SlideShare una empresa de Scribd logo
1 de 117
Descargar para leer sin conexión
Arthur CHARPENTIER - Extremes and correlation in risk management
Explain and demonstrate the importance
of the tails of the distributions,
tail correlations and
low frequency/high severity events
Arthur Charpentier
Universit´e de Rennes 1 & ´Ecole Polytechnique
http ://blogperso.univ-rennes1.fr/arthur.charpentier/
1
Arthur CHARPENTIER - Extremes and correlation in risk management
SCR and Solvency
2
Arthur CHARPENTIER - Extremes and correlation in risk management
SCR and Solvency
3
Arthur CHARPENTIER - Extremes and correlation in risk management
SCR and Solvency
4
Arthur CHARPENTIER - Extremes and correlation in risk management
SCR and Solvency
5
Arthur CHARPENTIER - Extremes and correlation in risk management
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
6
Arthur CHARPENTIER - Extremes and correlation in risk management
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
7
Arthur CHARPENTIER - Extremes and correlation in risk management
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
8
Arthur CHARPENTIER - Extremes and correlation in risk management
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
9
Arthur CHARPENTIER - Extremes and correlation in risk management
On risk dependence in QIS’s
http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF
10
Arthur CHARPENTIER - Extremes and correlation in risk management
How to capture dependence in risk models ?
Is correlation relevant to capture dependence information ?
Consider (see McNeil, Embrechts & Straumann (2003)) 2 log-normal risks,
• X ∼ LN(0, 1), i.e. X = exp(X ) where X ∼ N(0, 1)
• Y ∼ LN(0, σ2
), i.e. Y = exp(Y ) where Y ∼ N(0, σ2
)
Recall that corr(X , Y ) takes any value in [−1, +1].
Since corr(X, Y )=corr(X , Y ), what can be corr(X, Y ) ?
11
Arthur CHARPENTIER - Extremes and correlation in risk management
How to capture dependence in risk models ?
0 1 2 3 4 5
−0.50.00.51.0
Standard deviation, sigma
Correlation
Fig. 1 – Range for the correlation, cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2
).
12
Arthur CHARPENTIER - Extremes and correlation in risk management
How to capture dependence in risk models ?
0 1 2 3 4 5
−0.50.00.51.0
Standard deviation, sigma
Correlation
Fig. 2 – cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2
), Gaussian copula, r = 0.5.
13
Arthur CHARPENTIER - Extremes and correlation in risk management
What about official actuarial documents ?
14
Arthur CHARPENTIER - Extremes and correlation in risk management
What about official actuarial documents ?
15
Arthur CHARPENTIER - Extremes and correlation in risk management
What about official actuarial documents ?
16
Arthur CHARPENTIER - Extremes and correlation in risk management
What about regulatory technical documents ?
17
Arthur CHARPENTIER - Extremes and correlation in risk management
What about regulatory technical documents ?
18
Arthur CHARPENTIER - Extremes and correlation in risk management
What about regulatory technical documents ?
19
Arthur CHARPENTIER - Extremes and correlation in risk management
What about regulatory technical documents ?
20
Arthur CHARPENTIER - Extremes and correlation in risk management
Motivations : dependence and copulas
Definition 1. A copula C is a joint distribution function on [0, 1]d
, with
uniform margins on [0, 1].
Theorem 2. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal
distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with
F ∈ F(F1, . . . , Fd).
Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that
F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C is
unique, and given by
C(u) = F(F−1
1 (u1), . . . , F−1
d (ud)) for all ui ∈ [0, 1]
We will then define the copula of F, or the copula of X.
21
Arthur CHARPENTIER - Extremes and correlation in risk management
Copula density Level curves of the copula
Fig. 3 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v).
22
Arthur CHARPENTIER - Extremes and correlation in risk management
Copula density Level curves of the copula
Fig. 4 – Density of a copula, c(u, v) =
∂2
C(u, v)
∂u∂v
.
23
Arthur CHARPENTIER - Extremes and correlation in risk management
Some very classical copulas
• The independent copula C(u, v) = uv = C⊥
(u, v).
The copula is standardly denoted Π, P or C⊥
, and an independent version of
(X, Y ) will be denoted (X⊥
, Y ⊥
). It is a random vector such that X⊥ L
= X and
Y ⊥ L
= Y , with copula C⊥
.
In higher dimension, C⊥
(u1, . . . , ud) = u1 × . . . × ud is the independent copula.
• The comonotonic copula C(u, v) = min{u, v} = C+
(u, v).
The copula is standardly denoted M, or C+
, and an comonotone version of
(X, Y ) will be denoted (X+
, Y +
). It is a random vector such that X+ L
= X and
Y + L
= Y , with copula C+
.
(X, Y ) has copula C+
if and only if there exists a strictly increasing function h
such that Y = h(X), or equivalently (X, Y )
