SlideShare una empresa de Scribd logo
1 de 94
Descargar para leer sin conexión
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Copulas, risk dependence
and applications to Solvency II
Arthur Charpentier
CREM-Universit´e Rennes 1
http ://perso.univ-rennes1.fr/arthur.charpentier/
Summer School of the Groupe Consultatif Actuariel Europen :
Enterprise Risk Management (ERM) and Solvency II, July 2008.
1
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
2
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
3
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
4
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
5
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
6
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
How to capture dependence in risk models ?
Is correlation relevant to capture dependence information ?
Consider (see McNeil, Embrechts & Straumann (2003)) 2 log-normal risks,
• X ∼ LN(0, 1), i.e. X = exp(X ) where X ∼ N(0, 1)
• Y ∼ LN(0, σ2
), i.e. Y = exp(Y ) where Y ∼ N(0, σ2
)
Recall that corr(X , Y ) takes any value in [−1, +1].
Since corr(X, Y )=corr(X , Y ), what can be corr(X, Y ) ?
7
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
How to capture dependence in risk models ?
0 1 2 3 4 5
−0.50.00.51.0
Standard deviation, sigma
Correlation
Fig. 1 – Range for the correlation, cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2
).
8
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
How to capture dependence in risk models ?
0 1 2 3 4 5
−0.50.00.51.0
Standard deviation, sigma
Correlation
Fig. 2 – cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2
), Gaussian copula, r = 0.5.
9
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
What about regulatory technical documents ?
10
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
What about regulatory technical documents ?
11
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
What about regulatory technical documents ?
12
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
What about regulatory technical documents ?
13
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Motivations : dependence and copulas
Definition 1. A copula C is a joint distribution function on [0, 1]d
, with
uniform margins on [0, 1].
Theorem 2. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal
distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with
F ∈ F(F1, . . . , Fd).
Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that
F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C is
unique, and given by
C(u) = F(F−1
1 (u1), . . . , F−1
d (ud)) for all ui ∈ [0, 1]
We will then define the copula of F, or the copula of X.
14
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Copula density Level curves of the copula
Fig. 3 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v).
15
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Copula density Level curves of the copula
Fig. 4 – Density of a copula, c(u, v) =
∂2
C(u, v)
∂u∂v
.
16
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Some very classical copulas
• The independent copula C(u, v) = uv = C⊥
(u, v).
The copula is standardly denoted Π, P or C⊥
, and an independent version of
(X, Y ) will be denoted (X⊥
, Y ⊥
). It is a random vector such that X⊥ L
= X and
Y ⊥ L
= Y , with copula C⊥
.
In higher dimension, C⊥
(u1, . . . , ud) = u1 × . . . × ud is the independent copula.
• The comonotonic copula C(u, v) = min{u, v} = C+
(u, v).
The copula is standardly denoted M, or C+
, and an comonotone version of
(X, Y ) will be denoted (X+
, Y +
). It is a random vector such that X+ L
= X and
Y + L
= Y , with copula C+
.
(X, Y ) has copula C+
if and only if there exists a strictly increasing function h
such that Y = h(X), or equivalently (X, Y )
L
= (F−1
X (U), F−1
Y (U)) where U is
U([0, 1]).
17
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Some very classical copulas
In higher dimension, C+
(u1, . . . , ud) = min{u1, . . . , ud} is the comonotonic
copula.
• The contercomotonic copula C(u, v) = max{u + v − 1, 0} = C−
(u, v).
The copula is standardly denoted W, or C−
, and an contercomontone version of
(X, Y ) will be denoted (X−
, Y −
). It is a random vector such that X− L
= X and
Y − L
= Y , with copula C−
.
(X, Y ) has copula C−
if and only if there exists a strictly decreasing function h
such that Y = h(X), or equivalently (X, Y )
L
= (F−1
X (1 − U), F−1
Y (U)).
In higher dimension, C−
(u1, . . . , ud) = max{u1 + . . . + ud − (d − 1), 0} is not a
copula.
But note that for any copula C,
C−
(u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ C+
(u1, . . . , ud)
18
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetlowerbound
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81Independencecopula
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetupperbound
Fréchet Lower Bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Independent copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Fréchet Upper Bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Lower Fréchet!Hoeffding bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Indepedent copula random generation
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Upper Fréchet!Hoeffding bound
Fig. 5 – Contercomontonce, independent, and comonotone copulas.
19
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Elliptical (Gaussian and t) copulas
The idea is to extend the multivariate probit model, X = (X1, . . . , Xd) with
marginal B(pi) distributions, modeled as Yi = 1(Xi ≤ ui), where X ∼ N(I, Σ).
• The Gaussian copula, with parameter α ∈ (−1, 1),
C(u, v) =
1
2π
√
1 − α2
Φ−1
(u)
−∞
Φ−1
(v)
−∞
exp
−(x2
− 2αxy + y2
)
2(1 − α2)
dxdy.
Analogously the t-copula is the distribution of (T(X), T(Y )) where T is the t-cdf,
and where (X, Y ) has a joint t-distribution.
• The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2,
C(u, v) =
1
2π
√
1 − α2
t−1
ν (u)
−∞
t−1
ν (v)
−∞
1 +
x2
− 2αxy + y2
2(1 − α2)
−((ν+2)/2)
dxdy.
20
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Archimedean copulas
• Archimedian copulas C(u, v) = φ−1
(φ(u) + φ(v)), where φ is decreasing convex
(0, 1), with φ(0) = ∞ and φ(1) = 0.
Example 3. If φ(t) = [− log t]α
, then C is Gumbel’s copula, and if
φ(t) = t−α
− 1, C is Clayton’s. Note that C⊥
is obtained when φ(t) = − log t.
The frailty approach : assume that X and Y are conditionally independent, given
the value of an heterogeneous component Θ. Assume further that
P(X ≤ x|Θ = θ) = (GX(x))θ
and P(Y ≤ y|Θ = θ) = (GY (y))θ
for some baseline distribution functions GX and GY . Then
F(x, y) = ψ(ψ−1
(FX(x)) + ψ−1
(FY (y))),
where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ
).
21
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0 20 40 60 80 100
020406080100
Conditional independence, continuous risk factor
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, continuous risk factor
Fig. 6 – Continuous classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
22
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Some more examples of Archimedean copulas
ψ(t) range θ
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978)
(2) (1 − t)θ [1, ∞)
(3) log
1−θ(1−t)
t
[−1, 1) Ali-Mikhail-Haq
(4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986)
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987)
(6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993)
(7) − log{θt + (1 − θ)} (0, 1]
(8) 1−t
1+(θ−1)t
[1, ∞)
(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)
(10) log(2t−θ − 1) (0, 1]
(11) log(2 − tθ) (0, 1/2]
(12) ( 1
t
− 1)θ [1, ∞)
(13) (1 − log t)θ − 1 (0, ∞)
(14) (t−1/θ − 1)θ [1, ∞)
(15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994)
(16) ( θ
t
+ 1)(1 − t) [0, ∞)
23
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Extreme value copulas
• Extreme value copulas
C(u, v) = exp (log u + log v) A
log u
log u + log v
,
where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et
max{1 − ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] .
An alternative definition is the following : C is an extreme value copula if for all
z > 0,
C(u1, . . . , ud) = C(u
1/z
1 , . . . , u
1/z
d )z
.
Those copula are then called max-stable : define the maximum componentwise of
a sample X1, . . . , Xn, i.e. Mi = max{Xi,1, . . . , Xi,n}.
Remark more difficult to characterize when d ≥ 3.
24
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Gaussian, Student t (and elliptical) copulas
Focuses on pairwise dependence through the correlation matrix,







X1
X2
X3
X4







∼ N







0,
1 r12 r13 r14
r12 1 r23 r24
r13 r23 1 r34
r14 r24 r34 1







Dependence in [0, 1]d
←→ summarized in d(d + 1)/2 parameters,
25
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
1 [φ1(u1) + φ1(u2) + φ1(u3) + φ1(u4)],
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
alpha4 α4 α3 1







26
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4 φ−1
2 (φ2(u1) + φ2(u2)) + φ4 φ−1
3 (φ3(u3) + φ3(u4)) ),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
alpha4 α4 α3 1







27
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4 φ−1
2 (φ2(u1) + φ2(u2)) + φ4 φ−1
3 (φ3(u3) + φ3(u4)) ),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
alpha4 α4 α3 1







28
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4 φ−1
2 (φ2(u1) + φ2(u2)) + φ4 φ−1
3 (φ3(u3) + φ3(u4)) ),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
α4 α4 α3 1







29
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4[φ−1
3 (φ3 φ−1
2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α3 α4
α2 1 α3 α4
α3 α3 1 α4
α4 α4 α4 1







