SlideShare a Scribd company logo
1 of 49
Download to read offline
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                           One year uncertainty
                            in claims reserving
                                      Arthur Charpentier
                      Université Rennes 1 (& Université de Montréal)

                               arthur.charpentier@univ-rennes1.fr
                               http ://freakonometrics.blog.free.fr/




           Workshop on Insurance Mathematics, Montreal, January 2011.


                                                                        1
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                                           Agenda of the talk

•    Formalizing claims reserving problem
•    From Mack to Merz & Wüthrich
•    From Mack (1993) to Merz & Wüthrich (2009)
•    Updating Poisson-ODP bootstrap technique

                                             one year                      ultimate
       China ladder              Merz & Wüthrich (2008)                  Mack (1993)
     GLM+boostrap                                 x              Hacheleister & Stanard (1975)
                                                                   England & Verrall (1999)




                                                                                              2
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                   ‘one year horizon for the reserve risk’




                                                             3
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                   ‘one year horizon for the reserve risk’




                                                             4
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                   ‘one year horizon for the reserve risk’




                                                             5
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                   ‘one year horizon for the reserve risk’




                                                             6
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                   ‘one year horizon for the reserve risk’




                                                             7
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




1     Formalizing the claims reserving problem
• Xi,j denotes incremental payments, with delay j, for claims occurred year i,
• Ci,j denotes cumulated payments, with delay j, for claims occurred year i,
  Ci,j = Xi,0 + Xi,1 + · · · + Xi,j ,
             0        1      2      3     4     5                  0      1      2      3      4      5
       0    3209    1163     39    17     7     21            0   3209   4372   4411   4428   4435   4456
       1    3367    1292     37    24    10                   1   3367   4659   4696   4720   4730
       2    3871    1474     53    22                et et    2   3871   5345   5398   5420
       3    4239    1678    103                               3   4239   5917   6020
       4    4929    1865                                      4   4929   6794
       5    5217                                              5   5217

• Hn denotes information available at time n,
                   Hn = {(Ci,j ), 0 ≤ i + j ≤ n} = {(Xi,j ), 0 ≤ i + j ≤ n}

Actuaries have to predict the total amount of payments for accident year i, i.e.
                                    (n−i)
                                  Ci,n        = E[Ci,∞ |Hn ] = E[Ci,n |Hn ]

The difference betwwen what should be paid, and what has been paid will be the

                                                                                                            8
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                               (n−i)
claims reserve,Ri = Ci,n               − Ci,n−i .
A classical measure of uncertainty in claims reserving is mse[Ci,n |Fi,n−i ] called
ultimate uncertainty.
In Solvency II, it is now requiered to quantify one year uncertainy. The starting
point is that in one year we will update our prediction
                                           (n−i+1)
                                         Ci,n          = E[Ci,n |Hn+1 ]

so that there is a change (compared with now)
                                                              (n−i+1)      (n−i)
                                ∆n = CDRi,n = Ci,n
                                 i                                      − Ci,n     .

If that difference is positive, the insurance will experience a mali (the insurer will
pay more than what was expected), and a boni if the difference is negative. Note
that E[∆n |Hn ] = 0. In Solvency II, actuaries have to calculate uncertainty
          i
associated to ∆n , i.e. mse[∆n |Hn ].
                i             i



                                                                                       9
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                                                             10
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                                                             11
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                                                             12
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                                       3500 4000 4500 5000 5500 6000 6500
    Montant (paiements et réserves)




                                                                            0   1   2   3      4




                                      Figure 1 – Estimation of total payments Ci,n two consecutive years.

                                                                                                            13
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




2     Chain Ladder and claims reserving
A standard approach is to assume that

                              Ci,j+1 = λj · Ci,j for all i, j = 1, · · · , n.

A natural estimator for λj , based on past experience is
                                       n−j
                                       i=1 Ci,j+1
                           λj =         n−j
                                                        for all j = 1, · · · , n − 1.
                                        i=1 Ci,j

Future payments can be predicted as follows,

                                       Ci,j = λn−i ...λj−1 Ci,n−i .




                                                                                        14
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                         0               1              2               3            4                  5
            λj      1,38093          1,01143       1,00434        1,00186       1,00474           1,0000

                             Table 1 – Development factors, λ = (λi ).

Observe that
                          n−j
                                                                 Ci,j                        Ci,j+1
                  λj =             ωi,j λi,j où ωi,j =        n−j
                                                                            et λi,j =               .
                             i=1                              i=1   Ci,j                      Ci,j

i.e. it is a weighted least squares estimator
                                                   n−j                           2
                                                                     Ci,j+1
                              λj = argmin                 Ci,j    λ−                     ,
                                         λ∈R        i=1
                                                                      Ci,j
or
                                                 n−j
                                                         1                    2
                             λj = argmin                     [λCi,j − Ci,j+1 ]               .
                                       λ∈R        i=1
                                                        Ci,j

                                                                                                            15
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                          0            1            2           3         4        5
                  1     3209          4372         4411         4428     4435     4456
                  2     3367          4659         4696         4720    4730     4752.4
                  3     3871          5345         5398        5420     5430.1   5455.8
                  4     4239          5917        6020        6046.15   6057.4   6086.1
                  5     4929        6794         6871.7        6901.5   6914.3   6947.1
                  6     5217       7204.3        7286.7        7318.3   7331.9   7366.7

Table 2 – Cumulated payments C = (Ci,j )i+j≤n and future projected payments
C = (Ci,j )i+j>n , Ci,j = λj−1 · · · λn−i Ci,n−i .




