SlideShare una empresa de Scribd logo
1 de 41
Descargar para leer sin conexión
11




                       EE 560
               MOS TRANSISTOR THEORY
                                               PART 2
      GCA (gradual channel approximaton) MOS Tranistor Model
                     Strong Inversion Operation




Kenneth R. Laker, University of Pennsylvania
nMOS TRANSISTOR IN LINEAR REGION                                                                 2

                 VS = 0    VGS = VG > VT0                                           VDS =VD = small
                                                                                   ID
                                                    channel          SiO2

                                                              CGC
                                                              CBC
                            substrate                         depletion region
                            or bulk B p

    nMOS TRANSISTOR AT EDGE OF SATURATION REGION
                                          VS = 0    VGS = VG > VT0             VDS =VD = VDSAT

                                                   channel                  SiO2

                                                                      CGC
                                                                       CBC
                           substrate                           depletion region
                           or bulk B           p
                                                                                   pinch-off point
Kenneth R. Laker, University of Pennsylvania
3




         nMOS TRANSISTOR IN SATURATION REGION


                               VGS = VG > VT0          VDS = VD > VDSAT
                        VS = 0              VDS - VDSAT
                               channel        SIO2          VGD = VG - VD < VT0

                                               CGC
                                                         VCS(y) = VDSAT
                                                CBC
                                               y
       substrate                    x
       or bulk B         p
                                   y=0                       depletion region
                                                      pinch-off point




Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                        4

  VS = VB = 0    VGS = VG > VT0
                                ID
                                                                        VDS
                             CGC
                             CBC
                             y
      substrate     x
      or bulk B p

                    y=0                 y=L
y=0      y Channel length = L
                                        y=L
                                                       Channel
                                                       width = W

Source                                                            Drain
 side                                                             side
 inversion layer (channel)         dy   Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                              5

         VS = VB = 0    VGS G > VT0 VT0
                         V = VG >
                                        ID
                                                                                      VDS
                                               CGC
                                               CBC
                                               y
                 substrate           x
                 or bulk B p
                                    y=0                       y=L
                                             VCS(y)            Assumptions:
Boundary conditions:                                           VT0(y) = VT0
 VCS(y = 0) = VS = 0                                           VGS > VT0
 VCS(y = L) = VDS                                                        VGD = VGS - VDS > VT0
                  Mobile charge in channel:                              Ey >> Ex
                                       Q I (y) = − Cox [VGS − VCS (y) − VT 0 ] (C/cm2)
                             C
                                       Incremental R for differential channel segment
              C/s                                dy      1  µn = electron mobility
                                        dR = −                      = cm2/Vsec
                                                 W  µ n QI (y)  [µ −> U0 in SPICE]
Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                        6


 Boundary conditions:             Q I (y) = − Cox [VGS − VCS (y) − VT 0 ]
   VCS(y = 0) = VS = 0                     dy      1 
                                  dR = − 
  VCS(y = L) = VDS                         W  µ n QI (y) 
                                                          
  Voltage drop across                            ID
  incremental segment dy dVCS = I D dR = −                dy
                                            W µ n Q I (y)
    Integrating along the channel 0 < y < L and 0 < VCS < VDS:
                                      L                   VDS

                                      ∫ I D dy = − W µ n ∫ Q I (y) dVCS
                                      0                    0


   i.e.



                                          = W µ n C ox [(VGS − VT 0 ) VDS − VDS / 2]
                                                                             2


                                            µ n C ox W
                                       ID =            [2(VGS − VT 0 ) VDS − VDS ]
                                                                              2

                                               2 L
Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                               7




                     µ n C ox W
                ID =            [2(VGS − VT 0 ) VDS − VDS ]
                                                         2

                        2 L
                      k' W                                   k' = µ n C ox
                    =        [2(VGS − VT 0 ) VDS − VDS ]
                                                     2

                       2 L                                  [k' -> KP in SPICE]
                        k                                           W
                     = [2(VGS − VT 0 ) VDS − VDS ]2
                                                            k = k'
                        2                                            L




Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                          8

EXAMPLE 3.4
For an n-MOS transistor with µn = 600 cm2/Vsec, Cox = 7 x 10-8 F/cm2,
W = 20 µm, L = 2 µm, VT0 = 1.0 V, plot the relationship between ID
and VDS, VGS.
                  k                                              W
           I D = [2(VGS − VT 0 ) VDS − VDS ] where k = µ n C ox
                                         2

                  2                                              L
                                           F = C/V
               W                            −8    2 20µ m
   k = µ n C ox = (600 cm /Vsec)(7 x10 F/cm )
                            2
                                                          = 0.42 mA/V 2
                L                                    2µ m
               I D = 0.21mA/V 2 [2(VGS − 1.0)V − VDS ]
                                               DS
                                                    2


                    LINEAR OR TRIODE REGION
         ID (mA)
     4.0 V ≤ V − V         VDS = VGS - VT0
            DS   GS  T0 VGS = 5V           Assumptions:
     2.0                     VGS = 4V            VGS > VT0
                                                 VGD = VGS − VDS > VT0
                     VGS = 3V
        0                                    VDS (V)
             1.0       3.0        5.0          Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                     9


           VDS ≥ VGS - VT0 = VDSAT SATURATION REGION

                µ n C ox W
           ID =            [2(VGS − VT 0 ) VDS − VDS ] @V = V
                                                  2
                                                                          = VGS - VT0
                   2 L                                      DS    DSAT

                 µ n C ox W
               =            [2(VGS − VT 0 )(VGS − VT 0 ) − (VGS − VT 0 ) 2 ]
                    2 L
                                              µ n C ox W
                                  I D (sat) =            (VGS − VT 0 )2
                                                 2 L
                                  VDS = VGS - VT0                         ID(sat)
           ID (mA)
 4.0                                            SAT
                  LINEAR
                                                   VGS = 5V
 2.0                                                 VGS = 4V
                                                     VGS = 3V
     0                                                   VDS (V)
                1.0              3.0           5.0
Kenneth R. Laker, University of Pennsylvania
                                                                              VT0   VGS
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                10


    CHANNEL LENGTH MODULATION
                         Q I (y) = − Cox [VGS − VCS (y) − VT 0 ]
    Boundary conditions:
     VCS(y = 0) = VS = 0 Q I (y = 0) = − Cox [VGS − VT 0 ]
     VCS(y = L) = VDS    Q1 (y = L) = − C ox [VGS − VDS − VT 0 ]
                                                               = 0 @ VDS = VDSAT
                               VS = 0          VGS =VG > VT0    VDS =VD > VDSAT



                                                    CGC      ∆L
                                                    CBC   L'   L
               substrate
               or bulk B        p

                                    L' = L − ∆L       effective channel length
                                                   VCS(y = L') = VDSAT
Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                          11


                   VS = 0  VGS =VG > VT0 VDS =VD > VDSAT



                                               CGC      ∆L
                                               CBC   L'   L
                 substrate
                 or bulk B         p


                 µ n C ox W                 µ C     W
       I D (sat) =          (VGS − VT 0 )2 = n ox           (VGS − VT 0 )2
                    2 L'                      2 L(1 − ∆ L )
                                                       L
           where ∆ L ∝ VDS − VDSAT
                              1
       emperical relation:    ∆ L = 1 + λVDS   [λ -> LAMBDA in SPICE]
                           1−
                                L
                             λ = channel length modulation coefficent (V-1)
Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                   12