30
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4[φ−1
3 (φ3 φ−1
2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α3 α4
α2 1 α3 α4
α3 α3 1 α4
α4 α4 α4 1







31
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4[φ−1
3 (φ3 φ−1
2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α3 α4
α2 1 α3 α4
α3 α3 1 α4
α4 α4 α4 1







32
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
On copula parametrization
• Extreme value copulas
Here, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]d−1
.
Further, focuses only on first order tail dependence.
33
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Natural properties for dependence measures
Definition 4. κ is measure of concordance if and only if κ satisfies
• κ is defined for every pair (X, Y ) of continuous random variables,
• −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1,
• κ (X, Y ) = κ (Y, X),
• if X and Y are independent, then κ (X, Y ) = 0,
• κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ),
• if (X1, Y1) P QD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2),
• if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that
converge to a pair (X, Y ) then κ (Xn, Yn) → κ (X, Y ) as n → ∞.
34
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Natural properties for dependence measures
If κ is measure of concordance, then, if f and g are both strictly increasing, then
κ(f(X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f(X) with f almost surely
strictly increasing, and analogously κ(X, Y ) = −1 if Y = f(X) with f almost
surely strictly decreasing (see Scarsini (1984)).
Rank correlations can be considered, i.e. Spearman’s ρ defined as
ρ(X, Y ) = corr(FX(X), FY (Y )) = 12
1
0
1
0
C(u, v)dudv − 3
and Kendall’s τ defined as
τ(X, Y ) = 4
1
0
1
0
C(u, v)dC(u, v) − 1.
35
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Historical version of those coefficients
Similarly Kendall’s tau was not defined using copulae, but as the probability of
concordance, minus the probability of discordance, i.e.
τ(X, Y ) = 3[P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0)],
where (X1, Y1) and (X2, Y2) denote two independent versions of (X, Y ) (see
Nelsen (1999)).
Equivalently, τ(X, Y ) = 1 −
4Q
n(n2 − 1)
where Q is the number of inversions
between the rankings of X and Y (number of discordance).
36
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0
!0.50.00.51.01.5 Concordant pairs
X
Y
!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0
!0.50.00.51.01.5
Discordant pairs
X
Y
Fig. 7 – Concordance versus discordance.
37
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Alternative expressions of those coefficients
Note that those coefficients can also be expressed as follows
ρ(X, Y ) =
[0,1]×[0,1]
C(u, v) − C⊥
(u, v)dudv
[0,1]×[0,1]
C+(u, v) − C⊥(u, v)dudv
(the normalized average distance between C and C⊥
), for instance.
The case of the Gaussian random vector
If (X, Y ) is a Gaussian random vector with correlation r, then (Kruskal (1958))
ρ(X, Y ) =
6
π
arcsin
r
2
and τ(X, Y ) =
2
π
arcsin (r) .
38
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
From Kendall’tau to copula parameters
Kendall’s τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞
Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞
Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞
Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞
Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞
Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞
Morgenstein θ 0.00 0.45 0.90 - - - - - - - -
39
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
From Spearman’s rho to copula parameters
Spearman’s ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00
Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞
A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞
Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞
Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞
Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞
Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞
Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞
Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - -
40
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Marges uniformes
CopuledeGumbel
!2 0 2 4
!2024
Marges gaussiennes
Fig. 8 – Simulations of Gumbel’s copula θ = 1.2.
41
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Marges uniformes
CopuleGaussienne
!2 0 2 4
!2024
Marges gaussiennes
Fig. 9 – Simulations of the Gaussian copula (θ = 0.95).
42
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Strong tail dependence
Joe (1993) defined, in the bivariate case a tail dependence measure.
Definition 5. Let (X, Y ) denote a random pair, the upper and lower tail
dependence parameters are defined, if the limit exist, as
λL = lim
u→0
P X ≤ F−1
X (u) |Y ≤ F−1
Y (u) ,
= lim
u→0
P (U ≤ u|V ≤ u) = lim
u→0
C(u, u)
u
,
and
λU = lim
u→1
P X > F−1
X (u) |Y > F−1
Y (u)
= lim
u→0
P (U > 1 − u|V ≤ 1 − u) = lim
u→0
C (u, u)
u
.
43
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GAUSSIAN
q
q
Fig. 10 – L and R cumulative curves.
44
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GUMBEL
q
q
Fig. 11 – L and R cumulative curves.
45
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
CLAYTON
q
q
Fig. 12 – L and R cumulative curves.
46
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
STUDENT (df=5)
q
q
Fig. 13 – L and R cumulative curves.
47
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
STUDENT (df=3)
q
q
Fig. 14 – L and R cumulative curves.
48
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Estimating (strong) tail dependence
From
P ≈
P X > F−1
X (u) , Y > F−1
Y (u)
P Y > F−1
Y (u)
for u closed to 1,
as for Hill’s estimator, a natural estimator for λ is obtained with u = 1 − k/n,
λ
(k)
U =
1
n
n
i=1 1(Xi > Xn−k:n, Yi > Yn−k:n)
1
n
n
i=1 1(Yi > Yn−k:n)
,
hence
λ
(k)
U =
1
k
n
i=1
1(Xi > Xn−k:n, Yi > Yn−k:n).
λ
(k)
L =
1
k
n
i=1
1(Xi ≤ Xk:n, Yi ≤ Yk:n).
49
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Asymptotic convergence, how fast ?
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
(Upper) tail dependence, Gaussian copula, n=200
Exceedance probability
0.001 0.005 0.050 0.500
0.00.20.40.60.81.0
Log scale, (lower) tail dependence
Exceedance probability (log scale)
Fig. 15 – Convergence of L and R functions, Gaussian copula, n = 200.
50
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Asymptotic convergence, how fast ?
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
(Upper) tail dependence, Gaussian copula, n=200
Exceedance probability
0.001 0.005 0.050 0.500
0.00.20.40.60.81.0
Log scale, (lower) tail dependence
Exceedance probability (log scale)
Fig. 16 – Convergence of L and R functions, Gaussian copula, n = 2, 000.
51
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Asymptotic convergence, how fast ?
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
(Upper) tail dependence, Gaussian copula, n=200
Exceedance probability
0.001 0.005 0.050 0.500
0.00.20.40.60.81.0
Log scale, (lower) tail dependence
Exceedance probability (log scale)
Fig. 17 – Convergence of L and R functions, Gaussian copula, n = 20, 000.
52
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Weak tail dependence
If X and Y are independent (in tails), for u large enough
P(X > F−1
X (u), Y > F−1
Y (u)) = P(X > F−1
X (u)) · P(Y > F−1
Y (u)) = (1 − u)2
,
or equivalently, log P(X > F−1
X (u), Y > F−1
Y (u)) = 2 · log(1 − u). Further, if X
and Y are comonotonic (in tails), for u large enough
P(X > F−1
X (u), Y > F−1
Y (u)) = P(X > F−1
X (u)) = (1 − u)1
,
or equivalently, log P(X > F−1
X (u), Y > F−1
Y (u)) = 1 · log(1 − u).
=⇒ limit of the ratio
log(1 − u)
log P(Z1 > F−1
1 (u), Z2 > F−1
2 (u))
.
53
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Weak tail dependence
Coles, Heffernan & Tawn (1999) defined
Definition 6. Let (X, Y ) denote a random pair, the upper and lower tail
dependence parameters are defined, if the limit exist, as
ηL = lim
u→0
log(u)
log P(Z1 ≤ F−1
1 (u), Z2 ≤ F−1
2 (u))
= lim
u→0
log(u)
log C(u, u)
,
and
ηU = lim
u→1
log(1 − u)
log P(Z1 > F−1
1 (u), Z2 > F−1
2 (u))
= lim
u→0
log(u)
log C (u, u)
.
54
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GAUSSIAN
q
q
Fig. 18 – χ functions.
55
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GUMBEL
q
q
Fig. 19 – χ functions.
56
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
CLAYTON
q
q
Fig. 20 – χ functions.
57
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
STUDENT (df=3)
q
q
Fig. 21 – χ functions.
58
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Application in risk management : Loss-ALAE
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
qqq
qq
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqq
q
q
q
qqq
qq
qq
qqq
q
qq
q
q
q
qqqqq
q
q
q
q
q
qq
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
qq
q
q
q
q
q
q
qqq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
qq
qq
qq
qq
qq
q
q
qqq
qqq
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqq
q
qqq
qq
qqqq
q
q
qqq
qq
qq
qq
q
qq
q
qqq
qqqq
qqq
qqqqq
qq
qqqq
qq
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqq
qq
q
q
q
qq
qqq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
qq
q
qq
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qqqq
qq
q
qqqqq
q
q
qqqq
qqqqq
q
qq
q
q
q
q
qq
qqqq
qqqqqq
q
qqq
qq
qqqqqqqq
qq
qqqq
q
qqq
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
qq
qqq
qq
qqq
q
q
q
q
qq
q
qq
qq
q
qq
qq
q
qq
q
qqq
qqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
qqq
qq
q
q
q
qqqqqqq
qqq
q
qq
qqq
q
qqq
qqq
qq
qq
qq
q
qqq
qqq
qqqqqqqqqqq
qqq
qq
qqq
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
qq
qq
qqqq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
qq
qqq
qqqqqqqqq
q
qq
qqq
q
qq
qq
qqqq
qq
q
qq
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
qq
qq
q
q
q
q
q
q
q
qqq
qq
qq
qq
qqq