                                                                                          16
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




Proposition1
If there are A = (A0 , · · · , An ) and B = (B0 , · · · , Bn ), with B0 + · · · + Bn = 1, such
that
             n−j               n−j                               n−i              n−i
                   Ai B j =          Yi,j for all j, and               Ai B j =         Yi,j for all i,
             i=1               i=1                               j=0              j=0

then
                                                                       n−1
                                      Ci,n = Ai = Ci,n−i ·                   λk
                                                                    k=n−i

where
                                   n−1             n−1                            n−1
                                         1                    1                         1
                          Bk =              −                    , avec B0 =               .
                                         λj                   λj                        λj
                                   j=k           j=k−1                            j=k

cf. margin method (Bailey (1963)), and Poisson regression.



                                                                                                          17
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




3     From Mack to Merz & Wüthrich

3.1      Quantifying uncertainty

We wish to compare R and R (where R is random - and unknown). The mse of
prediction can be written

                       E([R − R]2 ) ≈ E([R − E(R)]2 ) + E([R − E(R)]2 )
                                                     mse(R)     Var(R)


with a first order approximation.
Actually, what we are looking for is the msep conditional to the information we
have
                                     msepn (R) = E([R − R]2 |Hn ).



                                                                             18
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




3.2      Mack’s model

Mack (1993) proposed a probabilistic model to justify Chain-Ladder. Assume
                                                                          2
that (Ci,j )j≥0 is a Markovian process, and there are λ = (λj ) and σ = (σj ) such
that             
                  E(C      |H ) = E(C
                                i,j+1     i+j |C ) = λ · C    i,j+1   i,j    j    i,j
                      Var(Ci,j+1 |Hi+j ) = Var(Ci,j+1 |Ci,j ) = σ 2 · Ci,j
                                                                  j

Under those assumptions

                E(Ci,j+k |Hi+j ) = E(Ci,j+k |Ci,j ) = λj · λj+1 · · · λj+k−1 Ci,j

Mack (1993) assumed further that accident year are independent : (Ci,j )j=1,...,n
and (Ci ,j )j=1,...,n are independent for all i = i .
It is possible to write Ci,j+1 = λj Ci,j + σj                     Ci,j εi,j where residuals (εi,j ) are
i.i.d., centred, with unit variance.
=⇒ it is possible to used weigthed least squares,

                                                                                                          19
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                                           n−j
                                                  1                      2
                                  min                 (Ci,j+1 − λj Ci,j )
                                           i=1
                                                 Ci,j

                                           n−j
                                           i=1 Ci,j+1
                               λj =         n−j
                                                      , ∀j     = 1, · · · , n − 1.
                                            i=1 Ci,j
is an unbiased estimator of λj .
Further, a natural estimator for the variance parameter is
                                                   n−j−1                             2
                             2        1                       Ci,j+1 − λj Ci,j
                            σj =
                                    n−j−1            i=1
                                                                     Ci,j

which can be written
                                                  n−j−1                      2
                            2     1                           Ci,j+1
                           σj =                                      − λj        · Ci,j
                                n−j−1               i=1
                                                               Ci,j



                                                                                          20
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




3.3      Uncertainty on Ri and R
Recall that
                                                                                                   2
       mse(Ri ) = mse(Ci,n − Ci,n−i ) = mse(Ci,n ) = E                               Ci,n − Ci,n       |Hn

Proposition2
The mean squared error of reserve estimate Ri mse(Ri ), for accident year i can be
estimated by
                                    n−1    2
                               2         σk    1            1
                mse(Ri ) = Ci,n                    + n−k             .
                                           2  Ci,k
                                  k=n−i λk               j=1 Cj,k

And the reserve all years R = R1 + · · · + Rn satisfies
                                                                                      
                                                       n             n          2

                              mse(R) = E                     Ri −         Ri       |Hn 
                                                     i=2             i=2

Proposition3

                                                                                                             21
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




The mean squared error of all year reserves mse(R), is given by
                               n                                           n−1
                                                                                   σk /λ2
                                                                                    2
                                                                                        k
              mse(R) =             mse(Ri ) + 2                Ci,n Cj,n           n−k
                                                                                                .
                             i=2                     2≤i<j≤n               k=n−i   l=1   Cl,k

Example1
On our triangle mse(R) = 79.30, while mse(Rn ) = 68.45, mse(Rn−1 ) = 31.3 or
mse(Rn−2 ) = 5.05.




                                                                                                    22
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




3.4      One year uncertainty, as in Merz & Wüthrich (2007)

                                  0           1               2        3        4
                          1     3209         4372             4411    4428     4435
                          2     3367         4659             4696    4720    4727.4
                          3     3871         5345             5398   5422.3   5430.9
                          4     4239         5917       5970.0       5996.9   6006.4
                          5    4929        6810.8       6871.9       6902.9   6939.0

Table 3 – Triangle of cumulated payments, seen as at year n = 5, C =
(Ci,j )i+j≤n−1,i≤n−1 avec les projection future C = (Ci,j )i+j>n−1 .




                                                                                       23
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                            0          1           2            3         4        5
                   1     3209       4372          4411          4428     4435     4456
                   2     3367       4659          4696          4720     4730    4752.4
                   3     3871       5345          5398         5420     5430.1   5455.8
                   4     4239       5917         6020         6046.15   6057.4   6086.1
                   5     4929       6794       6871.7          6901.5   6914.3   6947.1

Table 4 – Triangle of cumulated payments, seen as at year n = 6, on prior years,
C = (Ci,j )i+j≤n,i≤n−1 avec les projection future C = (Ci,j )i+j>n .