                µ n C ox W                  µ n C ox      W
    I D (sat) =             (VGS − VT 0 ) =
                                         2
                                                                 (VGS − VT 0 )2
                    2 L'                       2 L(1 − ∆ L )
                      1                                      L
                       ∆ L = 1 + λ VDS         assume λVDS << 1
                   1−
                        L
                          µ n C ox W
              I D (sat) =            (VGS − VT 0 )2 (1 + λ VDS )             LEVEL 1
                             2 L
                                                                                Model

                                               VDS = VGS - VT0
                               ID (mA)
                     4.0                                       λ≠0     VGS = 5V
                                                              λ≠0
                     2.0                                               VGS = 4V
                                                              λ≠0
                                                                       VGS = 3V
                         0                                           VDS (V)
                                    1.0        3.0      5.0
Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                 13



            SUBSTRATE BIAS EFFECT




                                                               LEVEL 1
                                                                Model
                 (sat)

                                       ID = f(VGS, VDS, VSB)




Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                 14



       n-MOS      D          p-MOS    S
                    + VDS            - +
                     ID          VGS      VSB
                       -          +        -B
          G
            +          -B       G          -
           VGS - + VSB                   ID
                  S                     + VDS
                                      D
n-MOS I D = 0 for VGS ≤ VT
                                                VGS > VT, VDS < VGS - VT

                                   VGS > VT, VDS > VGS - VT

p-MOS I D = 0 for VGS ≥ VT
                                                 VGS < VT, VDS > VGS - VT

                                     VGS < VT, VDS < VGS - VT
                                     Kenneth R. Laker, University of Pennsylvania
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                            15


 MEASUREMENT OF PARAMETERS (VT0, γ, λ, kn, kp)
                  W                W
    k n = µ n Cox   k p = µ p C ox
                  L                L

                           D                                               kn
                                   ID                           I D (sat) = (VGS − VT 0 )2
                                                  +V    = VGS              2
                   G                               DS

                     VGS            B                                       kn
                                            VSB                 I D (sat) =    (VGS − VT 0 )
                           S               +                                2
                                                                       VSB = 0 VSB > 0
                                                           ID
   Gamma




                                                                                             VGS
Kenneth R. Laker, University of Pennsylvania
                                                            VT0          VT1
MOSFET CURRENT - VOLTAGE CHARACTERISTICS                                               16


                                                        DC current meter
               Lambda
                                               D
                                                   ID            +VDS > VGS - VT0
                                          G
       VGS = VT0 + 1 V +                           B
                                               S

                                                    VBS = 0
                ID
                          VGS = VT0 + 1                    I D (sat) = k n (VGS − VT 0 )2 (1+ λ VDS )
       ID2
       ID1                                                           VGS = VT0 + 1 V

                                                                      I D 2 1 + λ VD S 2
                                                           VDS             =
                                 VDS1               VDS2              I D1 1 + λ VD S 1


Kenneth R. Laker, University of Pennsylvania
EFFECTIVE CHANNEL LENGTH AND WIDTH
                   EFFECTIVE CHANNEL LENGTH AND WIDTH                                    17


                                                                 G
                         B                S                                     D
                                                 CGC     CGC
                                         n+
                                         n+             CC                      n+
                                                                                n+
                                                         BC
                                                            BC           L
                    substrate
                    orp
                      bulk B         p
                                         LD                                         LD

                                                            Leff
                                                            LM

                                                SPICE Parameters

                                               Leff = LM - 2LD - DL

                                                LD -> under diffusion
                                                DL -> error in photolith and etch

                                               Weff = WM - DW
                                                              SPICE Parameters
Kenneth R. Laker, University of Pennsylvania    DW -> error in photolith and etch
MOSFET - SCALING                               18


 SCALING -> refers to ordered reduction in dimensions of the
 MOSFET and other VLSI features
  • Reduce Size of VLSI chips.
  • Change operational charateristics of MOSFETs and parasitics.
  • Phyiscal limits restrict degree of scaling that can be achieved.
                 SCALING FACTOR = α > 1 --> S
  First-order "constant field" MOS scaling theory:
   The electric field E is kept constant, and the scaled device is obtained
   by applying a dimensionless scale-factor α to reduce dimensions by
   (1/α) and maintain E unchanged:
          a. All dimensions, including those vertical to the surface (1/α)
          b. device voltages (1/α)
          c. the concentration densities (α).
                   (1/α)/(1/α) = 1                   α(1/α) = 1
                                               <=>
Kenneth R. Laker, University of Pennsylvania
MOSFET - SCALING                                        19


     Alternative Scaling Rules:
 Constant Voltage Scaling, i.e. VDD is kept constant, while the process
 dimensions are scaled by (1/α).
        a. All dimensions, including those vertical to the surface (1/α)
        b. device voltages (1)
        c. the concentration densities (α2) to preserve charge-field relations.
                         1/(1/α) = α                 α2(1/α) = α
                                               <=>

 Lateral Scaling: only the gate length is scaled L = 1/α (gate-shrink).

               Year                1991 1993 1995 1997 1999 2001 2003 2005
  Feature Size(µm) 1.00 0.80 0.60 0.35 0.25 0.18 0.13 0.09
   Historical reduction in min feature size for typical CMOS Process
Kenneth R. Laker, University of Pennsylvania
Influence of Scaling on MOS Device Performance                20

    PARAMETER                                                         SCALING MODEL
                                               Constant Field    Constant Voltage   Lateral
    Length (L)                                     1/α              1/α             1/α

    Width (W)                                      1/α              1/α             1

    Supply Voltage (V)                             1/α               1              1

    Gate Oxide thickness (tox)                     1/α               1/α            1
    Junction depth (Xj)                            1/α               1/α            1
    Substrate Doping (NA)                           α                 α2            1


    Current (I) - (W/L) (1/tox)V2                  1/α               α              α
    Power Dissipation (P) - IV                     1/α2              α              α
    Power Density (P/Area)                         1               **(α3)**         α2
    Electric Field Across Gate Oxide - V/tox           1              α             1

    Load Capacitance (C) - WL (1/tox)              1/α               1/α            1/α

    Gate Delay (T) - VC/I                          1/α               1/α2           1/α2
Kenneth R. Laker, University of Pennsylvania
21
                                   MOSFET CAPACITANCES
                                                             G
                    B                S                            D
                                               CGC   CGC
                   p                n+
                                    n+               CBC
                                                     CBC          n+
                                                                  n+

                 substrate
                  p
                 or bulk B
                                   LD                              LD

                                                           Leff
                                                           LM
                                                                  Y
                 substrate
                 or bulk B
                                   LD                                 LD
                                   n+                                 n+
                    p




Kenneth R. Laker, University of Pennsylvania
MOSFET CAPACITANCES                   22