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
qq
q
q
q
q
q
q
qq
q
qqqqq
q
qq
q
q
qq
q
q
qqq
qqqqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
qq
qq
q
qq
qq
q
q
q
q
qq
qqq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
qqqq
qqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
qq
q
q
q
q
qq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Loss
AllocatedExpenses
Fig. 22 – Losses and allocated expenses.
59
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Application in risk management : Loss-ALAE
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
qqq
qqq
qqq
qqqqqqqqq
qqqqqqqqqq
q
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqq
qqqqqq
qqqq
qqq
qqqqqqq
qqq
qqqqq
qq
qqq
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
Gumbel copula
q
q
0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
q
q
q
qqq
qqq
qqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq
qqqqq
qq
qqqqqqqqqqqqqq
qqq
q
q
q
q
Gumbel copula
q
q
Fig. 23 – L and R cumulative curves, and χ functions.
60
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Application in risk management : car-household
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Car claims
Householdclaims
Fig. 24 – Motor and Household claims.
61
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Application in risk management : car-household
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqq
q
qq
qq
qqqqqqqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqq
q
qqq
qqqq
qqq
qqq
qqqqq
qqqqq
qq
qqqqqqq
q
qqqq
qqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Gumbel copula
q
q
0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqq
q
qqqqqqqqqqqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqq
qqqqqqq
qqqqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
Gumbel copula
q
q
Fig. 25 – L and R cumulative curves, and χ functions.
62
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Case of Archimedean copulas
For an exhaustive study of tail behavior for Archimedean copulas, see
Charpentier & Segers (2008).
• upper tail : function of φ (1) and θ1 = − lim
s→0
sφ (1 − s)
φ(1 − s)
,
◦ φ (1) < 0 : tail independence
◦ φ (1) = 0 and θ1 = 1 : dependence in independence
◦ φ (1) = 0 and θ1 > 1 : tail dependence
• lower tail : function of φ(0) and θ0 = − lim
s→0
sφ (s)
φ(s)
,
◦ φ(0) < ∞ : tail independence
◦ φ(0) = ∞ and θ0 = 0 : dependence in independence
◦ φ(0) = ∞ and θ0 > 0 : tail dependence
0.0 0.2 0.4 0.6 0.8 1.0
05101520
63
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Measuring risks ?
the pure premium as a technical benchmark
Pascal, Fermat, Condorcet, Huygens, d’Alembert in the XVIIIth century
proposed to evaluate the “produit scalaire des probabilit´es et des gains”,
< p, x >=
n
i=1
pixi =
n
i=1
P(X = xi) · xi = EP(X),
based on the “r`egle des parties”.
For Qu´etelet, the expected value was, in the context of insurance, the price that
guarantees a financial equilibrium.
From this idea, we consider in insurance the pure premium as EP(X). As in
Cournot (1843), “l’esp´erance math´ematique est donc le juste prix des chances”
(or the “fair price” mentioned in Feller (1953)).
Problem : Saint Peterburg’s paradox, i.e. infinite mean risks (cf. natural
catastrophes)
64
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
the pure premium as a technical benchmark
For a positive random variable X, recall that EP(X) =
∞
0
P(X > x)dx.
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Expected value
Loss value, X
Probabilitylevel,P
Fig. 26 – Expected value EP(X) = xdFX(x) = P(X > x)dx.
65
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
from pure premium to expected utility principle
Ru(X) = u(x)dP = P(u(X) > x))dx
where u : [0, ∞) → [0, ∞) is a utility function.
Example with an exponential utility, u(x) = [1 − e−αx
]/α,
Ru(X) =
1
α
log EP(eαX
) ,
i.e. the entropic risk measure.
See Cramer (1728), Bernoulli (1738), von Neumann & Morgenstern
(1944), Rochet (1994)... etc.
66
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Expected utility (power utility function)
Loss value, X
Probabilitylevel,P
Fig. 27 – Expected utility u(x)dFX(x).
67
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Expected utility (power utility function)
Loss value, X
Probabilitylevel,P
Fig. 28 – Expected utility u(x)dFX(x).
68
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
from pure premium to distorted premiums (Wang)
Rg(X) = xdg ◦ P = g(P(X > x))dx
where g : [0, 1] → [0, 1] is a distorted function.
Example
• if g(x) = I(X ≥ 1 − α) Rg(X) = V aR(X, α),
• if g(x) = min{x/(1 − α), 1} Rg(X) = TV aR(X, α) (also called expected
shortfall), Rg(X) = EP(X|X > V aR(X, α)).
See D’Alembert (1754), Schmeidler (1986, 1989), Yaari (1987), Denneberg
(1994)... etc.
Remark : Rg(X) might be denoted Eg◦P. But it is not an expected value since
Q = g ◦ P is not a probability measure.
69
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Distorted premium beta distortion function)
Loss value, X
Probabilitylevel,P
Fig. 29 – Distorted probabilities g(P(X > x))dx.
70
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Distorted premium beta distortion function)
Loss value, X
Probabilitylevel,P
Fig. 30 – Distorted probabilities g(P(X > x))dx.
71
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
some particular cases a classical premiums
The exponential premium or entropy measure : obtained when the agent
as an exponential utility function, i.e.
π such that U(ω − π) = EP(U(ω − S)), U(x) = − exp(−αx),
i.e. π =
1
α
log EP(eαX
).
Esscher’s transform (see Esscher ( 1936), B¨uhlmann ( 1980)),
π = EQ(X) =
EP(X · eαX
)
EP(eαX)
,
for some α > 0, i.e.
dQ
dP
=
eαX
EP(eαX)
.
Wang’s premium (see Wang ( 2000)), extending the Sharp ratio concept
E(X) =
∞
0
F(x)dx and π =
∞
0
Φ(Φ−1
(F(x)) + λ)dx
72
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Risk measures
The two most commonly used risk measures for a random variable X (assuming
that a loss is positive) are, q ∈ (0, 1),
• Value-at-Risk (VaR),
V aRq(X) = inf{x ∈ R, P(X > x) ≤ α},
• Expected Shortfall (ES), Tail Conditional Expectation (TCE) or Tail
Value-at-Risk (TVaR)
TV aRq(X) = E (X|X > V aRq(X)) ,
Artzner, Delbaen, Eber & Heath (1999) : a good risk measure is
subadditive,
TVaR is subadditive, VaR is not subadditive (in general).
73
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Risk measures and diversification
Any copula C is bounded by Frchet-Hoeffding bounds,
max
d
i=1
ui − (d − 1), 0 ≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud},
and thus, any distribution F on F(F1, . . . , Fd) is bounded
max
d
i=1
Fi(xi) − (d − 1), 0 ≤ F(x1, . . . , xd) ≤ min{F1(x1), . . . , Ff (xd)}.
Does this means the comonotonicity is always the worst-case scenario ?
Given a random pair (X, Y ), let (X−
, Y −
) and (X+
, Y +
) denote
contercomonotonic and comonotonic versions of (X, Y ), do we have
R(φ(X−
, Y −
))
?
≤ R(φ(X,
Y )
)
?
≤ R(φ(X+
, Y +
)).
74
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Tchen’s theorem and bounding some pure premiums
If φ : R2
→ R is supermodular, i.e.
φ(x2, y2) − φ(x1, y2) − φ(x2, y1) + φ(x1, y1) ≥ 0,
for any x1 ≤ x2 and y1 ≤ y2, then if (X, Y ) ∈ F(FX, FY ),
E φ(X−
, Y −
) ≤ E (φ(X, Y )) ≤ E φ(X+
, Y +
) ,
as proved in Tchen (1981).
Example 7. the stop loss premium for the sum of two risks E((X + Y − d)+) is
supermodular.
75
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Example 8. For the n-year joint-life annuity,
axy:n =
n
k=1
vk
P(Tx > k and Ty > k) =
n
k=1
vk
kpxy.
Then
a−
xy:n ≤ axy:n ≤ a+
xy:n ,
where
a−
xy:n =
n
k=1
vk
max{kpx + kpy − 1, 0}( lower Frchet bound ),
a+
xy:n =
n
k=1
vk
min{kpx, kpy}( upper Frchet bound ).
76
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
Makarov’s theorem and bounding Value-at-Risk
In the case where R denotes the Value-at-Risk (i.e. quantile function of the P&L
distribution),
R−
≤ R(X−
+ Y −
)≤R(X + Y )≤R(X+
+ Y +
) ≤ R+
,
where e.g. R+
can exceed the comonotonic case. Recall that
R(X + Y ) = VaRq[X + Y ] = F−1
X+Y (q) = inf{x ∈ R|FX+Y (x) ≥ q}.
Proposition 9. Let (X, Y ) ∈ F(FX, FY ) then for all s ∈ R,
τC− (FX, FY )(s) ≤ P(X + Y ≤ s) ≤ ρC− (FX, FY )(s),
where
τC(FX, FY )(s) = sup
x,y∈R
{C(FX(x), FY (y)), x + y = s}
and, if ˜C(u, v) = u + v − C(u, v),
ρC(FX, FY )(s) = inf
x,y∈R
{ ˜C(FX(x), FY (y)), x + y = s}.
77
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0.0 0.2 0.4 0.6 0.8 1.0
!4!2024
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gaussiens
Fig. 31 – Value-at-Risk for 2 Gaussian risks N(0, 1).
78
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0.90 0.92 0.94 0.96 0.98 1.00
0123456
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gaussiens
Fig. 32 – Value-at-Risk for 2 Gaussian risks N(0, 1).
79
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0.0 0.2 0.4 0.6 0.8 1.0
05101520
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gamma
Fig. 33 – Value-at-Risk for 2 Gamma risks G(3, 1).
80
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
0.90 0.92 0.94 0.96 0.98 1.00
05101520
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gamma
Fig. 34 – Value-at-Risk for 2 Gamma risks G(3, 1).
81
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Will the risk of the portfolio increase with correlation ?
Recall the following theoretical result :
Proposition 10. Assume that X and X are in the same Fr´echet space (i.e.
Xi
L
= Xi), and define
S = X1 + · · · + Xn and S = X1 + · · · + Xn.
If X X for the concordance order, then S T V aR S for the stop-loss or
TVaR order.
A consequence is that if X and X are exchangeable,
corr(Xi, Xj) ≤ corr(Xi, Xj) =⇒ TV aR(S, p) ≤ TV aR(S , p), for all p ∈ (0, 1).
See M¨uller & Stoyen (2002) for some possible extensions.
82
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Consider
• d lines of business,
• simply a binomial distribution on each line of business, with small loss
probability (e.g. π = 1/1000).
Let