                                                                                          24
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




We have to consider different transition factors
                                      n−i−1                             n−i
                                            Ci,j+1                      i=1 Ci,j+1
                         λn =
                          j
                                      i=1
                                       n−i−1
                                                         and λn+1 =
                                                              j          n−i
                                       i=1   Ci,j                        i=1 Ci,j


We know, e.g. that E(λn |Hn ) = λj and E(λn+1 |Hn+1 ) = λj .. But here, n + 1 is
                      j                   j
the future, so we have to quantify E(λn+1 |Hn ).
                                      j
     n
Set Sj = C1,j + C2,j + · · · , Cj,n−j , so that
                          n−i                     n−i               n−1−i
                          i=1 Ci,j+1              i=1 Ci,j+1              Ci,j+1       Cn−j,j+1
          λn+1 =
           j               n−i
                                          =          n+1        =   i=1
                                                                        n+1        +     n+1
                           i=1 Ci,j
                                                   Sj                 Sj                Sj
i.e.
                                                   Sj · λn
                                                    n
                                                         j       Cn−j,j+1
                                       λn+1
                                        j      =      n+1      +   n+1 .
                                                     Sj           Sj



                                                                                                  25
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




Lemma1
Under Mack’s assumptions
                                                       n
                                                      Sj                    Cn−j,n
                              E(λn+1 |Hn ) =
                                 j                    n+1     · λn + λj ·
                                                                 j            n+1 .
                                                     Sj                      Sj

Now let us defined the CDR,
Definition1
The claims development result CDRi (n + 1),for accident year i, between dates n and
n + 1, is
                                  n                       n+1
                CDRi (n + 1) = E(Ri |Hn ) − Yi,n−i+1 + E(Ri |Hn+1 ) ,

where Yi,n−i+1 is the future incremental payment Yi,n−i+1 = Ci,n−i+1 − Ci,n−i .
Note that CDRi (n + 1) is a Hn+1 -mesurable martingale, and

                          CDRi (n + 1) = E(Ci,n |Hn ) − E(Ci,n |Hn+1 ).


                                                                                      26
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




Lemma2
Under Mack’s assumption, an estimator for E(CDRi (n + 1)2 |Hn ) is
                                                   2
                          mse(CDRi (n + 1)|Hn ) = Ci,n Γi,n + ∆i,n

where
                                                              n−1                    2
                                   2                                                       2
                                  σn−i+1                              Cn−j+1,j            σj
                    ∆i,n =             n+1
                                                     +                  n+1
                               λ2                                      Sj                    n
                                                                                         λ2 Sj
                                n−i+1 Sn−i+1             j=n−i+2                          j

and
                                  2                      n−1                 2
                                 σn−i+1                                     σj
        Γi,n =      1+                                              1+        n+1
                                                                                      Cn−j+1,j     −1
                          λ2
                           n−i+1 Ci,n−i+1            j=n−i+2             λ2 [Sj ]2
                                                                          j


Merz & Wüthrich (2008) observed that
                                                         n−1                     2
                                2                                                          2
                               σn−i+1                               Cn−j+1,j              σj
              Γi,n ≈                             +                    n+1
                         λ2
                          n−i+1 Ci,n−i+1             j=n−i+2
                                                                     Sj              λ2 Cn−j+1,j
                                                                                      j


                                                                                                        27
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




since     (1 + ui ) ≈ 1 +           ui , if ui is small, i.e.
                                                2
                                               σj
                                                    << Cn−j+1,j .
                                               λ2
                                                j

We have finally
Proposition4
Under Mack’s assumptions
                                                                n
                                                  n           [σn−i+1 ]2           1            1
         msen (CDRi (n + 1))               ≈    [Ci,n ]2                                  +
                                                                                               n
                                                              [ λn
                                                                 n−i+1 ]
                                                                         2     Ci,n−i+1       Sn−i+1
                                                                                                 
                                                        n−1                                     2
                                                                    n
                                                                  [σj ]2           Cn−j+1,j
                                                +                  1                                .
                                                              n 2    n                  n+1
                                                    j=n−i+2 [λj ]  Sj                  Sj

while Mack proposed
                                                                                   n−1      n
                   n
                              n
                            [σn−i+1 ]2              1                1                    [σj ]2       1         1
msen (Ri ) =     [Ci,n ]2                                     +                +                            +        .
                                                                   n                                             n
                            [ λn
                               n−i+1 ]
                                       2       Ci,n−i+1           Sn−i+1                  n 2
                                                                                j=n−i+2 [λj ]        Ci,j       Sj

                                                                                                                28
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




i.e. only the first term of the model error is considered here, and only the first diagonal is
considered for the process error (i + j = n + 1) (the other terms are neglected compared
                    n+1
with Cn−j+1,j /Sj ).




                                                                                        29
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




Finally, all year, we have
                                            n
         msen (CDR(n + 1)) ≈                     msen (CDRi (n + 1))
                                           i=1
                                                                                                         
                                                                   n−1
                      n    n        [σn−i ]2 /[λn ]2
                                      n
                                                n−i                         Cn−j,j       [σj ]2 /[λn ]2
                                                                                           n
                                                                                                   j
         +2          Ci,n Cl,n          i−1
                                                              +             n−j           n−j−1
                                                                                                          .
               i<l                       k=0    Ck,n−i            j=n−i+1   k=0   Ck,j    k=0     Ck,j

                     n+1
again if Cn−j+1,j ≤ Sj .
Example2
On our triangle msen (CDR(n + 1)) = 72.57, while msen (CDRn (n + 1)) = 60.83,
msen (CDRn−1 (n + 1)) = 30.92 or msen (CDRn−2 (n + 1)) = 4.48. La formule
approchée donne des résultats semblables.




                                                                                                              30
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                                                             31
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




4     Poisson regression
We have seen that a factor model Yi,j = ai × bj should be interesting (and can be
related to Chain Ladder)


4.1      Hachemeister & Stanard

Hachemeister & Stanard (1975), Kremer (1985) and Mack (1991) considered a
log-Poisson regression on incremental payments

                                E(Yi,j ) = µi,j = exp[ri + cj ] = ai · bj

Then our best estimate is

                                  Yi,j = µi,j = exp[ri + cj ] = ai · bj .