                                         Cgb

                                                    D

                                         Cgd            Cdb

                                                 MOSFET
                      G                        (DC MODEL)          B


                                        Cgs                 Csb



                                               S
                             Cgd, Cgs, Cgb -> Oxide Capacitances
                             Cdb, Csb -> Junction Capacitances
Kenneth R. Laker, University of Pennsylvania
MOSFET CAPACITANCES                                23
                                   ε
       OXIDE Capacitances Cox = ox
                                    t ox
         a. Overlap Caps
          CGS0(overlap) = Cox W LD       ALL MOSFET
                                         OPERATION
          CGD0(overlap) = Cox W LD
                                         REGIONS
          CGB0(overlap) = Cox WovLeff    L = LD in SPICE
                                               D
 SPICE: CoxLD = CGS0; CoxLD = CGD0; CoxWov = CGB0
               b. Gate - Channel Cgb, Cgb and Cgb
                  MOSFET - Cut-off Region
                                                    Cgb = Cox W Leff

                                                    Cgs = Cgd = 0
                                                    (no conducting
                                                    channel in cut-off)
       p

Kenneth R. Laker, University of Pennsylvania
MOSFET CAPACITANCES                         24


           b. Gate - Channel
                    MOSFET - Linear Region


                                               Cgb = 0
                                               Cgs = (1/2) Cox W Leff
  p                                            Cgd = (1/2) Cox W Leff




                                               Cgb = 0
                                               Cgs = (2/3) Cox W Leff
    p                                           Cgd = 0
Kenneth R. Laker, University of Pennsylvania
25

    Capacitance                      Cut-off            Linear         Saturation
      Cgb(total)                CoxWLeff               0 + CGB0         0 + CGB0
                                + CGB0
                                                      0.5CoxWLeff + 0 + C
      Cgd(total)                 0 + CGD0             CGD0                 GD0



                                  0 +CGS0             0.5CoxWLeff + (2/3)Cox WLeff
       Cgs(total)
                                                      CGS0          + CGS0

                        Gate -to Channel/Bulk Cap Contribution
(C/CoxWL)
                       Cut-off                   Saturation          Linear
             1
                           Cgb                       Cgs
         2/3
         1/2
                                                                            Cgd
CGD0 = CGS0
      CGB0                                                                          VGS
                                         VT                      VT + VDS
  Kenneth R. Laker, University of Pennsylvania
JUNCTION Capacitances -> Cdb, Csb                                                26




                                                                               xj

            p                                  xd

                                                                   Y

                                                                   2        xj
                                                    1          5       3
                                                                           W
             n+              Channel                n+     4
          Source                                         Drain

Kenneth R. Laker, University of Pennsylvania
JUNCTION Capacitances -> Cdb, Csb                                                       27

                                                                   Y

                                                                   2            xj
                                                1              5        3
                                                                              W
              n+               Channel          n+         4
                                                                            [xj -> XJ in SPICE]
           Source                                    Drain
              Junction                 Area     Type
                     1                  W xj    n+/p
                                                                   p - Substrate -> NA
                     2                  Y xj    n+/p+              p+ - Channel-stop -> 10NA
                     3                  W xj    n+/p+

                     4                   Y xj   n+/p+

                     5                   WY         n+/p
Kenneth R. Laker, University of Pennsylvania
JUNCTION Capacitances -> Cdb, Csb                                                   28




                                                                           ND        xj
n+, p junctions                                               xd
                      p N
                          A

           2ε Si  1              1                   V = Ext bias --> VBD , VBS
xd =                         +          (φ0 − V)
             q  NA ND 
                                     
                                                   kT  N A N D  built-in junction
                                              φ0 =
                                                    q  n 2  potential
                                                      ln 
                                                             i  
                                                                  [φ0 -> PB in SPICE]
   Depletion-region charge
                     N AN D                            N AN D           A = junction
     Q j = Aq                         x d = A 2ε Si q  N + N  (φ0 − V) area
                     NA + N D                          A     D
                                                                             [AS, AD ->
                                                                             Source, Drain
                                                                             Areas in
                                                                             SPICE]
Kenneth R. Laker, University of Pennsylvania
29

                                                                     (F)


          ε Si q  N A N D  1                         m = grading coefficent
   C j0 =         N + N  φ (F/cm2)                   m = 1/2 for abrupt junction
            2  A         D 0
                                                         [m = MJ in SPICE]
   Cj(V) = Cj0 when V = 0                               [Cj0 -> CJ in SPICE]
                                                        [φ0 -> PB in SPICE]
EQUIVALENT LARGE SIGNAL CAPACTIANCE




                                               0 < Keq < 1 --> Voltage Equiv Factor
Kenneth R. Laker, University of Pennsylvania
30
  n , p junctions (Sidewalls)
     +     +



                    εSi q  N A (sw) N D  1
          Cj 0 s w=                                      (F/cm2)
                     2  N A (sw) + ND  φ0 s w
                                        

     Since all sidewalls have depth = xj: [xj -> XJ in SPICE]
         Cjsw = Cj0sw xj                 (F/cm)     [Cjsw -> CJSW in SPICE]

EQUIVALENT LARGE SIGNAL CAPACTIANCE
                                                     P = sidewall perimeter
               [PS, PD -> Source, Drain Perimeters in SPICE]

                         2φ0 s w      V2 
                                             1 /2
                                                    V1  
                                                            1 /2

         K eq (sw) = −            1 −     − 1 − φ               m(sw) = 1/2
                       (V2 − V1 )  φ0 s w
                                                   0 s w      
                                                                 
                                                  [m(sw) -> MJSW in SPICE]
Kenneth R. Laker, University of Pennsylvania
EXAMPLE 3-8                                                         31

 Determine the total junction capacitance at the drain, i.e. Cdb, for
 the n-channel enhancement MOSFET in Fig. 1. The process
 parameters are
        Substrate doping             NA = 2 x 1015 cm-3
        Source/drain (n+) doping ND = 1020 cm-3
        Sidewall (p+) doping         NA(sw) = 4 x 1016 cm-3
        Gate oxide thickness          tox = 45 nm
        Junction depth                xj = 1.0 µm
                         10 µm G

                           5 µm                D       S
                                                n+    n+

                                  Figure 1           2 µm

 Source, Drain are surrounded by p+ channel-stop. The substrate
 is biased at 0V. Assume the drain voltage range is 0.5 V to 5.0 V.

Kenneth R. Laker, University of Pennsylvania
32




where


         ε Si q  N A N D  1
  C j0 =
           2  N A + N D  φ0
                         




              εSi q  N A (sw) N D  1
    Cj 0 s w=
               2  N A (sw) + ND  φ0 s w
                                  
10 µm     G                      NA = 2 x 1015 cm-3                       33

                                                 ND = 1020 cm-3
    5 µm        D                  S             NA(sw) = 4 x 1016 cm-3
                 n+               n+             tox = 45 nm
                                                 xj = 1.0 µm
        Figure 1                2 µm
φ0, φ0sw
     kT  N A N D              (2 x10 15 )10 20 
φ0 =     ln       = 0.026 Vln 2.1x10 20  = 0.896 V
      q  ni 2
                                                 
         kT  N A (sw)N D                 (4 x1016 )10 20 
φ0 s w =   ln               = 0.026 Vln  2.1x1020  = 0.975V
          q        ni2
                                                          
Cj0, Cj0sw
                   ε Si q  N A N D  1
           C j0 =
                     2  N A + N D  φ0
                                                    F = C/V

           (1.04 x10 −12 F/cm)(1.6 x10 −19 C)  (2 x10 15 )10 20  1
         =                                    
                            2                  2 x10 15 + 10 20  0.896V
                                                                 
         = 1.35 x10 −8 F/cm 2                     Kenneth R. Laker, University of Pennsylvania
εSi q  N A (sw) N D  1                               34