1 if there is a claim on line i
0 if not
, and S = X1 + · · · + Xd.
Will the correlation among the Xi’s increase the Value-at-Risk of S ?
Consider a probit model, i.e. Xi = 1(Xi ≤ ui), where X ∼ N(0, Σ), i.e. a
Gaussian copula.
Assume that Σ = [σi,j] where σi,j = ρ ∈ [−1, 1] when i = j.
83
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 35 – 99.75% TVaR (or expected shortfall) for Gaussian copulas.
84
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 36 – 99% TVaR (or expected shortfall) for Gaussian copulas.
85
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
What about other risk measures, e.g. Value-at-Risk ?
corr(Xi, Xj) ≤ corr(Xi, Xj) V aR(S, p) ≤ V aR(S , p), for all p ∈ (0, 1).
(see e.g. Mittnik & Yener (2008)).
86
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 37 – 99.75% VaR for Gaussian copulas.
87
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 38 – 99% VaR for Gaussian copulas.
88
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
What could be the impact of tail dependence ?
Previously, we considered a Gaussian copula, i.e. tail independence. What if there
was tail dependence ?
Consider the case of a Student t-copula, with ν degrees of freedom.
89
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 39 – 99.75% TVaR (or expected shortfall) for Student t-copulas.
90
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 40 – 99% TVaR (or expected shortfall) for Student t-copulas.
91
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 41 – 99.75% VaR for Student t-copulas.
92
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
The more correlated, the more risky ?
Fig. 42 – 99% VaR for Student t-copulas.
93
Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II
A possible conclusion
• (standard) correlation is definitively not an appropriate tool to describe
dependence features,
◦ in order to fully describe dependence, use copulas,
◦ since major focus in risk management is related to extremal event, focus on
tail dependence meausres,
• which copula can be appropriate ?
◦ Elliptical copulas offer a nice and simple parametrization, based on pairwise
comparison,
◦ Archimedean copulas might be too restrictive, but possible to introduce
Hierarchical Archimedean copulas,
• Value-at-Risk might yield to non-intuitive results,
◦ need to get a better understanding about Value-at-Risk pitfalls,
◦ need to consider alternative downside risk measures (namely TVaR).
94

Más contenido relacionado

La actualidad más candente (20)

Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides guanauato
Slides guanauatoSlides guanauato
Slides guanauato
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Slides edf-2
Slides edf-2Slides edf-2
Slides edf-2
 
Slides angers-sfds
Slides angers-sfdsSlides angers-sfds
Slides angers-sfds
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
Berlin
BerlinBerlin
Berlin
 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
Inequality #4
Inequality #4Inequality #4
Inequality #4
 
Slides irisa
Slides irisaSlides irisa
Slides irisa
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides ineq-3b
Slides ineq-3bSlides ineq-3b
Slides ineq-3b
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides euria-1
Slides euria-1Slides euria-1
Slides euria-1
 
Slides ineq-2
Slides ineq-2Slides ineq-2
Slides ineq-2
 
HdR
HdRHdR
HdR
 

Destacado (19)

Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
 
Slides dauphine
Slides dauphineSlides dauphine
Slides dauphine
 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
 
Slides ensae-2016-2
Slides ensae-2016-2Slides ensae-2016-2
Slides ensae-2016-2
 
Slides ensae-2016-1
Slides ensae-2016-1Slides ensae-2016-1
Slides ensae-2016-1
 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
 
Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
 
Slides ensae-2016-3
Slides ensae-2016-3Slides ensae-2016-3
Slides ensae-2016-3
 
Slides ensae-2016-4
Slides ensae-2016-4Slides ensae-2016-4
Slides ensae-2016-4
 
Slides ensae-2016-10
Slides ensae-2016-10Slides ensae-2016-10
Slides ensae-2016-10
 
Slides ensae-2016-11
Slides ensae-2016-11Slides ensae-2016-11
Slides ensae-2016-11
 
Econometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 NonlinearitiesEconometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 Nonlinearities
 
Slides p6
Slides p6Slides p6
Slides p6
 
Slides picard-6
Slides picard-6Slides picard-6
Slides picard-6
 
Slides lyon-anr
Slides lyon-anrSlides lyon-anr
Slides lyon-anr
 
Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)
 
Slides sales-forecasting-session1-web
Slides sales-forecasting-session1-webSlides sales-forecasting-session1-web
Slides sales-forecasting-session1-web
 

Similar a Copulas, risk dependence and applications to Solvency II

quebec.pdf
quebec.pdfquebec.pdf
quebec.pdfykyog
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...BRNSS Publication Hub
 
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...Fernando A. B. Sabino da Silva
 
L030102085095
L030102085095L030102085095
L030102085095theijes
 
Several nonlinear models and methods for FDA
Several nonlinear models and methods for FDASeveral nonlinear models and methods for FDA
Several nonlinear models and methods for FDAtuxette
 
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...Tim Reis
 

Similar a Copulas, risk dependence and applications to Solvency II (20)

Slides essec
Slides essecSlides essec
Slides essec
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Slides ima
Slides imaSlides ima
Slides ima
 
quebec.pdf
quebec.pdfquebec.pdf
quebec.pdf
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Fougeres Besancon Archimax
Fougeres Besancon ArchimaxFougeres Besancon Archimax
Fougeres Besancon Archimax
 
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
 
Basic concepts and how to measure price volatility
Basic concepts and how to measure price volatility Basic concepts and how to measure price volatility
Basic concepts and how to measure price volatility
 
06_AJMS_200_19_RA.pdf
06_AJMS_200_19_RA.pdf06_AJMS_200_19_RA.pdf
06_AJMS_200_19_RA.pdf
 
06_AJMS_200_19_RA.pdf
06_AJMS_200_19_RA.pdf06_AJMS_200_19_RA.pdf
06_AJMS_200_19_RA.pdf
 
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
 
L030102085095
L030102085095L030102085095
L030102085095
 
Several nonlinear models and methods for FDA
Several nonlinear models and methods for FDASeveral nonlinear models and methods for FDA
Several nonlinear models and methods for FDA
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Uncertainty Quantifica...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Uncertainty Quantifica...MUMS: Bayesian, Fiducial, and Frequentist Conference - Uncertainty Quantifica...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Uncertainty Quantifica...
 