L
= (F−1
X (U), F−1
Y (U)) where U is
U([0, 1]).
24
Arthur CHARPENTIER - Extremes and correlation in risk management
Some very classical copulas
In higher dimension, C+
(u1, . . . , ud) = min{u1, . . . , ud} is the comonotonic
copula.
• The contercomotonic copula C(u, v) = max{u + v − 1, 0} = C−
(u, v).
The copula is standardly denoted W, or C−
, and an contercomontone version of
(X, Y ) will be denoted (X−
, Y −
). It is a random vector such that X− L
= X and
Y − L
= Y , with copula C−
.
(X, Y ) has copula C−
if and only if there exists a strictly decreasing function h
such that Y = h(X), or equivalently (X, Y )
L
= (F−1
X (1 − U), F−1
Y (U)).
In higher dimension, C−
(u1, . . . , ud) = max{u1 + . . . + ud − (d − 1), 0} is not a
copula.
But note that for any copula C,
C−
(u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ C+
(u1, . . . , ud)
25
Arthur CHARPENTIER - Extremes and correlation in risk management
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetlowerbound
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81Independencecopula
0.2
0.4
0.6
0.8
u_10.2
0.4
0.6
0.8
u_2
00.20.40.60.81
Frechetupperbound
Fréchet Lower Bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Independent copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Fréchet Upper Bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Lower Fréchet!Hoeffding bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Indepedent copula random generation
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Scatterplot, Upper Fréchet!Hoeffding bound
Fig. 5 – Contercomontonce, independent, and comonotone copulas.
26
Arthur CHARPENTIER - Extremes and correlation in risk management
Elliptical (Gaussian and t) copulas
The idea is to extend the multivariate probit model, X = (X1, . . . , Xd) with
marginal B(pi) distributions, modeled as Yi = 1(Xi ≤ ui), where X ∼ N(I, Σ).
• The Gaussian copula, with parameter α ∈ (−1, 1),
C(u, v) =
1
2π
√
1 − α2
Φ−1
(u)
−∞
Φ−1
(v)
−∞
exp
−(x2
− 2αxy + y2
)
2(1 − α2)
dxdy.
Analogously the t-copula is the distribution of (T(X), T(Y )) where T is the t-cdf,
and where (X, Y ) has a joint t-distribution.
• The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2,
C(u, v) =
1
2π
√
1 − α2
t−1
ν (u)
−∞
t−1
ν (v)
−∞
1 +
x2
− 2αxy + y2
2(1 − α2)
−((ν+2)/2)
dxdy.
27
Arthur CHARPENTIER - Extremes and correlation in risk management
Archimedean copulas
• Archimedian copulas C(u, v) = φ−1
(φ(u) + φ(v)), where φ is decreasing convex
(0, 1), with φ(0) = ∞ and φ(1) = 0.
Example 3. If φ(t) = [− log t]α
, then C is Gumbel’s copula, and if
φ(t) = t−α
− 1, C is Clayton’s. Note that C⊥
is obtained when φ(t) = − log t.
The frailty approach : assume that X and Y are conditionally independent, given
the value of an heterogeneous component Θ. Assume further that
P(X ≤ x|Θ = θ) = (GX(x))θ
and P(Y ≤ y|Θ = θ) = (GY (y))θ
for some baseline distribution functions GX and GY . Then
F(x, y) = ψ(ψ−1
(FX(x)) + ψ−1
(FY (y))),
where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ
).
28
Arthur CHARPENTIER - Extremes and correlation in risk management
0 20 40 60 80 100
020406080100
Conditional independence, continuous risk factor
!3 !2 !1 0 1 2 3
!3!2!10123
Conditional independence, continuous risk factor
Fig. 6 – Continuous classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
29
Arthur CHARPENTIER - Extremes and correlation in risk management
Some more examples of Archimedean copulas
ψ(t) range θ
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978)
(2) (1 − t)θ [1, ∞)
(3) log
1−θ(1−t)
t
[−1, 1) Ali-Mikhail-Haq
(4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986)
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987)
(6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993)
(7) − log{θt + (1 − θ)} (0, 1]
(8) 1−t
1+(θ−1)t
[1, ∞)
(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)
(10) log(2t−θ − 1) (0, 1]
(11) log(2 − tθ) (0, 1/2]
(12) ( 1
t
− 1)θ [1, ∞)
(13) (1 − log t)θ − 1 (0, ∞)
(14) (t−1/θ − 1)θ [1, ∞)
(15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994)
(16) ( θ
t
+ 1)(1 − t) [0, ∞)
30
Arthur CHARPENTIER - Extremes and correlation in risk management
Extreme value copulas
• Extreme value copulas
C(u, v) = exp (log u + log v) A
log u
log u + log v
,
where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et
max{1 − ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] .
An alternative definition is the following : C is an extreme value copula if for all
z > 0,
C(u1, . . . , ud) = C(u
1/z
1 , . . . , u
1/z
d )z
.
Those copula are then called max-stable : define the maximum componentwise of
a sample X1, . . . , Xn, i.e. Mi = max{Xi,1, . . . , Xi,n}.
Remark more difficult to characterize when d ≥ 3.
31
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Gaussian, Student t (and elliptical) copulas
Focuses on pairwise dependence through the correlation matrix,