               =
                  2  N A (sw) + N D  φ0sw
     C j0 sw
                                     
       (1.04 x10 −12 F/cm)(1.6 x10 −19 C)  (4 x10 16 )10 20  1
     =                                                      
                        2                  4 x10 16 + 10 20  0.975V
             −8
     = 5.83x10 F/cm 2
 Cjsw and xj = 1.0 µm = 10-4 cm
     Cjsw = Cj0sw xj = (5.83x10 F/cm2 )(10 −4 cm) = 5.83pF/cm
                              −8



   Keq, Keq(sw) VBD1 = VB - VD1 = 0 - 0.5V = -0.5V
                VBD2 = VB - VD2 = 0 - 5V = -5V




Kenneth R. Laker, University of Pennsylvania
35




Area, Perimeter                                      Y=10µm

                                                         2            xj = 1µm

                                           1         5        3
                                                                    W = 5 µm
   n    +         Channel PD n+                  4
Source                                         Drain                    10 µm    G
 AD: n+/p junctions:                                                                   S
                                                             5 µm       D
 AD = (5 x 1) µm2 + (10 x 5) µm2                                         n+           n+
     = 55 µm2
 PD: n+/p+ junctions:                                             Figure 1           2 µm
 PD = 2Y + W = 20 µm + 5 µm = 25 µm


Kenneth R. Laker, University of Pennsylvania
36




                        Important 2nd Order Effects

                          Short Channel Effects - Leff --> xj

                          Narrow Channel Effects - W --> xdm

                           Subthreshold Current - VGS < VT0




Kenneth R. Laker, University of Pennsylvania
36
Mobility Degradation due to Lateral Electric Field:
 VELOSITY SATURATION (very small channel lengths + high supply voltages)
        velosity(vD)
  vDsat              slope µs   Note µs < µ0
                         µ = v /E                     Ey
                                               0   sat   crit
                            slope = µ0
                              E
                   Ecrit
   [SPICE Parameters: U0 -> µ0, UCRIT -> Ecrit, VMAX -> vsat]
              ID(sat) = W vDSAT Cox (VGS - VT)
     Note: ID(sat) = linear f(VGS - VT), independent of L

Mobility Degradation due to Normal Electric Field:
  (due to gate voltage across very thin oxide-depletion layer)

                                                                 Ex
       [SPICE Parameter: THETA -> θ]
       θ = imperical mobility modulation factor
Kenneth R. Laker, University of Pennsylvania
37
Short Channel Effect - Leff --> xj (source, drain diffusion depth)
                    VT0 (short channel) = VT0 - ∆VT0


∆LS, ∆LD = lateral extensions at source, drain of depletion
region due to reverse biased sourse, drain junctions with
substrate

Narrow Channel Effect - W --> xdm (depletion region depth)
           VT0 (narrow channel) = VT0 + ∆VT0


   [SPICE Parameter: DELTA -> δ = imperical channel width factor]

 Subthreshold Current - VGS < VT0
                                                                 (Spice Model)
    Ion = ID in strong inversion and VGS = Von is the boundary weak and strong inversion
Kenneth R. Laker, University of Pennsylvania
SPICE SIMUATION - MODELS                          38



Level 1 (MOS1) - analylitical mode, ID(sat) is described by square
law - strong inversion (with Channel Length Modulation). Based
on GCA (gradual channel approximaton) equations in Ch3.

Level 2 (MOS2) - anaylitical model, more detailed than MOS1.
Includes second order effects, e.g. mobility degradation, small
channel effects and sub-threshold currents. Relaxes some
simplifying GCA assumptions.

Level 3 (MOS3) - semi-emperical model. Uses simpler
expressions than MOS2 plus emperical equations to fit
experimental data. Improves accuracy and reduces simulation
time.

BSIM3 (Berkeley Short-Channel IGFET Model) - includes
sub-micron MOSFET characteristics. Analytically simple, makes
full use of parameters extracted from experimental data.
Kenneth R. Laker, University of Pennsylvania
39

SPICE MODELING OF MOS CAPACITANCES

M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U
.                                                      m
                                       m2
.                            m
.                                            U = 10-6
.MODEL NFET NMOS    m              F/m
+ TOX=200E-10                                P = 10-12
+ CGBO=200P CGSO=300P CGDO=300P
+ CJ=200U CJSW=400P MJ=0.5 MJSW=0.3 PB=0.7 V
       F/m2    F/m

M1 4 3      5    0 NFET W=4U L=1U          AS=15P    AD=15P         PS=11.5U PD=11.5U
   D G      S    B

  Cgb = W × L × Cox = (4E-6 m) × (1E-6 m) × (17E-3 F/m2) = 6.8 fF




                                                     Kenneth R. Laker, University of Pennsylvania
M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P                              PS=11.5U PD=11.5U                 40
.
.MODEL NFET NMOS
+ TOX=200E-8
+ CGBO=200P CGSO=300P CGDO=300P
+ CJ=200U CJSW=400P MJ=0.5 MJSW=0.3 PB=0.7




    CJ = zero-bias junction capacitance per junction area
        (200 × 10-6 F/m2 = 2 × 10-4 pF/µm2)
    CJSW = zero-bias junction capacitance per junction periphery
         (400 × 10-12 F/m = 4 × 10-10 pF/µm)
    MJ = grading coefficient of junction bottom (0.5)
    MJSW = grading coefficient of junction side-wall (0.3)
    VJ = the junction potential (Vsb, Vdb for n-channel, Vbs, Vbd for p-channel)
    PB = the built-in voltage (+0.7 V)
    Area = AS or AD, the area of source or drain (15 × 10-12 m2 = 15 µm2)
    Periphery = PS or PD, the periphery of source or drain
        (11.5 × 10-6 m = 11.5 µm)                            Kenneth R. Laker, University of Pennsylvania

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
BGR
BGRBGR
BGR
 
Cmos design
Cmos designCmos design
Cmos design
 
Mosfet Operation and Charecteristics.
Mosfet Operation and Charecteristics.Mosfet Operation and Charecteristics.
Mosfet Operation and Charecteristics.
 
CMOS Logic Circuits
CMOS Logic CircuitsCMOS Logic Circuits
CMOS Logic Circuits
 
MOSFET and Short channel effects
MOSFET and Short channel effectsMOSFET and Short channel effects
MOSFET and Short channel effects
 
MOS Capacitor
MOS CapacitorMOS Capacitor
MOS Capacitor
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
 
Mosfet’s
Mosfet’sMosfet’s
Mosfet’s
 
Mosfet short channel effects
Mosfet short channel effectsMosfet short channel effects
Mosfet short channel effects
 
Analog vlsi
Analog vlsiAnalog vlsi
Analog vlsi
 
bandgap ppt
bandgap pptbandgap ppt
bandgap ppt
 
Vlsi design notes
Vlsi design notesVlsi design notes
Vlsi design notes
 
Ee6378 bandgap reference
Ee6378 bandgap referenceEe6378 bandgap reference
Ee6378 bandgap reference
 
current mirrors
current mirrorscurrent mirrors
current mirrors
 
Two stage folded cascode op amp design in Cadence
Two stage folded cascode op amp design in CadenceTwo stage folded cascode op amp design in Cadence
Two stage folded cascode op amp design in Cadence
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Mosfet
MosfetMosfet
Mosfet
 