Side 2019, part 2
Side 2019, part 2Side 2019, part 2
Side 2019, part 2
 
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
 
cswiercz-general-presentation
cswiercz-general-presentationcswiercz-general-presentation
cswiercz-general-presentation
 

Más de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Último

Welding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsWelding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsIndiaMART InterMESH Limited
 
digital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingdigital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingrajputmeenakshi733
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryWhittensFineJewelry1
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdfChris Skinner
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Types of Cyberattacks - ASG I.T. Consulting.pdf
Types of Cyberattacks - ASG I.T. Consulting.pdfTypes of Cyberattacks - ASG I.T. Consulting.pdf
Types of Cyberattacks - ASG I.T. Consulting.pdfASGITConsulting
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationAnamaria Contreras
 
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh JiPsychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh Jiastral oracle
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers referencessuser2c065e
 
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...ssuserf63bd7
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Anamaria Contreras
 
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdfGUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdfDanny Diep To
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...ssuserf63bd7
 
Cyber Security Training in Office Environment
Cyber Security Training in Office EnvironmentCyber Security Training in Office Environment
Cyber Security Training in Office Environmentelijahj01012
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Peter Ward
 
Healthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterHealthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterJamesConcepcion7
 

Último (20)

Welding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsWelding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan Dynamics
 
digital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingdigital marketing , introduction of digital marketing
digital marketing , introduction of digital marketing
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
 
WAM Corporate Presentation April 12 2024.pdf
WAM Corporate Presentation April 12 2024.pdfWAM Corporate Presentation April 12 2024.pdf
WAM Corporate Presentation April 12 2024.pdf
 
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptxThe Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors Data
 
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Types of Cyberattacks - ASG I.T. Consulting.pdf
Types of Cyberattacks - ASG I.T. Consulting.pdfTypes of Cyberattacks - ASG I.T. Consulting.pdf
Types of Cyberattacks - ASG I.T. Consulting.pdf
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement Presentation
 
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh JiPsychic Reading | Spiritual Guidance – Astro Ganesh Ji
Psychic Reading | Spiritual Guidance – Astro Ganesh Ji
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers reference
 
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
Horngren’s Financial & Managerial Accounting, 7th edition by Miller-Nobles so...
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.
 
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdfGUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
GUIDELINES ON USEFUL FORMS IN FREIGHT FORWARDING (F) Danny Diep Toh MBA.pdf
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
 
Cyber Security Training in Office Environment
Cyber Security Training in Office EnvironmentCyber Security Training in Office Environment
Cyber Security Training in Office Environment
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...
 
Healthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterHealthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare Newsletter
 

