DD − V DD − V T0 = V DD  V T0 8 8 8 8 0 3 2 3 2 NM L =V IL −V OL =V IL = V DD  V T0 = V DD  V T0 8 8 8 8 RECALL 1. NMH, NML > VDD/2 = 1.25 V 2. Ideal NM => NMH = NML = 2.5 V > VDD/2 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 41
  • 42. Pstatic Pstatic = 0 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 42
  • 43. If the inverter cell is part of a standard cell library, it will adhere Smaller Area to the cell layout protocols. Layout Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 43
  • 44. VDD ≥ Vout > - VT0p Pstatic > 0 Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 44