Mosfet
MosfetMosfet
Mosfet
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
 

Destacado

Ein Rechner, ein Chip: MOS Technology 6502
Ein Rechner, ein Chip: MOS Technology 6502Ein Rechner, ein Chip: MOS Technology 6502
Ein Rechner, ein Chip: MOS Technology 6502Mustafa Isik
 
ARM 7 Detailed instruction set
ARM 7 Detailed instruction setARM 7 Detailed instruction set
ARM 7 Detailed instruction setP.r. Dinesh
 
Unit II arm 7 Instruction Set
Unit II arm 7 Instruction SetUnit II arm 7 Instruction Set
Unit II arm 7 Instruction SetDr. Pankaj Zope
 

Destacado (6)

Ein Rechner, ein Chip: MOS Technology 6502
Ein Rechner, ein Chip: MOS Technology 6502Ein Rechner, ein Chip: MOS Technology 6502
Ein Rechner, ein Chip: MOS Technology 6502
 
6502 in action
6502 in action6502 in action
6502 in action
 
ARM Fundamentals
ARM FundamentalsARM Fundamentals
ARM Fundamentals
 
ARM 7 Detailed instruction set
ARM 7 Detailed instruction setARM 7 Detailed instruction set
ARM 7 Detailed instruction set
 
ARM Processor
ARM ProcessorARM Processor
ARM Processor
 
Unit II arm 7 Instruction Set
Unit II arm 7 Instruction SetUnit II arm 7 Instruction Set
Unit II arm 7 Instruction Set
 

Similar a Ese570 mos theory_p206

Similar a Ese570 mos theory_p206 (20)

Lecture07
Lecture07Lecture07
Lecture07
 
MOSFET.ppt
MOSFET.pptMOSFET.ppt
MOSFET.ppt
 
nature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curvenature of MOSFET ,operation, characteristics curve
nature of MOSFET ,operation, characteristics curve
 
IDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxIDS MOS Equation (1).pptx
IDS MOS Equation (1).pptx
 
TTL(Transistor Transistor Logic)
TTL(Transistor Transistor Logic)TTL(Transistor Transistor Logic)
TTL(Transistor Transistor Logic)
 
Small signal Analysis.ppt
Small signal Analysis.pptSmall signal Analysis.ppt
Small signal Analysis.ppt
 
Vlsi design mosfet
Vlsi design mosfetVlsi design mosfet
Vlsi design mosfet
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
VLSI- Unit I
VLSI- Unit IVLSI- Unit I
VLSI- Unit I
 
Lecture08
Lecture08Lecture08
Lecture08
 
Datasheet of 2SK2233
Datasheet of 2SK2233Datasheet of 2SK2233
Datasheet of 2SK2233
 
Electronics 1 : Chapter # 05 : DC Biasing BJT
Electronics 1 : Chapter # 05 : DC Biasing BJTElectronics 1 : Chapter # 05 : DC Biasing BJT
Electronics 1 : Chapter # 05 : DC Biasing BJT
 
VLSI- Unit II
VLSI- Unit IIVLSI- Unit II
VLSI- Unit II
 
FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif Sir
 
Vlsi circuits for low power
Vlsi circuits for low powerVlsi circuits for low power
Vlsi circuits for low power
 
2SK2886のデータシート
2SK2886のデータシート2SK2886のデータシート
2SK2886のデータシート
 
Lect2 up060 (100324)
Lect2 up060 (100324)Lect2 up060 (100324)
Lect2 up060 (100324)
 
Chap16-1-NMOS-Inverter.pdf
Chap16-1-NMOS-Inverter.pdfChap16-1-NMOS-Inverter.pdf
Chap16-1-NMOS-Inverter.pdf
 

Más de bheemsain

Wierless networks ch3 (1)
Wierless networks ch3 (1)Wierless networks ch3 (1)
Wierless networks ch3 (1)bheemsain
 
Last year paper2
Last year paper2Last year paper2
Last year paper2bheemsain
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation finalbheemsain
 
Ese570 inv stat12
Ese570 inv stat12Ese570 inv stat12
Ese570 inv stat12bheemsain
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101bheemsain
 
Ch 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsCh 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsbheemsain
 
Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)bheemsain
 
86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontrollerbheemsain
 

Más de bheemsain (20)

Wierless networks ch3 (1)
Wierless networks ch3 (1)Wierless networks ch3 (1)
Wierless networks ch3 (1)
 
Man
ManMan
Man
 
Last year paper2
Last year paper2Last year paper2
Last year paper2
 
Frame relay
Frame relayFrame relay
Frame relay
 
Foc ppt
Foc pptFoc ppt
Foc ppt
 
Fiber signal degradation final
Fiber  signal degradation finalFiber  signal degradation final
Fiber signal degradation final
 
Ese570 inv stat12
Ese570 inv stat12Ese570 inv stat12
Ese570 inv stat12
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Ch07 2
Ch07 2Ch07 2
Ch07 2
 
Ch07 1
Ch07 1Ch07 1
Ch07 1
 
Ch03 2
Ch03 2Ch03 2
Ch03 2
 
Ch03 1
Ch03 1Ch03 1
Ch03 1
 
Ch02 2
Ch02 2Ch02 2
Ch02 2
 
Ch02 1
Ch02 1Ch02 1
Ch02 1
 
Ch01
Ch01Ch01
Ch01
 
Ch 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallingsCh 6 data and computer communicationwilliam stallings
Ch 6 data and computer communicationwilliam stallings
 
Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)Ch 6 data and computer communicationwilliam stallings (1)
Ch 6 data and computer communicationwilliam stallings (1)
 
86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller86409 interfacing the keyboard to 8051 microcontroller
86409 interfacing the keyboard to 8051 microcontroller
 