Copulas, risk dependence and applications to Solvency II

  • 1. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Copulas, risk dependence and applications to Solvency II Arthur Charpentier CREM-Universit´e Rennes 1 http ://perso.univ-rennes1.fr/arthur.charpentier/ Summer School of the Groupe Consultatif Actuariel Europen : Enterprise Risk Management (ERM) and Solvency II, July 2008. 1
  • 2. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 2
  • 3. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 3
  • 4. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 4
  • 5. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 5
  • 6. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 6
  • 7. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II How to capture dependence in risk models ? Is correlation relevant to capture dependence information ? Consider (see McNeil, Embrechts & Straumann (2003)) 2 log-normal risks, • X ∼ LN(0, 1), i.e. X = exp(X ) where X ∼ N(0, 1) • Y ∼ LN(0, σ2 ), i.e. Y = exp(Y ) where Y ∼ N(0, σ2 ) Recall that corr(X , Y ) takes any value in [−1, +1]. Since corr(X, Y )=corr(X , Y ), what can be corr(X, Y ) ? 7
  • 8. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II How to capture dependence in risk models ? 0 1 2 3 4 5 −0.50.00.51.0 Standard deviation, sigma Correlation Fig. 1 – Range for the correlation, cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2 ). 8
  • 9. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II How to capture dependence in risk models ? 0 1 2 3 4 5 −0.50.00.51.0 Standard deviation, sigma Correlation Fig. 2 – cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2 ), Gaussian copula, r = 0.5. 9
  • 10. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II What about regulatory technical documents ? 10
  • 11. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II What about regulatory technical documents ? 11
  • 12. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II What about regulatory technical documents ? 12
  • 13. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II What about regulatory technical documents ? 13
  • 14. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Motivations : dependence and copulas Definition 1. A copula C is a joint distribution function on [0, 1]d , with uniform margins on [0, 1]. Theorem 2. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with F ∈ F(F1, . . . , Fd). Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C is unique, and given by C(u) = F(F−1 1 (u1), . . . , F−1 d (ud)) for all ui ∈ [0, 1] We will then define the copula of F, or the copula of X. 14
  • 15. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Copula density Level curves of the copula Fig. 3 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v). 15
  • 16. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Copula density Level curves of the copula Fig. 4 – Density of a copula, c(u, v) = ∂2 C(u, v) ∂u∂v . 16
  • 17. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Some very classical copulas • The independent copula C(u, v) = uv = C⊥ (u, v). The copula is standardly denoted Π, P or C⊥ , and an independent version of (X, Y ) will be denoted (X⊥ , Y ⊥ ). It is a random vector such that X⊥ L = X and Y ⊥ L = Y , with copula C⊥ . In higher dimension, C⊥ (u1, . . . , ud) = u1 × . . . × ud is the independent copula. • The comonotonic copula C(u, v) = min{u, v} = C+ (u, v). The copula is standardly denoted M, or C+ , and an comonotone version of (X, Y ) will be denoted (X+ , Y + ). It is a random vector such that X+ L = X and Y + L = Y , with copula C+ . (X, Y ) has copula C+ if and only if there exists a strictly increasing function h such that Y = h(X), or equivalently (X, Y ) L = (F−1 X (U), F−1 Y (U)) where U is U([0, 1]). 17
  • 18. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Some very classical copulas In higher dimension, C+ (u1, . . . , ud) = min{u1, . . . , ud} is the comonotonic copula. • The contercomotonic copula C(u, v) = max{u + v − 1, 0} = C− (u, v). The copula is standardly denoted W, or C− , and an contercomontone version of (X, Y ) will be denoted (X− , Y − ). It is a random vector such that X− L = X and Y − L = Y , with copula C− . (X, Y ) has copula C− if and only if there exists a strictly decreasing function h such that Y = h(X), or equivalently (X, Y ) L = (F−1 X (1 − U), F−1 Y (U)). In higher dimension, C− (u1, . . . , ud) = max{u1 + . . . + ud − (d − 1), 0} is not a copula. But note that for any copula C, C− (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ C+ (u1, . . . , ud) 18
  • 19. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81 Frechetlowerbound 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81Independencecopula 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81 Frechetupperbound Fréchet Lower Bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Independent copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Fréchet Upper Bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Lower Fréchet!Hoeffding bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Indepedent copula random generation 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Upper Fréchet!Hoeffding bound Fig. 5 – Contercomontonce, independent, and comonotone copulas. 19
  • 20. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Elliptical (Gaussian and t) copulas The idea is to extend the multivariate probit model, X = (X1, . . . , Xd) with marginal B(pi) distributions, modeled as Yi = 1(Xi ≤ ui), where X ∼ N(I, Σ). • The Gaussian copula, with parameter α ∈ (−1, 1), C(u, v) = 1 2π √ 1 − α2 Φ−1 (u) −∞ Φ−1 (v) −∞ exp −(x2 − 2αxy + y2 ) 2(1 − α2) dxdy. Analogously the t-copula is the distribution of (T(X), T(Y )) where T is the t-cdf, and where (X, Y ) has a joint t-distribution. • The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2, C(u, v) = 1 2π √ 1 − α2 t−1 ν (u) −∞ t−1 ν (v) −∞ 1 + x2 − 2αxy + y2 2(1 − α2) −((ν+2)/2) dxdy. 20
  • 21. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Archimedean copulas • Archimedian copulas C(u, v) = φ−1 (φ(u) + φ(v)), where φ is decreasing convex (0, 1), with φ(0) = ∞ and φ(1) = 0. Example 3. If φ(t) = [− log t]α , then C is Gumbel’s copula, and if φ(t) = t−α − 1, C is Clayton’s. Note that C⊥ is obtained when φ(t) = − log t. The frailty approach : assume that X and Y are conditionally independent, given the value of an heterogeneous component Θ. Assume further that P(X ≤ x|Θ = θ) = (GX(x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ for some baseline distribution functions GX and GY . Then F(x, y) = ψ(ψ−1 (FX(x)) + ψ−1 (FY (y))), where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ ). 21
  • 22. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0 20 40 60 80 100 020406080100 Conditional independence, continuous risk factor !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, continuous risk factor Fig. 6 – Continuous classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 22
  • 23. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Some more examples of Archimedean copulas ψ(t) range θ (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978) (2) (1 − t)θ [1, ∞) (3) log 1−θ(1−t) t [−1, 1) Ali-Mikhail-Haq (4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986) (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987) (6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993) (7) − log{θt + (1 − θ)} (0, 1] (8) 1−t 1+(θ−1)t [1, ∞) (9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960) (10) log(2t−θ − 1) (0, 1] (11) log(2 − tθ) (0, 1/2] (12) ( 1 t − 1)θ [1, ∞) (13) (1 − log t)θ − 1 (0, ∞) (14) (t−1/θ − 1)θ [1, ∞) (15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994) (16) ( θ t + 1)(1 − t) [0, ∞) 23
  • 24. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Extreme value copulas • Extreme value copulas C(u, v) = exp (log u + log v) A log u log u + log v , where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et max{1 − ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] . An alternative definition is the following : C is an extreme value copula if for all z > 0, C(u1, . . . , ud) = C(u 1/z 1 , . . . , u 1/z d )z . Those copula are then called max-stable : define the maximum componentwise of a sample X1, . . . , Xn, i.e. Mi = max{Xi,1, . . . , Xi,n}. Remark more difficult to characterize when d ≥ 3. 24
  • 25. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Gaussian, Student t (and elliptical) copulas Focuses on pairwise dependence through the correlation matrix,        X1 X2 X3 X4        ∼ N        0, 1 r12 r13 r14 r12 1 r23 r24 r13 r23 1 r34 r14 r24 r34 1        Dependence in [0, 1]d ←→ summarized in d(d + 1)/2 parameters, 25
  • 26. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 1 [φ1(u1) + φ1(u2) + φ1(u3) + φ1(u4)], which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 alpha4 α4 α3 1        26
  • 27. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4 φ−1 2 (φ2(u1) + φ2(u2)) + φ4 φ−1 3 (φ3(u3) + φ3(u4)) ), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 alpha4 α4 α3 1        27
  • 28. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4 φ−1 2 (φ2(u1) + φ2(u2)) + φ4 φ−1 3 (φ3(u3) + φ3(u4)) ), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 alpha4 α4 α3 1        28
  • 29. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4 φ−1 2 (φ2(u1) + φ2(u2)) + φ4 φ−1 3 (φ3(u3) + φ3(u4)) ), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 α4 α4 α3 1        29
  • 30. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4[φ−1 3 (φ3 φ−1 2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α3 α4 α2 1 α3 α4 α3 α3 1 α4 α4 α4 α4 1        30
  • 31. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4[φ−1 3 (φ3 φ−1 2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α3 α4 α2 1 α3 α4 α3 α3 1 α4 α4 α4 α4 1        31
  • 32. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4[φ−1 3 (φ3 φ−1 2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α3 α4 α2 1 α3 α4 α3 α3 1 α4 α4 α4 α4 1        32
  • 33. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II On copula parametrization • Extreme value copulas Here, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]d−1 . Further, focuses only on first order tail dependence. 33
  • 34. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Natural properties for dependence measures Definition 4. κ is measure of concordance if and only if κ satisfies • κ is defined for every pair (X, Y ) of continuous random variables, • −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1, • κ (X, Y ) = κ (Y, X), • if X and Y are independent, then κ (X, Y ) = 0, • κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ), • if (X1, Y1) P QD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2), • if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that converge to a pair (X, Y ) then κ (Xn, Yn) → κ (X, Y ) as n → ∞. 34