X1
X2
X3
X4







∼ N







0,
1 r12 r13 r14
r12 1 r23 r24
r13 r23 1 r34
r14 r24 r34 1







Dependence in [0, 1]d
←→ summarized in d(d + 1)/2 parameters,
32
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
1 [φ1(u1) + φ1(u2) + φ1(u3) + φ1(u4)],
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
alpha4 α4 α3 1







33
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4 φ−1
2 (φ2(u1) + φ2(u2)) + φ4 φ−1
3 (φ3(u3) + φ3(u4)) ),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
alpha4 α4 α3 1







34
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4 φ−1
2 (φ2(u1) + φ2(u2)) + φ4 φ−1
3 (φ3(u3) + φ3(u4)) ),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
alpha4 α4 α3 1







35
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4 φ−1
2 (φ2(u1) + φ2(u2)) + φ4 φ−1
3 (φ3(u3) + φ3(u4)) ),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α4 α4
α2 1 α4 α4
α4 α4 1 α3
α4 α4 α3 1







36
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4[φ−1
3 (φ3 φ−1
2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α3 α4
α2 1 α3 α4
α3 α3 1 α4
α4 α4 α4 1







37
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4[φ−1
3 (φ3 φ−1
2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α3 α4
α2 1 α3 α4
α3 α3 1 α4
α4 α4 α4 1







38
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Archimedean copulas
Initially, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]. But appears less flexible because of exchangeability features.
It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede
(2006) or McNeil (2007)). Let U = (U1, U2, U3, U4),
C(u1, u2, u3, u4) = φ−1
4 (φ4[φ−1
3 (φ3 φ−1
2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)),
which, if φi is parametrized with parameter αi, can be summarized through
A =