Ese570 mos theory_p206

  • 1. 11 EE 560 MOS TRANSISTOR THEORY PART 2 GCA (gradual channel approximaton) MOS Tranistor Model Strong Inversion Operation Kenneth R. Laker, University of Pennsylvania
  • 2. nMOS TRANSISTOR IN LINEAR REGION 2 VS = 0 VGS = VG > VT0 VDS =VD = small ID channel SiO2 CGC CBC substrate depletion region or bulk B p nMOS TRANSISTOR AT EDGE OF SATURATION REGION VS = 0 VGS = VG > VT0 VDS =VD = VDSAT channel SiO2 CGC CBC substrate depletion region or bulk B p pinch-off point Kenneth R. Laker, University of Pennsylvania
  • 3. 3 nMOS TRANSISTOR IN SATURATION REGION VGS = VG > VT0 VDS = VD > VDSAT VS = 0 VDS - VDSAT channel SIO2 VGD = VG - VD < VT0 CGC VCS(y) = VDSAT CBC y substrate x or bulk B p y=0 depletion region pinch-off point Kenneth R. Laker, University of Pennsylvania
  • 4. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 4 VS = VB = 0 VGS = VG > VT0 ID VDS CGC CBC y substrate x or bulk B p y=0 y=L y=0 y Channel length = L y=L Channel width = W Source Drain side side inversion layer (channel) dy Kenneth R. Laker, University of Pennsylvania
  • 5. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 5 VS = VB = 0 VGS G > VT0 VT0 V = VG > ID VDS CGC CBC y substrate x or bulk B p y=0 y=L VCS(y) Assumptions: Boundary conditions: VT0(y) = VT0 VCS(y = 0) = VS = 0 VGS > VT0 VCS(y = L) = VDS VGD = VGS - VDS > VT0 Mobile charge in channel: Ey >> Ex Q I (y) = − Cox [VGS − VCS (y) − VT 0 ] (C/cm2) C Incremental R for differential channel segment C/s dy  1  µn = electron mobility dR = −   = cm2/Vsec W  µ n QI (y)  [µ −> U0 in SPICE] Kenneth R. Laker, University of Pennsylvania
  • 6. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 6 Boundary conditions: Q I (y) = − Cox [VGS − VCS (y) − VT 0 ] VCS(y = 0) = VS = 0 dy  1  dR = −  VCS(y = L) = VDS W  µ n QI (y)   Voltage drop across ID incremental segment dy dVCS = I D dR = − dy W µ n Q I (y) Integrating along the channel 0 < y < L and 0 < VCS < VDS: L VDS ∫ I D dy = − W µ n ∫ Q I (y) dVCS 0 0 i.e. = W µ n C ox [(VGS − VT 0 ) VDS − VDS / 2] 2 µ n C ox W ID = [2(VGS − VT 0 ) VDS − VDS ] 2 2 L Kenneth R. Laker, University of Pennsylvania
  • 7. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 7 µ n C ox W ID = [2(VGS − VT 0 ) VDS − VDS ] 2 2 L k' W k' = µ n C ox = [2(VGS − VT 0 ) VDS − VDS ] 2 2 L [k' -> KP in SPICE] k W = [2(VGS − VT 0 ) VDS − VDS ]2 k = k' 2 L Kenneth R. Laker, University of Pennsylvania
  • 8. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 8 EXAMPLE 3.4 For an n-MOS transistor with µn = 600 cm2/Vsec, Cox = 7 x 10-8 F/cm2, W = 20 µm, L = 2 µm, VT0 = 1.0 V, plot the relationship between ID and VDS, VGS. k W I D = [2(VGS − VT 0 ) VDS − VDS ] where k = µ n C ox 2 2 L F = C/V W −8 2 20µ m k = µ n C ox = (600 cm /Vsec)(7 x10 F/cm ) 2 = 0.42 mA/V 2 L 2µ m I D = 0.21mA/V 2 [2(VGS − 1.0)V − VDS ] DS 2 LINEAR OR TRIODE REGION ID (mA) 4.0 V ≤ V − V VDS = VGS - VT0 DS GS T0 VGS = 5V Assumptions: 2.0 VGS = 4V VGS > VT0 VGD = VGS − VDS > VT0 VGS = 3V 0 VDS (V) 1.0 3.0 5.0 Kenneth R. Laker, University of Pennsylvania
  • 9. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 9 VDS ≥ VGS - VT0 = VDSAT SATURATION REGION µ n C ox W ID = [2(VGS − VT 0 ) VDS − VDS ] @V = V 2 = VGS - VT0 2 L DS DSAT µ n C ox W = [2(VGS − VT 0 )(VGS − VT 0 ) − (VGS − VT 0 ) 2 ] 2 L µ n C ox W I D (sat) = (VGS − VT 0 )2 2 L VDS = VGS - VT0 ID(sat) ID (mA) 4.0 SAT LINEAR VGS = 5V 2.0 VGS = 4V VGS = 3V 0 VDS (V) 1.0 3.0 5.0 Kenneth R. Laker, University of Pennsylvania VT0 VGS
  • 10. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 10 CHANNEL LENGTH MODULATION Q I (y) = − Cox [VGS − VCS (y) − VT 0 ] Boundary conditions: VCS(y = 0) = VS = 0 Q I (y = 0) = − Cox [VGS − VT 0 ] VCS(y = L) = VDS Q1 (y = L) = − C ox [VGS − VDS − VT 0 ] = 0 @ VDS = VDSAT VS = 0 VGS =VG > VT0 VDS =VD > VDSAT CGC ∆L CBC L' L substrate or bulk B p L' = L − ∆L effective channel length VCS(y = L') = VDSAT Kenneth R. Laker, University of Pennsylvania
  • 11. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 11 VS = 0 VGS =VG > VT0 VDS =VD > VDSAT CGC ∆L CBC L' L substrate or bulk B p µ n C ox W µ C W I D (sat) = (VGS − VT 0 )2 = n ox (VGS − VT 0 )2 2 L' 2 L(1 − ∆ L ) L where ∆ L ∝ VDS − VDSAT 1 emperical relation: ∆ L = 1 + λVDS [λ -> LAMBDA in SPICE] 1− L λ = channel length modulation coefficent (V-1) Kenneth R. Laker, University of Pennsylvania
  • 12. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 12 µ n C ox W µ n C ox W I D (sat) = (VGS − VT 0 ) = 2 (VGS − VT 0 )2 2 L' 2 L(1 − ∆ L ) 1 L ∆ L = 1 + λ VDS assume λVDS << 1 1− L µ n C ox W I D (sat) = (VGS − VT 0 )2 (1 + λ VDS ) LEVEL 1 2 L Model VDS = VGS - VT0 ID (mA) 4.0 λ≠0 VGS = 5V λ≠0 2.0 VGS = 4V λ≠0 VGS = 3V 0 VDS (V) 1.0 3.0 5.0 Kenneth R. Laker, University of Pennsylvania
  • 13. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 13 SUBSTRATE BIAS EFFECT LEVEL 1 Model (sat) ID = f(VGS, VDS, VSB) Kenneth R. Laker, University of Pennsylvania
  • 14. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 14 n-MOS D p-MOS S + VDS - + ID VGS VSB - + -B G + -B G - VGS - + VSB ID S + VDS D n-MOS I D = 0 for VGS ≤ VT VGS > VT, VDS < VGS - VT VGS > VT, VDS > VGS - VT p-MOS I D = 0 for VGS ≥ VT VGS < VT, VDS > VGS - VT VGS < VT, VDS < VGS - VT Kenneth R. Laker, University of Pennsylvania
  • 15. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 15 MEASUREMENT OF PARAMETERS (VT0, γ, λ, kn, kp) W W k n = µ n Cox k p = µ p C ox L L D kn ID I D (sat) = (VGS − VT 0 )2 +V = VGS 2 G DS VGS B kn VSB I D (sat) = (VGS − VT 0 ) S + 2 VSB = 0 VSB > 0 ID Gamma VGS Kenneth R. Laker, University of Pennsylvania VT0 VT1