  • 35. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Natural properties for dependence measures If κ is measure of concordance, then, if f and g are both strictly increasing, then κ(f(X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f(X) with f almost surely strictly increasing, and analogously κ(X, Y ) = −1 if Y = f(X) with f almost surely strictly decreasing (see Scarsini (1984)). Rank correlations can be considered, i.e. Spearman’s ρ defined as ρ(X, Y ) = corr(FX(X), FY (Y )) = 12 1 0 1 0 C(u, v)dudv − 3 and Kendall’s τ defined as τ(X, Y ) = 4 1 0 1 0 C(u, v)dC(u, v) − 1. 35
  • 36. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Historical version of those coefficients Similarly Kendall’s tau was not defined using copulae, but as the probability of concordance, minus the probability of discordance, i.e. τ(X, Y ) = 3[P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0)], where (X1, Y1) and (X2, Y2) denote two independent versions of (X, Y ) (see Nelsen (1999)). Equivalently, τ(X, Y ) = 1 − 4Q n(n2 − 1) where Q is the number of inversions between the rankings of X and Y (number of discordance). 36
  • 37. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 !0.50.00.51.01.5 Concordant pairs X Y !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 !0.50.00.51.01.5 Discordant pairs X Y Fig. 7 – Concordance versus discordance. 37
  • 38. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Alternative expressions of those coefficients Note that those coefficients can also be expressed as follows ρ(X, Y ) = [0,1]×[0,1] C(u, v) − C⊥ (u, v)dudv [0,1]×[0,1] C+(u, v) − C⊥(u, v)dudv (the normalized average distance between C and C⊥ ), for instance. The case of the Gaussian random vector If (X, Y ) is a Gaussian random vector with correlation r, then (Kruskal (1958)) ρ(X, Y ) = 6 π arcsin r 2 and τ(X, Y ) = 2 π arcsin (r) . 38
  • 39. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II From Kendall’tau to copula parameters Kendall’s τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00 Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞ Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞ Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞ Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞ Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞ Morgenstein θ 0.00 0.45 0.90 - - - - - - - - 39
  • 40. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II From Spearman’s rho to copula parameters Spearman’s ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00 Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞ A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞ Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞ Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞ Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞ Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞ Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - - 40
  • 41. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Marges uniformes CopuledeGumbel !2 0 2 4 !2024 Marges gaussiennes Fig. 8 – Simulations of Gumbel’s copula θ = 1.2. 41
  • 42. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Marges uniformes CopuleGaussienne !2 0 2 4 !2024 Marges gaussiennes Fig. 9 – Simulations of the Gaussian copula (θ = 0.95). 42
  • 43. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Strong tail dependence Joe (1993) defined, in the bivariate case a tail dependence measure. Definition 5. Let (X, Y ) denote a random pair, the upper and lower tail dependence parameters are defined, if the limit exist, as λL = lim u→0 P X ≤ F−1 X (u) |Y ≤ F−1 Y (u) , = lim u→0 P (U ≤ u|V ≤ u) = lim u→0 C(u, u) u , and λU = lim u→1 P X > F−1 X (u) |Y > F−1 Y (u) = lim u→0 P (U > 1 − u|V ≤ 1 − u) = lim u→0 C (u, u) u . 43
  • 44. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GAUSSIAN q q Fig. 10 – L and R cumulative curves. 44
  • 45. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GUMBEL q q Fig. 11 – L and R cumulative curves. 45
  • 46. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) CLAYTON q q Fig. 12 – L and R cumulative curves. 46
  • 47. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q qq q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) STUDENT (df=5) q q Fig. 13 – L and R cumulative curves. 47
  • 48. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) STUDENT (df=3) q q Fig. 14 – L and R cumulative curves. 48
  • 49. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Estimating (strong) tail dependence From P ≈ P X > F−1 X (u) , Y > F−1 Y (u) P Y > F−1 Y (u) for u closed to 1, as for Hill’s estimator, a natural estimator for λ is obtained with u = 1 − k/n, λ (k) U = 1 n n i=1 1(Xi > Xn−k:n, Yi > Yn−k:n) 1 n n i=1 1(Yi > Yn−k:n) , hence λ (k) U = 1 k n i=1 1(Xi > Xn−k:n, Yi > Yn−k:n). λ (k) L = 1 k n i=1 1(Xi ≤ Xk:n, Yi ≤ Yk:n). 49
  • 50. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Asymptotic convergence, how fast ? 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 (Upper) tail dependence, Gaussian copula, n=200 Exceedance probability 0.001 0.005 0.050 0.500 0.00.20.40.60.81.0 Log scale, (lower) tail dependence Exceedance probability (log scale) Fig. 15 – Convergence of L and R functions, Gaussian copula, n = 200. 50
  • 51. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Asymptotic convergence, how fast ? 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 (Upper) tail dependence, Gaussian copula, n=200 Exceedance probability 0.001 0.005 0.050 0.500 0.00.20.40.60.81.0 Log scale, (lower) tail dependence Exceedance probability (log scale) Fig. 16 – Convergence of L and R functions, Gaussian copula, n = 2, 000. 51
  • 52. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Asymptotic convergence, how fast ? 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 (Upper) tail dependence, Gaussian copula, n=200 Exceedance probability 0.001 0.005 0.050 0.500 0.00.20.40.60.81.0 Log scale, (lower) tail dependence Exceedance probability (log scale) Fig. 17 – Convergence of L and R functions, Gaussian copula, n = 20, 000. 52
  • 53. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Weak tail dependence If X and Y are independent (in tails), for u large enough P(X > F−1 X (u), Y > F−1 Y (u)) = P(X > F−1 X (u)) · P(Y > F−1 Y (u)) = (1 − u)2 , or equivalently, log P(X > F−1 X (u), Y > F−1 Y (u)) = 2 · log(1 − u). Further, if X and Y are comonotonic (in tails), for u large enough P(X > F−1 X (u), Y > F−1 Y (u)) = P(X > F−1 X (u)) = (1 − u)1 , or equivalently, log P(X > F−1 X (u), Y > F−1 Y (u)) = 1 · log(1 − u). =⇒ limit of the ratio log(1 − u) log P(Z1 > F−1 1 (u), Z2 > F−1 2 (u)) . 53
  • 54. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Weak tail dependence Coles, Heffernan & Tawn (1999) defined Definition 6. Let (X, Y ) denote a random pair, the upper and lower tail dependence parameters are defined, if the limit exist, as ηL = lim u→0 log(u) log P(Z1 ≤ F−1 1 (u), Z2 ≤ F−1 2 (u)) = lim u→0 log(u) log C(u, u) , and ηU = lim u→1 log(1 − u) log P(Z1 > F−1 1 (u), Z2 > F−1 2 (u)) = lim u→0 log(u) log C (u, u) . 54
  • 55. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GAUSSIAN q q Fig. 18 – χ functions. 55
  • 56. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GUMBEL q q Fig. 19 – χ functions. 56
  • 57. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails CLAYTON q q Fig. 20 – χ functions. 57
  • 58. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails STUDENT (df=3) q q Fig. 21 – χ functions. 58
  • 59. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Application in risk management : Loss-ALAE q q qq q q q q q q q q q q q q q q q q q q q q qq qq q q qqq qq q qq q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qqqq q q q qqq qq qq qqq q qq q q q qqqqq q q q q q qq q q q q q q qq qq q q q q q q q q q q q q q qq q q qq q q q q q q qqq q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq qq q q q qq qq qq qq qq q q qqq qqq qq q qq q q q q q q q q q q q q q q q q q q q q q qqqq q qqq qq qqqq q q qqq qq qq qq q qq q qqq qqqq qqq qqqqq qq qqqq qq qq q qq q q q q q q q q q q q q q q q q q q q qqqq qq q q q qq qqq q q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q qq qq q qq q q qq q q q q q q qq q q q q qq q q q q q q q qq q q q q q q q qqqq qq q qqqqq q q qqqq qqqqq q qq q q q q qq qqqq qqqqqq q qqq qq qqqqqqqq qq qqqq q qqq q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q qq q qq qqq qq qqq q q q q qq q qq qq q qq qq q qq q qqq qqq q qq q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q qq q q q qqq qq q q q qqqqqqq qqq q qq qqq q qqq qqq qq qq qq q qqq qqq qqqqqqqqqqq qqq qq qqq qqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q qq qq qqqq q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q qq qq qqq qqqqqqqqq q qq qqq q qq qq qqqq qq q qq q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q qq qq q q q q q q q qqq qq qq qq qqq q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq qq qq q q q q q q qq q qqqqq q qq q q qq q q qqq qqqqq q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq qq q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q qq q q q q q q q q q qq q q q q q q q qq q q q qq qq q qq qq q q q q qq qqq qq q q q qq q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq qq qqqq qqqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q qq q q q q qq q q q qq q q q q q q q q q q q q qq q q q qqqqq q q q q q q q q q q q q q q q q q q q qqq qq q q q q qq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Loss AllocatedExpenses Fig. 22 – Losses and allocated expenses. 59
  • 60. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Application in risk management : Loss-ALAE 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) qqq qqq qqq qqqqqqqqq qqqqqqqqqq q qqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqq qqqqqq qqqq qqq qqqqqqq qqq qqqqq qq qqq qq q qq q q q q q q q q q q q q q Gumbel copula q q 0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0 Chi dependence functions lower tails upper tails q q q qqq qqq qqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqq qq qqqqqqqqqqqqqq qqq q q q q Gumbel copula q q Fig. 23 – L and R cumulative curves, and χ functions. 60
  • 61. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Application in risk management : car-household q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Car claims Householdclaims Fig. 24 – Motor and Household claims. 61
  • 62. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Application in risk management : car-household 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) qqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qq qqq q qq qq qqqqqqqqqqqqqqq qqqqqqqq qqqqqqqqqqqqqq qqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqq qqqq q qqq qqqq qqq qqq qqqqq qqqqq qq qqqqqqq q qqqq qqq q qq q q q q q q q q q q q q q q q q q q q q q q q q q Gumbel copula q q 0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0 Chi dependence functions lower tails upper tails qqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qq qqq q qqqqqqqqqqqqqqqqqqq qqqqqqqq qqqqqqqqqqqqqq qqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqq qqqqqqq qqqqqqq q q q q q q q q q q q q q Gumbel copula q q Fig. 25 – L and R cumulative curves, and χ functions. 62