1 α2 α3 α4
α2 1 α3 α4
α3 α3 1 α4
α4 α4 α4 1







39
Arthur CHARPENTIER - Extremes and correlation in risk management
On copula parametrization
• Extreme value copulas
Here, dependence in [0, 1]d
←→ summarized in one functional parameters on
[0, 1]d−1
.
Further, focuses only on first order tail dependence.
40
Arthur CHARPENTIER - Extremes and correlation in risk management
Natural properties for dependence measures
Definition 4. κ is measure of concordance if and only if κ satisfies
• κ is defined for every pair (X, Y ) of continuous random variables,
• −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1,
• κ (X, Y ) = κ (Y, X),
• if X and Y are independent, then κ (X, Y ) = 0,
• κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ),
• if (X1, Y1) P QD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2),
• if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that
converge to a pair (X, Y ) then κ (Xn, Yn) → κ (X, Y ) as n → ∞.
41
Arthur CHARPENTIER - Extremes and correlation in risk management
Natural properties for dependence measures
If κ is measure of concordance, then, if f and g are both strictly increasing, then
κ(f(X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f(X) with f almost surely
strictly increasing, and analogously κ(X, Y ) = −1 if Y = f(X) with f almost
surely strictly decreasing (see Scarsini (1984)).
Rank correlations can be considered, i.e. Spearman’s ρ defined as
ρ(X, Y ) = corr(FX(X), FY (Y )) = 12
1
0
1
0
C(u, v)dudv − 3
and Kendall’s τ defined as
τ(X, Y ) = 4
1
0
1
0
C(u, v)dC(u, v) − 1.
42
Arthur CHARPENTIER - Extremes and correlation in risk management
Historical version of those coefficients
Similarly Kendall’s tau was not defined using copulae, but as the probability of
concordance, minus the probability of discordance, i.e.
τ(X, Y ) = 3[P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0)],
where (X1, Y1) and (X2, Y2) denote two independent versions of (X, Y ) (see
Nelsen (1999)).
Equivalently, τ(X, Y ) = 1 −
4Q
n(n2 − 1)
where Q is the number of inversions
between the rankings of X and Y (number of discordance).
43
Arthur CHARPENTIER - Extremes and correlation in risk management
!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0
!0.50.00.51.01.5 Concordant pairs
X
Y
!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0
!0.50.00.51.01.5
Discordant pairs
X
Y
Fig. 7 – Concordance versus discordance.
44
Arthur CHARPENTIER - Extremes and correlation in risk management
Alternative expressions of those coefficients
Note that those coefficients can also be expressed as follows
ρ(X, Y ) =
[0,1]×[0,1]
C(u, v) − C⊥
(u, v)dudv
[0,1]×[0,1]
C+(u, v) − C⊥(u, v)dudv
(the normalized average distance between C and C⊥
), for instance.
The case of the Gaussian random vector
If (X, Y ) is a Gaussian random vector with correlation r, then (Kruskal (1958))
ρ(X, Y ) =
6
π
arcsin
r
2
and τ(X, Y ) =
2
π
arcsin (r) .
45
Arthur CHARPENTIER - Extremes and correlation in risk management
From Kendall’tau to copula parameters
Kendall’s τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00
Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞
Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞
Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞
Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞
Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞
Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞
Morgenstein θ 0.00 0.45 0.90 - - - - - - - -
46
Arthur CHARPENTIER - Extremes and correlation in risk management
From Spearman’s rho to copula parameters
Spearman’s ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00
Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞
A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞
Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞
Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞
Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞
Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞
Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞
Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - -
47
Arthur CHARPENTIER - Extremes and correlation in risk management
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Marges uniformes
CopuledeGumbel
!2 0 2 4
!2024
Marges gaussiennes
Fig. 8 – Simulations of Gumbel’s copula θ = 1.2.
48
Arthur CHARPENTIER - Extremes and correlation in risk management
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Marges uniformes
CopuleGaussienne
!2 0 2 4
!2024
Marges gaussiennes
Fig. 9 – Simulations of the Gaussian copula (θ = 0.95).