Example3
On our triangle, we have

                                                                             32
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




Call:
glm(formula = Y ~ lig + col, family = poisson("log"), data = base)

Coefficients:
            Estimate Std. Error                         z value Pr(>|z|)
(Intercept) 8.05697     0.01551                         519.426 < 2e-16 ***
lig2          0.06440   0.02090                           3.081 0.00206 **
lig3          0.20242   0.02025                           9.995 < 2e-16 ***
lig4          0.31175   0.01980                          15.744 < 2e-16 ***
lig5          0.44407   0.01933                          22.971 < 2e-16 ***
lig6          0.50271   0.02079                          24.179 < 2e-16 ***
col2        -0.96513    0.01359                         -70.994 < 2e-16 ***
col3        -4.14853    0.06613                         -62.729 < 2e-16 ***
col4        -5.10499    0.12632                         -40.413 < 2e-16 ***
col5        -5.94962    0.24279                         -24.505 < 2e-16 ***
col6        -5.01244    0.21877                         -22.912 < 2e-16 ***
---

                                                                              33
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




Signif. codes:             0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 46695.269 on 20 degrees of freedom
Residual deviance:    30.214 on 10 degrees of freedom
  (15 observations deleted due to missingness)
AIC: 209.52

Number of Fisher Scoring iterations: 4




                                                                            34
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




                          0            1            2           3         4        5
                  1     3209          4372         4411         4428     4435     4456
                  2     3367          4659         4696         4720    4730     4752.4
                  3     3871          5345         5398        5420     5430.1   5455.8
                  4     4239          5917        6020        6046.15   6057.4   6086.1
                  5     4929        6794         6871.7        6901.5   6914.3   6947.1
                  6     5217       7204.3        7286.7        7318.3   7331.9   7366.7

Table 5 – Triangle of cumulated payments, based on sums of Y = (Yi,j )0≤i,j≤n ’s
obtained from the Poisson regression.




                                                                                          35
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




4.2      Uncertainty in our regression model
        8




                                                                      q
        6
        4




                                           q
        2




                                 q




                        q
               q
        0




               0                 2                  4         6   8   10




                                                                           36
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




4.2.1     Les formules économétriques fermées

Using standard GLM notions,
                                           Yi,j = µi,j = exp[ηi,j ].
Using delta method we can write
                                                              2
                                                 ∂µi,j
                                    Var(Yi,j ) ≈                  · Var(ηi,j ),
                                                 ∂ηi,j
i.e. (with a log link)
                                                   ∂µi,j
                                                         = µi,j
                                                   ∂ηi,j
In an overdispersed Poisson regression (as in Renshaw (1998)),

                           E [Yi,j − Yi,j ]2 ≈ φ · µi,j + µ2 · Var(ηi,j )
                                                           i,j

for the lower part of the triangle. Further, since
                            Cov(Yi,j , Yk,l ) ≈ µi,j · µk,l · Cov(ηi,j , ηk,l ).

                                                                                   37
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




we get                                                          

                      E [R − R]2 ≈                        φ · µi,j  + µ · Var(η) · µ
                                                   i+j>n

Example4
On our triangle, the mean square error is 131.77 (to be compared with 79.30).




                                                                                         38
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




4.2.2     Using bootstrap techniques

From triangle of incremental payments, (Yi,j ) assume that
                             Yi,j ∼ P(Yi,j ) where Yi,j = exp(Li + Cj )

1. Estimate parameters Li and Cj , define Pearson’s (pseudo) residuals
                                                         Yi,j − Yi,j
                                               εi,j =
                                                              Yi,j

2. Generate pseudo triangles on the past, {i + j ≤ t}

                                           Yi,j = Yi,j + εi,j          Yi,j

3. (re)Estimate parameters Li and Cj , and derive expected payments for the
future, Yi,j .
                                                 R=             Yi,j
                                                        i+j>t


                                                                              39
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




is the best estimate.
4. Generate a scenario for future payments, Yi,j e.g. from a Poisson distribution
P(Yi,j )
                                                 R=             Yi,j
                                                        i+j>t

One needs to repeat steps 2-4 several times to derive a distribution for R.




                                                                              40
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




      8000




                                                                     q
      6000
      4000
      2000




                                q
                                q


                      q
                      q
             q
      0




             0                  2                  4         6   8   10




                                                                          41
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




      8000




                                                                     q
      6000
      4000
      2000




                                q
                                q


                      q
                      q
             q
      0




             0                  2                  4         6   8   10




                                                                          42
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




      8000




                                                                     q
      6000
      4000
      2000




                                q
                                q


                      q
                      q
             q
      0




             0                  2                  4         6   8   10




                                                                          43
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




      8000




                                                                     q
                                                                     q
      6000
      4000
      2000




                                q
                                q


                      q
                      q
             q
      0




             0                  2                  4         6   8   10




                                                                          44
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




If we repeat it 50,000 times, we obtain the following distribution for the mse.
                  0.012
                  0.010
                  0.008
        Density

                  0.006
                  0.004




                                                 MACK                          GLM
                  0.002
                  0.000




                          0           50                    100                      150   200

                                                    msep of overall reserves




                                                                                                 45
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




4.2.3     Bootstrap and one year uncertainty

2. Generate pseudo triangles on the past and next year {i + j ≤ t + 1}

                                           Yi,j = Yi,j + εi,j           Yi,j

3. Estimate parameters Li and Cj , on the past, {i + j ≤ t}, and derive expected
payments for the future, Yi,j .

                                                Rt =             Yi,j
                                                         i+j>t


4. Estimate parameters Li and Cj , on the past and next year, {i + j ≤ t + 1},
and derive expected payments for the future, Yi,j .