  • 63. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Case of Archimedean copulas For an exhaustive study of tail behavior for Archimedean copulas, see Charpentier & Segers (2008). • upper tail : function of φ (1) and θ1 = − lim s→0 sφ (1 − s) φ(1 − s) , ◦ φ (1) < 0 : tail independence ◦ φ (1) = 0 and θ1 = 1 : dependence in independence ◦ φ (1) = 0 and θ1 > 1 : tail dependence • lower tail : function of φ(0) and θ0 = − lim s→0 sφ (s) φ(s) , ◦ φ(0) < ∞ : tail independence ◦ φ(0) = ∞ and θ0 = 0 : dependence in independence ◦ φ(0) = ∞ and θ0 > 0 : tail dependence 0.0 0.2 0.4 0.6 0.8 1.0 05101520 63
  • 64. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Measuring risks ? the pure premium as a technical benchmark Pascal, Fermat, Condorcet, Huygens, d’Alembert in the XVIIIth century proposed to evaluate the “produit scalaire des probabilit´es et des gains”, < p, x >= n i=1 pixi = n i=1 P(X = xi) · xi = EP(X), based on the “r`egle des parties”. For Qu´etelet, the expected value was, in the context of insurance, the price that guarantees a financial equilibrium. From this idea, we consider in insurance the pure premium as EP(X). As in Cournot (1843), “l’esp´erance math´ematique est donc le juste prix des chances” (or the “fair price” mentioned in Feller (1953)). Problem : Saint Peterburg’s paradox, i.e. infinite mean risks (cf. natural catastrophes) 64
  • 65. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II the pure premium as a technical benchmark For a positive random variable X, recall that EP(X) = ∞ 0 P(X > x)dx. q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Expected value Loss value, X Probabilitylevel,P Fig. 26 – Expected value EP(X) = xdFX(x) = P(X > x)dx. 65
  • 66. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II from pure premium to expected utility principle Ru(X) = u(x)dP = P(u(X) > x))dx where u : [0, ∞) → [0, ∞) is a utility function. Example with an exponential utility, u(x) = [1 − e−αx ]/α, Ru(X) = 1 α log EP(eαX ) , i.e. the entropic risk measure. See Cramer (1728), Bernoulli (1738), von Neumann & Morgenstern (1944), Rochet (1994)... etc. 66
  • 67. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Expected utility (power utility function) Loss value, X Probabilitylevel,P Fig. 27 – Expected utility u(x)dFX(x). 67
  • 68. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Expected utility (power utility function) Loss value, X Probabilitylevel,P Fig. 28 – Expected utility u(x)dFX(x). 68
  • 69. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II from pure premium to distorted premiums (Wang) Rg(X) = xdg ◦ P = g(P(X > x))dx where g : [0, 1] → [0, 1] is a distorted function. Example • if g(x) = I(X ≥ 1 − α) Rg(X) = V aR(X, α), • if g(x) = min{x/(1 − α), 1} Rg(X) = TV aR(X, α) (also called expected shortfall), Rg(X) = EP(X|X > V aR(X, α)). See D’Alembert (1754), Schmeidler (1986, 1989), Yaari (1987), Denneberg (1994)... etc. Remark : Rg(X) might be denoted Eg◦P. But it is not an expected value since Q = g ◦ P is not a probability measure. 69
  • 70. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Distorted premium beta distortion function) Loss value, X Probabilitylevel,P Fig. 29 – Distorted probabilities g(P(X > x))dx. 70
  • 71. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Distorted premium beta distortion function) Loss value, X Probabilitylevel,P Fig. 30 – Distorted probabilities g(P(X > x))dx. 71
  • 72. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II some particular cases a classical premiums The exponential premium or entropy measure : obtained when the agent as an exponential utility function, i.e. π such that U(ω − π) = EP(U(ω − S)), U(x) = − exp(−αx), i.e. π = 1 α log EP(eαX ). Esscher’s transform (see Esscher ( 1936), B¨uhlmann ( 1980)), π = EQ(X) = EP(X · eαX ) EP(eαX) , for some α > 0, i.e. dQ dP = eαX EP(eαX) . Wang’s premium (see Wang ( 2000)), extending the Sharp ratio concept E(X) = ∞ 0 F(x)dx and π = ∞ 0 Φ(Φ−1 (F(x)) + λ)dx 72
  • 73. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Risk measures The two most commonly used risk measures for a random variable X (assuming that a loss is positive) are, q ∈ (0, 1), • Value-at-Risk (VaR), V aRq(X) = inf{x ∈ R, P(X > x) ≤ α}, • Expected Shortfall (ES), Tail Conditional Expectation (TCE) or Tail Value-at-Risk (TVaR) TV aRq(X) = E (X|X > V aRq(X)) , Artzner, Delbaen, Eber & Heath (1999) : a good risk measure is subadditive, TVaR is subadditive, VaR is not subadditive (in general). 73
  • 74. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Risk measures and diversification Any copula C is bounded by Frchet-Hoeffding bounds, max d i=1 ui − (d − 1), 0 ≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud}, and thus, any distribution F on F(F1, . . . , Fd) is bounded max d i=1 Fi(xi) − (d − 1), 0 ≤ F(x1, . . . , xd) ≤ min{F1(x1), . . . , Ff (xd)}. Does this means the comonotonicity is always the worst-case scenario ? Given a random pair (X, Y ), let (X− , Y − ) and (X+ , Y + ) denote contercomonotonic and comonotonic versions of (X, Y ), do we have R(φ(X− , Y − )) ? ≤ R(φ(X, Y ) ) ? ≤ R(φ(X+ , Y + )). 74
  • 75. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Tchen’s theorem and bounding some pure premiums If φ : R2 → R is supermodular, i.e. φ(x2, y2) − φ(x1, y2) − φ(x2, y1) + φ(x1, y1) ≥ 0, for any x1 ≤ x2 and y1 ≤ y2, then if (X, Y ) ∈ F(FX, FY ), E φ(X− , Y − ) ≤ E (φ(X, Y )) ≤ E φ(X+ , Y + ) , as proved in Tchen (1981). Example 7. the stop loss premium for the sum of two risks E((X + Y − d)+) is supermodular. 75
  • 76. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Example 8. For the n-year joint-life annuity, axy:n = n k=1 vk P(Tx > k and Ty > k) = n k=1 vk kpxy. Then a− xy:n ≤ axy:n ≤ a+ xy:n , where a− xy:n = n k=1 vk max{kpx + kpy − 1, 0}( lower Frchet bound ), a+ xy:n = n k=1 vk min{kpx, kpy}( upper Frchet bound ). 76
  • 77. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II Makarov’s theorem and bounding Value-at-Risk In the case where R denotes the Value-at-Risk (i.e. quantile function of the P&L distribution), R− ≤ R(X− + Y − )≤R(X + Y )≤R(X+ + Y + ) ≤ R+ , where e.g. R+ can exceed the comonotonic case. Recall that R(X + Y ) = VaRq[X + Y ] = F−1 X+Y (q) = inf{x ∈ R|FX+Y (x) ≥ q}. Proposition 9. Let (X, Y ) ∈ F(FX, FY ) then for all s ∈ R, τC− (FX, FY )(s) ≤ P(X + Y ≤ s) ≤ ρC− (FX, FY )(s), where τC(FX, FY )(s) = sup x,y∈R {C(FX(x), FY (y)), x + y = s} and, if ˜C(u, v) = u + v − C(u, v), ρC(FX, FY )(s) = inf x,y∈R { ˜C(FX(x), FY (y)), x + y = s}. 77
  • 78. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0.0 0.2 0.4 0.6 0.8 1.0 !4!2024 Bornes de la VaR d’un portefeuille Somme de 2 risques Gaussiens Fig. 31 – Value-at-Risk for 2 Gaussian risks N(0, 1). 78
  • 79. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0.90 0.92 0.94 0.96 0.98 1.00 0123456 Bornes de la VaR d’un portefeuille Somme de 2 risques Gaussiens Fig. 32 – Value-at-Risk for 2 Gaussian risks N(0, 1). 79
  • 80. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0.0 0.2 0.4 0.6 0.8 1.0 05101520 Bornes de la VaR d’un portefeuille Somme de 2 risques Gamma Fig. 33 – Value-at-Risk for 2 Gamma risks G(3, 1). 80
  • 81. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II 0.90 0.92 0.94 0.96 0.98 1.00 05101520 Bornes de la VaR d’un portefeuille Somme de 2 risques Gamma Fig. 34 – Value-at-Risk for 2 Gamma risks G(3, 1). 81
  • 82. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Will the risk of the portfolio increase with correlation ? Recall the following theoretical result : Proposition 10. Assume that X and X are in the same Fr´echet space (i.e. Xi L = Xi), and define S = X1 + · · · + Xn and S = X1 + · · · + Xn. If X X for the concordance order, then S T V aR S for the stop-loss or TVaR order. A consequence is that if X and X are exchangeable, corr(Xi, Xj) ≤ corr(Xi, Xj) =⇒ TV aR(S, p) ≤ TV aR(S , p), for all p ∈ (0, 1). See M¨uller & Stoyen (2002) for some possible extensions. 82
  • 83. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Consider • d lines of business, • simply a binomial distribution on each line of business, with small loss probability (e.g. π = 1/1000). Let    1 if there is a claim on line i 0 if not , and S = X1 + · · · + Xd. Will the correlation among the Xi’s increase the Value-at-Risk of S ? Consider a probit model, i.e. Xi = 1(Xi ≤ ui), where X ∼ N(0, Σ), i.e. a Gaussian copula. Assume that Σ = [σi,j] where σi,j = ρ ∈ [−1, 1] when i = j. 83
  • 84. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 35 – 99.75% TVaR (or expected shortfall) for Gaussian copulas. 84
  • 85. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 36 – 99% TVaR (or expected shortfall) for Gaussian copulas. 85
  • 86. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? What about other risk measures, e.g. Value-at-Risk ? corr(Xi, Xj) ≤ corr(Xi, Xj) V aR(S, p) ≤ V aR(S , p), for all p ∈ (0, 1). (see e.g. Mittnik & Yener (2008)). 86
  • 87. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 37 – 99.75% VaR for Gaussian copulas. 87
  • 88. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 38 – 99% VaR for Gaussian copulas. 88
  • 89. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? What could be the impact of tail dependence ? Previously, we considered a Gaussian copula, i.e. tail independence. What if there was tail dependence ? Consider the case of a Student t-copula, with ν degrees of freedom. 89
  • 90. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 39 – 99.75% TVaR (or expected shortfall) for Student t-copulas. 90
  • 91. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 40 – 99% TVaR (or expected shortfall) for Student t-copulas. 91
  • 92. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 41 – 99.75% VaR for Student t-copulas. 92
  • 93. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II The more correlated, the more risky ? Fig. 42 – 99% VaR for Student t-copulas. 93
  • 94. Arthur CHARPENTIER - Copulas, risk dependence and applications to Solvency II A possible conclusion • (standard) correlation is definitively not an appropriate tool to describe dependence features, ◦ in order to fully describe dependence, use copulas, ◦ since major focus in risk management is related to extremal event, focus on tail dependence meausres, • which copula can be appropriate ? ◦ Elliptical copulas offer a nice and simple parametrization, based on pairwise comparison, ◦ Archimedean copulas might be too restrictive, but possible to introduce Hierarchical Archimedean copulas, • Value-at-Risk might yield to non-intuitive results, ◦ need to get a better understanding about Value-at-Risk pitfalls, ◦ need to consider alternative downside risk measures (namely TVaR). 94