49
Arthur CHARPENTIER - Extremes and correlation in risk management
Tail correlation and Solvency II
50
Arthur CHARPENTIER - Extremes and correlation in risk management
Tail correlation and Solvency II
51
Arthur CHARPENTIER - Extremes and correlation in risk management
Strong tail dependence
Joe (1993) defined, in the bivariate case a tail dependence measure.
Definition 5. Let (X, Y ) denote a random pair, the upper and lower tail
dependence parameters are defined, if the limit exist, as
λL = lim
u→0
P X ≤ F−1
X (u) |Y ≤ F−1
Y (u) ,
= lim
u→0
P (U ≤ u|V ≤ u) = lim
u→0
C(u, u)
u
,
and
λU = lim
u→1
P X > F−1
X (u) |Y > F−1
Y (u)
= lim
u→0
P (U > 1 − u|V ≤ 1 − u) = lim
u→0
C (u, u)
u
.
52
Arthur CHARPENTIER - Extremes and correlation in risk management
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GAUSSIAN
q
q
Fig. 10 – L and R cumulative curves.
53
Arthur CHARPENTIER - Extremes and correlation in risk management
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
GUMBEL
q
q
Fig. 11 – L and R cumulative curves.
54
Arthur CHARPENTIER - Extremes and correlation in risk management
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
CLAYTON
q
q
Fig. 12 – L and R cumulative curves.
55
Arthur CHARPENTIER - Extremes and correlation in risk management
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
STUDENT (df=5)
q
q
Fig. 13 – L and R cumulative curves.
56
Arthur CHARPENTIER - Extremes and correlation in risk management
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
STUDENT (df=3)
q
q
Fig. 14 – L and R cumulative curves.
57
Arthur CHARPENTIER - Extremes and correlation in risk management
Estimation of tail dependence
58
Arthur CHARPENTIER - Extremes and correlation in risk management
Estimating (strong) tail dependence
From
P ≈
P X > F−1
X (u) , Y > F−1
Y (u)
P Y > F−1
Y (u)
for u closed to 1,
as for Hill’s estimator, a natural estimator for λ is obtained with u = 1 − k/n,
λ
(k)
U =
1
n
n
i=1 1(Xi > Xn−k:n, Yi > Yn−k:n)
1
n
n
i=1 1(Yi > Yn−k:n)
,
hence
λ
(k)
U =
1
k
n
i=1
1(Xi > Xn−k:n, Yi > Yn−k:n).
λ
(k)
L =
1
k
n
i=1
1(Xi ≤ Xk:n, Yi ≤ Yk:n).
59
Arthur CHARPENTIER - Extremes and correlation in risk management
Asymptotic convergence, how fast ?
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
(Upper) tail dependence, Gaussian copula, n=200
Exceedance probability
0.001 0.005 0.050 0.500
0.00.20.40.60.81.0
Log scale, (lower) tail dependence
Exceedance probability (log scale)
Fig. 15 – Convergence of L and R functions, Gaussian copula, n = 200.
60
Arthur CHARPENTIER - Extremes and correlation in risk management
Asymptotic convergence, how fast ?
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
(Upper) tail dependence, Gaussian copula, n=200
Exceedance probability
0.001 0.005 0.050 0.500
0.00.20.40.60.81.0
Log scale, (lower) tail dependence
Exceedance probability (log scale)
Fig. 16 – Convergence of L and R functions, Gaussian copula, n = 2, 000.
61
Arthur CHARPENTIER - Extremes and correlation in risk management
Asymptotic convergence, how fast ?
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
(Upper) tail dependence, Gaussian copula, n=200
Exceedance probability
0.001 0.005 0.050 0.500
0.00.20.40.60.81.0
Log scale, (lower) tail dependence
Exceedance probability (log scale)
Fig. 17 – Convergence of L and R functions, Gaussian copula, n = 20, 000.
62
Arthur CHARPENTIER - Extremes and correlation in risk management
Weak tail dependence
If X and Y are independent (in tails), for u large enough
P(X > F−1
X (u), Y > F−1
Y (u)) = P(X > F−1
X (u)) · P(Y > F−1
Y (u)) = (1 − u)2
,
or equivalently, log P(X > F−1
X (u), Y > F−1
Y (u)) = 2 · log(1 − u). Further, if X
and Y are comonotonic (in tails), for u large enough
P(X > F−1
X (u), Y > F−1
Y (u)) = P(X > F−1
X (u)) = (1 − u)1
,
or equivalently, log P(X > F−1
X (u), Y > F−1
Y (u)) = 1 · log(1 − u).
=⇒ limit of the ratio
log(1 − u)
log P(Z1 > F−1
1 (u), Z2 > F−1
2 (u))
.
63
Arthur CHARPENTIER - Extremes and correlation in risk management
Weak tail dependence
Coles, Heffernan & Tawn (1999) defined
Definition 6. Let (X, Y ) denote a random pair, the upper and lower tail
dependence parameters are defined, if the limit exist, as
ηL = lim
u→0
log(u)
log P(Z1 ≤ F−1
1 (u), Z2 ≤ F−1
2 (u))
= lim
u→0
log(u)
log C(u, u)
,
and
ηU = lim
u→1
log(1 − u)
log P(Z1 > F−1
1 (u), Z2 > F−1
2 (u))
= lim
u→0
log(u)
log C (u, u)
.
64
Arthur CHARPENTIER - Extremes and correlation in risk management
Gaussian copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GAUSSIAN
q
q
Fig. 18 – χ functions.
65