                                               Rt+1 =             Yi,j
                                                          i+j>t


5. Calculate CDR as CDR=Rt+1 − Rt .

                                                                               46
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




      8000
      6000
      4000




                                         q
      2000




                                q
                                q


                      q
                      q
             q
      0




             0                  2                  4         6   8   10




                                                                          47
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




      8000
      6000
      4000




                                         q
      2000




                                q
                                q


                      q
                      q
             q
      0




             0                  2                  4         6   8   10




                                                                          48
Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty




ultimate (R − E(R)) versus one year uncertainty,
            0.010
            0.008
            0.006
            0.004
            0.002
            0.000




                    −200              −100                    0   100   200




                                                                              49

More Related Content

Similar to 1st Québec-Ontario Workshop on Insurance Mathematics

Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-masterSlides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
Arthur Charpentier
 
Financial Regulation Lecture 9Based on notes by Marlena El.docx
Financial Regulation Lecture 9Based on notes by Marlena El.docxFinancial Regulation Lecture 9Based on notes by Marlena El.docx
Financial Regulation Lecture 9Based on notes by Marlena El.docx
ericn8
 

Similar to 1st Québec-Ontario Workshop on Insurance Mathematics (11)

Slides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-masterSlides ibnr-belo-horizonte-master
Slides ibnr-belo-horizonte-master
 
Swiss part3
Swiss part3Swiss part3
Swiss part3
 
Slides ensae 10
Slides ensae 10Slides ensae 10
Slides ensae 10
 
Adrian, Crump, Vogt - Nonlinearity and Flight-to-Safety in the Risk-Return Tr...
Adrian, Crump, Vogt - Nonlinearity and Flight-to-Safety in the Risk-Return Tr...Adrian, Crump, Vogt - Nonlinearity and Flight-to-Safety in the Risk-Return Tr...
Adrian, Crump, Vogt - Nonlinearity and Flight-to-Safety in the Risk-Return Tr...
 
Slides ensae-2016-10
Slides ensae-2016-10Slides ensae-2016-10
Slides ensae-2016-10
 
Financial Regulation Lecture 9Based on notes by Marlena El.docx
Financial Regulation Lecture 9Based on notes by Marlena El.docxFinancial Regulation Lecture 9Based on notes by Marlena El.docx
Financial Regulation Lecture 9Based on notes by Marlena El.docx
 
Macroeconomic fluctuations with HANK & SAM
Macroeconomic fluctuations with HANK & SAM Macroeconomic fluctuations with HANK & SAM
Macroeconomic fluctuations with HANK & SAM
 
1 mon 17.00_life_christiansen_products_presentation
1 mon 17.00_life_christiansen_products_presentation1 mon 17.00_life_christiansen_products_presentation
1 mon 17.00_life_christiansen_products_presentation
 
Natural Disaster Risk Management
Natural Disaster Risk ManagementNatural Disaster Risk Management
Natural Disaster Risk Management
 
Slides emerging-charpentier
Slides emerging-charpentierSlides emerging-charpentier
Slides emerging-charpentier
 
Apoorva Javadekar - My comments on mendoza and quadrini 2010
Apoorva Javadekar - My comments on mendoza and quadrini 2010Apoorva Javadekar - My comments on mendoza and quadrini 2010
Apoorva Javadekar - My comments on mendoza and quadrini 2010
 