  • 16. MOSFET CURRENT - VOLTAGE CHARACTERISTICS 16 DC current meter Lambda D ID +VDS > VGS - VT0 G VGS = VT0 + 1 V + B S VBS = 0 ID VGS = VT0 + 1 I D (sat) = k n (VGS − VT 0 )2 (1+ λ VDS ) ID2 ID1 VGS = VT0 + 1 V I D 2 1 + λ VD S 2 VDS = VDS1 VDS2 I D1 1 + λ VD S 1 Kenneth R. Laker, University of Pennsylvania
  • 17. EFFECTIVE CHANNEL LENGTH AND WIDTH EFFECTIVE CHANNEL LENGTH AND WIDTH 17 G B S D CGC CGC n+ n+ CC n+ n+ BC BC L substrate orp bulk B p LD LD Leff LM SPICE Parameters Leff = LM - 2LD - DL LD -> under diffusion DL -> error in photolith and etch Weff = WM - DW SPICE Parameters Kenneth R. Laker, University of Pennsylvania DW -> error in photolith and etch
  • 18. MOSFET - SCALING 18 SCALING -> refers to ordered reduction in dimensions of the MOSFET and other VLSI features • Reduce Size of VLSI chips. • Change operational charateristics of MOSFETs and parasitics. • Phyiscal limits restrict degree of scaling that can be achieved. SCALING FACTOR = α > 1 --> S First-order "constant field" MOS scaling theory: The electric field E is kept constant, and the scaled device is obtained by applying a dimensionless scale-factor α to reduce dimensions by (1/α) and maintain E unchanged: a. All dimensions, including those vertical to the surface (1/α) b. device voltages (1/α) c. the concentration densities (α). (1/α)/(1/α) = 1 α(1/α) = 1 <=> Kenneth R. Laker, University of Pennsylvania
  • 19. MOSFET - SCALING 19 Alternative Scaling Rules: Constant Voltage Scaling, i.e. VDD is kept constant, while the process dimensions are scaled by (1/α). a. All dimensions, including those vertical to the surface (1/α) b. device voltages (1) c. the concentration densities (α2) to preserve charge-field relations. 1/(1/α) = α α2(1/α) = α <=> Lateral Scaling: only the gate length is scaled L = 1/α (gate-shrink). Year 1991 1993 1995 1997 1999 2001 2003 2005 Feature Size(µm) 1.00 0.80 0.60 0.35 0.25 0.18 0.13 0.09 Historical reduction in min feature size for typical CMOS Process Kenneth R. Laker, University of Pennsylvania
  • 20. Influence of Scaling on MOS Device Performance 20 PARAMETER SCALING MODEL Constant Field Constant Voltage Lateral Length (L) 1/α 1/α 1/α Width (W) 1/α 1/α 1 Supply Voltage (V) 1/α 1 1 Gate Oxide thickness (tox) 1/α 1/α 1 Junction depth (Xj) 1/α 1/α 1 Substrate Doping (NA) α α2 1 Current (I) - (W/L) (1/tox)V2 1/α α α Power Dissipation (P) - IV 1/α2 α α Power Density (P/Area) 1 **(α3)** α2 Electric Field Across Gate Oxide - V/tox 1 α 1 Load Capacitance (C) - WL (1/tox) 1/α 1/α 1/α Gate Delay (T) - VC/I 1/α 1/α2 1/α2 Kenneth R. Laker, University of Pennsylvania
  • 21. 21 MOSFET CAPACITANCES G B S D CGC CGC p n+ n+ CBC CBC n+ n+ substrate p or bulk B LD LD Leff LM Y substrate or bulk B LD LD n+ n+ p Kenneth R. Laker, University of Pennsylvania
  • 22. MOSFET CAPACITANCES 22 Cgb D Cgd Cdb MOSFET G (DC MODEL) B Cgs Csb S Cgd, Cgs, Cgb -> Oxide Capacitances Cdb, Csb -> Junction Capacitances Kenneth R. Laker, University of Pennsylvania
  • 23. MOSFET CAPACITANCES 23 ε OXIDE Capacitances Cox = ox t ox a. Overlap Caps CGS0(overlap) = Cox W LD ALL MOSFET OPERATION CGD0(overlap) = Cox W LD REGIONS CGB0(overlap) = Cox WovLeff L = LD in SPICE D SPICE: CoxLD = CGS0; CoxLD = CGD0; CoxWov = CGB0 b. Gate - Channel Cgb, Cgb and Cgb MOSFET - Cut-off Region Cgb = Cox W Leff Cgs = Cgd = 0 (no conducting channel in cut-off) p Kenneth R. Laker, University of Pennsylvania
  • 24. MOSFET CAPACITANCES 24 b. Gate - Channel MOSFET - Linear Region Cgb = 0 Cgs = (1/2) Cox W Leff p Cgd = (1/2) Cox W Leff Cgb = 0 Cgs = (2/3) Cox W Leff p Cgd = 0 Kenneth R. Laker, University of Pennsylvania
  • 25. 25 Capacitance Cut-off Linear Saturation Cgb(total) CoxWLeff 0 + CGB0 0 + CGB0 + CGB0 0.5CoxWLeff + 0 + C Cgd(total) 0 + CGD0 CGD0 GD0 0 +CGS0 0.5CoxWLeff + (2/3)Cox WLeff Cgs(total) CGS0 + CGS0 Gate -to Channel/Bulk Cap Contribution (C/CoxWL) Cut-off Saturation Linear 1 Cgb Cgs 2/3 1/2 Cgd CGD0 = CGS0 CGB0 VGS VT VT + VDS Kenneth R. Laker, University of Pennsylvania
  • 26. JUNCTION Capacitances -> Cdb, Csb 26 xj p xd Y 2 xj 1 5 3 W n+ Channel n+ 4 Source Drain Kenneth R. Laker, University of Pennsylvania
  • 27. JUNCTION Capacitances -> Cdb, Csb 27 Y 2 xj 1 5 3 W n+ Channel n+ 4 [xj -> XJ in SPICE] Source Drain Junction Area Type 1 W xj n+/p p - Substrate -> NA 2 Y xj n+/p+ p+ - Channel-stop -> 10NA 3 W xj n+/p+ 4 Y xj n+/p+ 5 WY n+/p Kenneth R. Laker, University of Pennsylvania
  • 28. JUNCTION Capacitances -> Cdb, Csb 28 ND xj n+, p junctions xd p N A 2ε Si  1 1  V = Ext bias --> VBD , VBS xd = + (φ0 − V) q  NA ND    kT  N A N D  built-in junction φ0 = q  n 2  potential ln  i  [φ0 -> PB in SPICE] Depletion-region charge  N AN D   N AN D  A = junction Q j = Aq  x d = A 2ε Si q  N + N  (φ0 − V) area  NA + N D   A D [AS, AD -> Source, Drain Areas in SPICE] Kenneth R. Laker, University of Pennsylvania
  • 29. 29 (F) ε Si q  N A N D  1 m = grading coefficent C j0 =  N + N  φ (F/cm2) m = 1/2 for abrupt junction 2  A D 0 [m = MJ in SPICE] Cj(V) = Cj0 when V = 0 [Cj0 -> CJ in SPICE] [φ0 -> PB in SPICE] EQUIVALENT LARGE SIGNAL CAPACTIANCE 0 < Keq < 1 --> Voltage Equiv Factor Kenneth R. Laker, University of Pennsylvania
  • 30. 30 n , p junctions (Sidewalls) + + εSi q  N A (sw) N D  1 Cj 0 s w= (F/cm2) 2  N A (sw) + ND  φ0 s w   Since all sidewalls have depth = xj: [xj -> XJ in SPICE] Cjsw = Cj0sw xj (F/cm) [Cjsw -> CJSW in SPICE] EQUIVALENT LARGE SIGNAL CAPACTIANCE P = sidewall perimeter [PS, PD -> Source, Drain Perimeters in SPICE] 2φ0 s w  V2  1 /2  V1   1 /2 K eq (sw) = − 1 −  − 1 − φ   m(sw) = 1/2 (V2 − V1 )  φ0 s w   0 s w   [m(sw) -> MJSW in SPICE] Kenneth R. Laker, University of Pennsylvania