More from Arthur Charpentier

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

1st Québec-Ontario Workshop on Insurance Mathematics

  • 1. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty One year uncertainty in claims reserving Arthur Charpentier Université Rennes 1 (& Université de Montréal) arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.fr/ Workshop on Insurance Mathematics, Montreal, January 2011. 1
  • 2. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty Agenda of the talk • Formalizing claims reserving problem • From Mack to Merz & Wüthrich • From Mack (1993) to Merz & Wüthrich (2009) • Updating Poisson-ODP bootstrap technique one year ultimate China ladder Merz & Wüthrich (2008) Mack (1993) GLM+boostrap x Hacheleister & Stanard (1975) England & Verrall (1999) 2
  • 3. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty ‘one year horizon for the reserve risk’ 3
  • 4. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty ‘one year horizon for the reserve risk’ 4
  • 5. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty ‘one year horizon for the reserve risk’ 5
  • 6. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty ‘one year horizon for the reserve risk’ 6
  • 7. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty ‘one year horizon for the reserve risk’ 7
  • 8. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 1 Formalizing the claims reserving problem • Xi,j denotes incremental payments, with delay j, for claims occurred year i, • Ci,j denotes cumulated payments, with delay j, for claims occurred year i, Ci,j = Xi,0 + Xi,1 + · · · + Xi,j , 0 1 2 3 4 5 0 1 2 3 4 5 0 3209 1163 39 17 7 21 0 3209 4372 4411 4428 4435 4456 1 3367 1292 37 24 10 1 3367 4659 4696 4720 4730 2 3871 1474 53 22 et et 2 3871 5345 5398 5420 3 4239 1678 103 3 4239 5917 6020 4 4929 1865 4 4929 6794 5 5217 5 5217 • Hn denotes information available at time n, Hn = {(Ci,j ), 0 ≤ i + j ≤ n} = {(Xi,j ), 0 ≤ i + j ≤ n} Actuaries have to predict the total amount of payments for accident year i, i.e. (n−i) Ci,n = E[Ci,∞ |Hn ] = E[Ci,n |Hn ] The difference betwwen what should be paid, and what has been paid will be the 8
  • 9. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty (n−i) claims reserve,Ri = Ci,n − Ci,n−i . A classical measure of uncertainty in claims reserving is mse[Ci,n |Fi,n−i ] called ultimate uncertainty. In Solvency II, it is now requiered to quantify one year uncertainy. The starting point is that in one year we will update our prediction (n−i+1) Ci,n = E[Ci,n |Hn+1 ] so that there is a change (compared with now) (n−i+1) (n−i) ∆n = CDRi,n = Ci,n i − Ci,n . If that difference is positive, the insurance will experience a mali (the insurer will pay more than what was expected), and a boni if the difference is negative. Note that E[∆n |Hn ] = 0. In Solvency II, actuaries have to calculate uncertainty i associated to ∆n , i.e. mse[∆n |Hn ]. i i 9
  • 10. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 10
  • 11. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 11
  • 12. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 12
  • 13. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 3500 4000 4500 5000 5500 6000 6500 Montant (paiements et réserves) 0 1 2 3 4 Figure 1 – Estimation of total payments Ci,n two consecutive years. 13
  • 14. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 2 Chain Ladder and claims reserving A standard approach is to assume that Ci,j+1 = λj · Ci,j for all i, j = 1, · · · , n. A natural estimator for λj , based on past experience is n−j i=1 Ci,j+1 λj = n−j for all j = 1, · · · , n − 1. i=1 Ci,j Future payments can be predicted as follows, Ci,j = λn−i ...λj−1 Ci,n−i . 14
  • 15. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 0 1 2 3 4 5 λj 1,38093 1,01143 1,00434 1,00186 1,00474 1,0000 Table 1 – Development factors, λ = (λi ). Observe that n−j Ci,j Ci,j+1 λj = ωi,j λi,j où ωi,j = n−j et λi,j = . i=1 i=1 Ci,j Ci,j i.e. it is a weighted least squares estimator n−j 2 Ci,j+1 λj = argmin Ci,j λ− , λ∈R i=1 Ci,j or n−j 1 2 λj = argmin [λCi,j − Ci,j+1 ] . λ∈R i=1 Ci,j 15
  • 16. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 0 1 2 3 4 5 1 3209 4372 4411 4428 4435 4456 2 3367 4659 4696 4720 4730 4752.4 3 3871 5345 5398 5420 5430.1 5455.8 4 4239 5917 6020 6046.15 6057.4 6086.1 5 4929 6794 6871.7 6901.5 6914.3 6947.1 6 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Table 2 – Cumulated payments C = (Ci,j )i+j≤n and future projected payments C = (Ci,j )i+j>n , Ci,j = λj−1 · · · λn−i Ci,n−i . 16
  • 17. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty Proposition1 If there are A = (A0 , · · · , An ) and B = (B0 , · · · , Bn ), with B0 + · · · + Bn = 1, such that n−j n−j n−i n−i Ai B j = Yi,j for all j, and Ai B j = Yi,j for all i, i=1 i=1 j=0 j=0 then n−1 Ci,n = Ai = Ci,n−i · λk k=n−i where n−1 n−1 n−1 1 1 1 Bk = − , avec B0 = . λj λj λj j=k j=k−1 j=k cf. margin method (Bailey (1963)), and Poisson regression. 17
  • 18. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 3 From Mack to Merz & Wüthrich 3.1 Quantifying uncertainty We wish to compare R and R (where R is random - and unknown). The mse of prediction can be written E([R − R]2 ) ≈ E([R − E(R)]2 ) + E([R − E(R)]2 ) mse(R) Var(R) with a first order approximation. Actually, what we are looking for is the msep conditional to the information we have msepn (R) = E([R − R]2 |Hn ). 18
  • 19. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 3.2 Mack’s model Mack (1993) proposed a probabilistic model to justify Chain-Ladder. Assume 2 that (Ci,j )j≥0 is a Markovian process, and there are λ = (λj ) and σ = (σj ) such that   E(C |H ) = E(C i,j+1 i+j |C ) = λ · C i,j+1 i,j j i,j  Var(Ci,j+1 |Hi+j ) = Var(Ci,j+1 |Ci,j ) = σ 2 · Ci,j j Under those assumptions E(Ci,j+k |Hi+j ) = E(Ci,j+k |Ci,j ) = λj · λj+1 · · · λj+k−1 Ci,j Mack (1993) assumed further that accident year are independent : (Ci,j )j=1,...,n and (Ci ,j )j=1,...,n are independent for all i = i . It is possible to write Ci,j+1 = λj Ci,j + σj Ci,j εi,j where residuals (εi,j ) are i.i.d., centred, with unit variance. =⇒ it is possible to used weigthed least squares, 19
  • 20. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty n−j 1 2 min (Ci,j+1 − λj Ci,j ) i=1 Ci,j n−j i=1 Ci,j+1 λj = n−j , ∀j = 1, · · · , n − 1. i=1 Ci,j is an unbiased estimator of λj . Further, a natural estimator for the variance parameter is n−j−1 2 2 1 Ci,j+1 − λj Ci,j σj = n−j−1 i=1 Ci,j which can be written n−j−1 2 2 1 Ci,j+1 σj = − λj · Ci,j n−j−1 i=1 Ci,j 20
  • 21. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 3.3 Uncertainty on Ri and R Recall that 2 mse(Ri ) = mse(Ci,n − Ci,n−i ) = mse(Ci,n ) = E Ci,n − Ci,n |Hn Proposition2 The mean squared error of reserve estimate Ri mse(Ri ), for accident year i can be estimated by n−1 2 2 σk 1 1 mse(Ri ) = Ci,n + n−k . 2 Ci,k k=n−i λk j=1 Cj,k And the reserve all years R = R1 + · · · + Rn satisfies   n n 2 mse(R) = E  Ri − Ri |Hn  i=2 i=2 Proposition3 21
  • 22. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty The mean squared error of all year reserves mse(R), is given by n n−1 σk /λ2 2 k mse(R) = mse(Ri ) + 2 Ci,n Cj,n n−k . i=2 2≤i<j≤n k=n−i l=1 Cl,k Example1 On our triangle mse(R) = 79.30, while mse(Rn ) = 68.45, mse(Rn−1 ) = 31.3 or mse(Rn−2 ) = 5.05. 22
  • 23. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 3.4 One year uncertainty, as in Merz & Wüthrich (2007) 0 1 2 3 4 1 3209 4372 4411 4428 4435 2 3367 4659 4696 4720 4727.4 3 3871 5345 5398 5422.3 5430.9 4 4239 5917 5970.0 5996.9 6006.4 5 4929 6810.8 6871.9 6902.9 6939.0 Table 3 – Triangle of cumulated payments, seen as at year n = 5, C = (Ci,j )i+j≤n−1,i≤n−1 avec les projection future C = (Ci,j )i+j>n−1 . 23
  • 24. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 0 1 2 3 4 5 1 3209 4372 4411 4428 4435 4456 2 3367 4659 4696 4720 4730 4752.4 3 3871 5345 5398 5420 5430.1 5455.8 4 4239 5917 6020 6046.15 6057.4 6086.1 5 4929 6794 6871.7 6901.5 6914.3 6947.1 Table 4 – Triangle of cumulated payments, seen as at year n = 6, on prior years, C = (Ci,j )i+j≤n,i≤n−1 avec les projection future C = (Ci,j )i+j>n . 24
  • 25. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty We have to consider different transition factors n−i−1 n−i Ci,j+1 i=1 Ci,j+1 λn = j i=1 n−i−1 and λn+1 = j n−i i=1 Ci,j i=1 Ci,j We know, e.g. that E(λn |Hn ) = λj and E(λn+1 |Hn+1 ) = λj .. But here, n + 1 is j j the future, so we have to quantify E(λn+1 |Hn ). j n Set Sj = C1,j + C2,j + · · · , Cj,n−j , so that n−i n−i n−1−i i=1 Ci,j+1 i=1 Ci,j+1 Ci,j+1 Cn−j,j+1 λn+1 = j n−i = n+1 = i=1 n+1 + n+1 i=1 Ci,j Sj Sj Sj i.e. Sj · λn n j Cn−j,j+1 λn+1 j = n+1 + n+1 . Sj Sj 25
  • 26. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty Lemma1 Under Mack’s assumptions n Sj Cn−j,n E(λn+1 |Hn ) = j n+1 · λn + λj · j n+1 . Sj Sj Now let us defined the CDR, Definition1 The claims development result CDRi (n + 1),for accident year i, between dates n and n + 1, is n n+1 CDRi (n + 1) = E(Ri |Hn ) − Yi,n−i+1 + E(Ri |Hn+1 ) , where Yi,n−i+1 is the future incremental payment Yi,n−i+1 = Ci,n−i+1 − Ci,n−i . Note that CDRi (n + 1) is a Hn+1 -mesurable martingale, and CDRi (n + 1) = E(Ci,n |Hn ) − E(Ci,n |Hn+1 ). 26
  • 27. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty Lemma2 Under Mack’s assumption, an estimator for E(CDRi (n + 1)2 |Hn ) is 2 mse(CDRi (n + 1)|Hn ) = Ci,n Γi,n + ∆i,n where n−1 2 2 2 σn−i+1 Cn−j+1,j σj ∆i,n = n+1 + n+1 λ2 Sj n λ2 Sj n−i+1 Sn−i+1 j=n−i+2 j and 2 n−1 2 σn−i+1 σj Γi,n = 1+ 1+ n+1 Cn−j+1,j −1 λ2 n−i+1 Ci,n−i+1 j=n−i+2 λ2 [Sj ]2 j Merz & Wüthrich (2008) observed that n−1 2 2 2 σn−i+1 Cn−j+1,j σj Γi,n ≈ + n+1 λ2 n−i+1 Ci,n−i+1 j=n−i+2 Sj λ2 Cn−j+1,j j 27
  • 28. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty since (1 + ui ) ≈ 1 + ui , if ui is small, i.e. 2 σj << Cn−j+1,j . λ2 j We have finally Proposition4 Under Mack’s assumptions n n [σn−i+1 ]2 1 1 msen (CDRi (n + 1)) ≈ [Ci,n ]2 + n [ λn n−i+1 ] 2 Ci,n−i+1 Sn−i+1   n−1 2 n [σj ]2 Cn−j+1,j +  1  . n 2 n n+1 j=n−i+2 [λj ] Sj Sj while Mack proposed n−1 n n n [σn−i+1 ]2 1 1 [σj ]2 1 1 msen (Ri ) = [Ci,n ]2 + + + . n n [ λn n−i+1 ] 2 Ci,n−i+1 Sn−i+1 n 2 j=n−i+2 [λj ] Ci,j Sj 28
  • 29. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty i.e. only the first term of the model error is considered here, and only the first diagonal is considered for the process error (i + j = n + 1) (the other terms are neglected compared n+1 with Cn−j+1,j /Sj ). 29