  • 31. EXAMPLE 3-8 31 Determine the total junction capacitance at the drain, i.e. Cdb, for the n-channel enhancement MOSFET in Fig. 1. The process parameters are Substrate doping NA = 2 x 1015 cm-3 Source/drain (n+) doping ND = 1020 cm-3 Sidewall (p+) doping NA(sw) = 4 x 1016 cm-3 Gate oxide thickness tox = 45 nm Junction depth xj = 1.0 µm 10 µm G 5 µm D S n+ n+ Figure 1 2 µm Source, Drain are surrounded by p+ channel-stop. The substrate is biased at 0V. Assume the drain voltage range is 0.5 V to 5.0 V. Kenneth R. Laker, University of Pennsylvania
  • 32. 32 where ε Si q  N A N D  1 C j0 = 2  N A + N D  φ0   εSi q  N A (sw) N D  1 Cj 0 s w= 2  N A (sw) + ND  φ0 s w  
  • 33. 10 µm G NA = 2 x 1015 cm-3 33 ND = 1020 cm-3 5 µm D S NA(sw) = 4 x 1016 cm-3 n+ n+ tox = 45 nm xj = 1.0 µm Figure 1 2 µm φ0, φ0sw kT  N A N D   (2 x10 15 )10 20  φ0 = ln   = 0.026 Vln 2.1x10 20  = 0.896 V q  ni 2   kT  N A (sw)N D   (4 x1016 )10 20  φ0 s w = ln  = 0.026 Vln  2.1x1020  = 0.975V q  ni2    Cj0, Cj0sw ε Si q  N A N D  1 C j0 = 2  N A + N D  φ0   F = C/V (1.04 x10 −12 F/cm)(1.6 x10 −19 C)  (2 x10 15 )10 20  1 =  2  2 x10 15 + 10 20  0.896V  = 1.35 x10 −8 F/cm 2 Kenneth R. Laker, University of Pennsylvania
  • 34. εSi q  N A (sw) N D  1 34 = 2  N A (sw) + N D  φ0sw C j0 sw   (1.04 x10 −12 F/cm)(1.6 x10 −19 C)  (4 x10 16 )10 20  1 =   2  4 x10 16 + 10 20  0.975V −8 = 5.83x10 F/cm 2 Cjsw and xj = 1.0 µm = 10-4 cm Cjsw = Cj0sw xj = (5.83x10 F/cm2 )(10 −4 cm) = 5.83pF/cm −8 Keq, Keq(sw) VBD1 = VB - VD1 = 0 - 0.5V = -0.5V VBD2 = VB - VD2 = 0 - 5V = -5V Kenneth R. Laker, University of Pennsylvania
  • 35. 35 Area, Perimeter Y=10µm 2 xj = 1µm 1 5 3 W = 5 µm n + Channel PD n+ 4 Source Drain 10 µm G AD: n+/p junctions: S 5 µm D AD = (5 x 1) µm2 + (10 x 5) µm2 n+ n+ = 55 µm2 PD: n+/p+ junctions: Figure 1 2 µm PD = 2Y + W = 20 µm + 5 µm = 25 µm Kenneth R. Laker, University of Pennsylvania
  • 36. 36 Important 2nd Order Effects Short Channel Effects - Leff --> xj Narrow Channel Effects - W --> xdm Subthreshold Current - VGS < VT0 Kenneth R. Laker, University of Pennsylvania
  • 37. 36 Mobility Degradation due to Lateral Electric Field: VELOSITY SATURATION (very small channel lengths + high supply voltages) velosity(vD) vDsat slope µs Note µs < µ0 µ = v /E Ey 0 sat crit slope = µ0 E Ecrit [SPICE Parameters: U0 -> µ0, UCRIT -> Ecrit, VMAX -> vsat] ID(sat) = W vDSAT Cox (VGS - VT) Note: ID(sat) = linear f(VGS - VT), independent of L Mobility Degradation due to Normal Electric Field: (due to gate voltage across very thin oxide-depletion layer) Ex [SPICE Parameter: THETA -> θ] θ = imperical mobility modulation factor Kenneth R. Laker, University of Pennsylvania
  • 38. 37 Short Channel Effect - Leff --> xj (source, drain diffusion depth) VT0 (short channel) = VT0 - ∆VT0 ∆LS, ∆LD = lateral extensions at source, drain of depletion region due to reverse biased sourse, drain junctions with substrate Narrow Channel Effect - W --> xdm (depletion region depth) VT0 (narrow channel) = VT0 + ∆VT0 [SPICE Parameter: DELTA -> δ = imperical channel width factor] Subthreshold Current - VGS < VT0 (Spice Model) Ion = ID in strong inversion and VGS = Von is the boundary weak and strong inversion Kenneth R. Laker, University of Pennsylvania
  • 39. SPICE SIMUATION - MODELS 38 Level 1 (MOS1) - analylitical mode, ID(sat) is described by square law - strong inversion (with Channel Length Modulation). Based on GCA (gradual channel approximaton) equations in Ch3. Level 2 (MOS2) - anaylitical model, more detailed than MOS1. Includes second order effects, e.g. mobility degradation, small channel effects and sub-threshold currents. Relaxes some simplifying GCA assumptions. Level 3 (MOS3) - semi-emperical model. Uses simpler expressions than MOS2 plus emperical equations to fit experimental data. Improves accuracy and reduces simulation time. BSIM3 (Berkeley Short-Channel IGFET Model) - includes sub-micron MOSFET characteristics. Analytically simple, makes full use of parameters extracted from experimental data. Kenneth R. Laker, University of Pennsylvania
  • 40. 39 SPICE MODELING OF MOS CAPACITANCES M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U . m m2 . m . U = 10-6 .MODEL NFET NMOS m F/m + TOX=200E-10 P = 10-12 + CGBO=200P CGSO=300P CGDO=300P + CJ=200U CJSW=400P MJ=0.5 MJSW=0.3 PB=0.7 V F/m2 F/m M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U D G S B Cgb = W × L × Cox = (4E-6 m) × (1E-6 m) × (17E-3 F/m2) = 6.8 fF Kenneth R. Laker, University of Pennsylvania
  • 41. M1 4 3 5 0 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U 40 . .MODEL NFET NMOS + TOX=200E-8 + CGBO=200P CGSO=300P CGDO=300P + CJ=200U CJSW=400P MJ=0.5 MJSW=0.3 PB=0.7 CJ = zero-bias junction capacitance per junction area (200 × 10-6 F/m2 = 2 × 10-4 pF/µm2) CJSW = zero-bias junction capacitance per junction periphery (400 × 10-12 F/m = 4 × 10-10 pF/µm) MJ = grading coefficient of junction bottom (0.5) MJSW = grading coefficient of junction side-wall (0.3) VJ = the junction potential (Vsb, Vdb for n-channel, Vbs, Vbd for p-channel) PB = the built-in voltage (+0.7 V) Area = AS or AD, the area of source or drain (15 × 10-12 m2 = 15 µm2) Periphery = PS or PD, the periphery of source or drain (11.5 × 10-6 m = 11.5 µm) Kenneth R. Laker, University of Pennsylvania