  • 30. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty Finally, all year, we have n msen (CDR(n + 1)) ≈ msen (CDRi (n + 1)) i=1   n−1 n n [σn−i ]2 /[λn ]2 n n−i Cn−j,j [σj ]2 /[λn ]2 n j +2 Ci,n Cl,n  i−1 + n−j n−j−1 . i<l k=0 Ck,n−i j=n−i+1 k=0 Ck,j k=0 Ck,j n+1 again if Cn−j+1,j ≤ Sj . Example2 On our triangle msen (CDR(n + 1)) = 72.57, while msen (CDRn (n + 1)) = 60.83, msen (CDRn−1 (n + 1)) = 30.92 or msen (CDRn−2 (n + 1)) = 4.48. La formule approchée donne des résultats semblables. 30
  • 31. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 31
  • 32. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 4 Poisson regression We have seen that a factor model Yi,j = ai × bj should be interesting (and can be related to Chain Ladder) 4.1 Hachemeister & Stanard Hachemeister & Stanard (1975), Kremer (1985) and Mack (1991) considered a log-Poisson regression on incremental payments E(Yi,j ) = µi,j = exp[ri + cj ] = ai · bj Then our best estimate is Yi,j = µi,j = exp[ri + cj ] = ai · bj . Example3 On our triangle, we have 32
  • 33. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty Call: glm(formula = Y ~ lig + col, family = poisson("log"), data = base) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 8.05697 0.01551 519.426 < 2e-16 *** lig2 0.06440 0.02090 3.081 0.00206 ** lig3 0.20242 0.02025 9.995 < 2e-16 *** lig4 0.31175 0.01980 15.744 < 2e-16 *** lig5 0.44407 0.01933 22.971 < 2e-16 *** lig6 0.50271 0.02079 24.179 < 2e-16 *** col2 -0.96513 0.01359 -70.994 < 2e-16 *** col3 -4.14853 0.06613 -62.729 < 2e-16 *** col4 -5.10499 0.12632 -40.413 < 2e-16 *** col5 -5.94962 0.24279 -24.505 < 2e-16 *** col6 -5.01244 0.21877 -22.912 < 2e-16 *** --- 33
  • 34. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 46695.269 on 20 degrees of freedom Residual deviance: 30.214 on 10 degrees of freedom (15 observations deleted due to missingness) AIC: 209.52 Number of Fisher Scoring iterations: 4 34
  • 35. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 0 1 2 3 4 5 1 3209 4372 4411 4428 4435 4456 2 3367 4659 4696 4720 4730 4752.4 3 3871 5345 5398 5420 5430.1 5455.8 4 4239 5917 6020 6046.15 6057.4 6086.1 5 4929 6794 6871.7 6901.5 6914.3 6947.1 6 5217 7204.3 7286.7 7318.3 7331.9 7366.7 Table 5 – Triangle of cumulated payments, based on sums of Y = (Yi,j )0≤i,j≤n ’s obtained from the Poisson regression. 35
  • 36. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 4.2 Uncertainty in our regression model 8 q 6 4 q 2 q q q 0 0 2 4 6 8 10 36
  • 37. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 4.2.1 Les formules économétriques fermées Using standard GLM notions, Yi,j = µi,j = exp[ηi,j ]. Using delta method we can write 2 ∂µi,j Var(Yi,j ) ≈ · Var(ηi,j ), ∂ηi,j i.e. (with a log link) ∂µi,j = µi,j ∂ηi,j In an overdispersed Poisson regression (as in Renshaw (1998)), E [Yi,j − Yi,j ]2 ≈ φ · µi,j + µ2 · Var(ηi,j ) i,j for the lower part of the triangle. Further, since Cov(Yi,j , Yk,l ) ≈ µi,j · µk,l · Cov(ηi,j , ηk,l ). 37
  • 38. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty we get   E [R − R]2 ≈  φ · µi,j  + µ · Var(η) · µ i+j>n Example4 On our triangle, the mean square error is 131.77 (to be compared with 79.30). 38
  • 39. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 4.2.2 Using bootstrap techniques From triangle of incremental payments, (Yi,j ) assume that Yi,j ∼ P(Yi,j ) where Yi,j = exp(Li + Cj ) 1. Estimate parameters Li and Cj , define Pearson’s (pseudo) residuals Yi,j − Yi,j εi,j = Yi,j 2. Generate pseudo triangles on the past, {i + j ≤ t} Yi,j = Yi,j + εi,j Yi,j 3. (re)Estimate parameters Li and Cj , and derive expected payments for the future, Yi,j . R= Yi,j i+j>t 39
  • 40. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty is the best estimate. 4. Generate a scenario for future payments, Yi,j e.g. from a Poisson distribution P(Yi,j ) R= Yi,j i+j>t One needs to repeat steps 2-4 several times to derive a distribution for R. 40
  • 41. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 8000 q 6000 4000 2000 q q q q q 0 0 2 4 6 8 10 41
  • 42. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 8000 q 6000 4000 2000 q q q q q 0 0 2 4 6 8 10 42
  • 43. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 8000 q 6000 4000 2000 q q q q q 0 0 2 4 6 8 10 43
  • 44. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 8000 q q 6000 4000 2000 q q q q q 0 0 2 4 6 8 10 44
  • 45. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty If we repeat it 50,000 times, we obtain the following distribution for the mse. 0.012 0.010 0.008 Density 0.006 0.004 MACK GLM 0.002 0.000 0 50 100 150 200 msep of overall reserves 45
  • 46. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 4.2.3 Bootstrap and one year uncertainty 2. Generate pseudo triangles on the past and next year {i + j ≤ t + 1} Yi,j = Yi,j + εi,j Yi,j 3. Estimate parameters Li and Cj , on the past, {i + j ≤ t}, and derive expected payments for the future, Yi,j . Rt = Yi,j i+j>t 4. Estimate parameters Li and Cj , on the past and next year, {i + j ≤ t + 1}, and derive expected payments for the future, Yi,j . Rt+1 = Yi,j i+j>t 5. Calculate CDR as CDR=Rt+1 − Rt . 46
  • 47. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 8000 6000 4000 q 2000 q q q q q 0 0 2 4 6 8 10 47
  • 48. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty 8000 6000 4000 q 2000 q q q q q 0 0 2 4 6 8 10 48
  • 49. Arthur CHARPENTIER, WIM 2011, claims reserving uncertainty ultimate (R − E(R)) versus one year uncertainty, 0.010 0.008 0.006 0.004 0.002 0.000 −200 −100 0 100 200 49