Arthur CHARPENTIER - Extremes and correlation in risk management
Gumbel copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
GUMBEL
q
q
Fig. 19 – χ functions.
66
Arthur CHARPENTIER - Extremes and correlation in risk management
Clayton copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
CLAYTON
q
q
Fig. 20 – χ functions.
67
Arthur CHARPENTIER - Extremes and correlation in risk management
Student t copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
STUDENT (df=3)
q
q
Fig. 21 – χ functions.
68
Arthur CHARPENTIER - Extremes and correlation in risk management
Application in risk management : Loss-ALAE
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
qqq
qq
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqq
q
q
q
qqq
qq
qq
qqq
q
qq
q
q
q
qqqqq
q
q
q
q
q
qq
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
qq
q
q
q
q
q
q
qqq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
qq
qq
qq
qq
qq
q
q
qqq
qqq
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqq
q
qqq
qq
qqqq
q
q
qqq
qq
qq
qq
q
qq
q
qqq
qqqq
qqq
qqqqq
qq
qqqq
qq
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqqq
qq
q
q
q
qq
qqq
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
qq
q
qq
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qqqq
qq
q
qqqqq
q
q
qqqq
qqqqq
q
qq
q
q
q
q
qq
qqqq
qqqqqq
q
qqq
qq
qqqqqqqq
qq
qqqq
q
qqq
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
qq
qqq
qq
qqq
q
q
q
q
qq
q
qq
qq
q
qq
qq
q
qq
q
qqq
qqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
qqq
qq
q
q
q
qqqqqqq
qqq
q
qq
qqq
q
qqq
qqq
qq
qq
qq
q
qqq
qqq
qqqqqqqqqqq
qqq
qq
qqq
qqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
qq
qq
qqqq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
qq
qqq
qqqqqqqqq
q
qq
qqq
q
qq
qq
qqqq
qq
q
qq
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
q
q
qq
qq
q
q
q
q
q
q
q
qqq
qq
qq
qq
qqq
q
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
qq
q
q
q
q
q
q
qq
q
qqqqq
q
qq
q
q
qq
q
q
qqq
qqqqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
qq
qq
q
qq
qq
q
q
q
q
qq
qqq
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
qqqq
qqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
qqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qqq
qq
q
q
q
q
qq
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Loss
AllocatedExpenses
Fig. 22 – Losses and allocated expenses.
69
Arthur CHARPENTIER - Extremes and correlation in risk management
Application in risk management : Loss-ALAE
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
qqq
qqq
qqq
qqqqqqqqq
qqqqqqqqqq
q
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqq
qqqqqq
qqqq
qqq
qqqqqqq
qqq
qqqqq
qq
qqq
qq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
Gumbel copula
q
q
0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
q
q
q
qqq
qqq
qqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq
qqqqq
qq
qqqqqqqqqqqqqq
qqq
q
q
q
q
Gumbel copula
q
q
Fig. 23 – L and R cumulative curves, and χ functions.
70
Arthur CHARPENTIER - Extremes and correlation in risk management
Application in risk management : car-household
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
qq
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Car claims
Householdclaims
Fig. 24 – Motor and Household claims.
71
Arthur CHARPENTIER - Extremes and correlation in risk management
Application in risk management : car-household
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
L and R concentration functions
L function (lower tails) R function (upper tails)
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqq
q
qq
qq
qqqqqqqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqq
q
qqq
qqqq
qqq
qqq
qqqqq
qqqqq
qq
qqqqqqq
q
qqqq
qqq
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Gumbel copula
q
q
0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0
Chi dependence functions
lower tails upper tails
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqq
q
qqqqqqqqqqqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqq
qqqqqqq
qqqqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
Gumbel copula
q
q
Fig. 25 – L and R cumulative curves, and χ functions.
72
Arthur CHARPENTIER - Extremes and correlation in risk management
Case of Archimedean copulas
For an exhaustive study of tail behavior for Archimedean copulas, see
Charpentier & Segers (2008).
• upper tail : function of φ (1) and θ1 = − lim
s→0
sφ (1 − s)
φ(1 − s)
,
◦ φ (1) < 0 : tail independence
◦ φ (1) = 0 and θ1 = 1 : dependence in independence
◦ φ (1) = 0 and θ1 > 1 : tail dependence
• lower tail : function of φ(0) and θ0 = − lim
s→0
sφ (s)
φ(s)
,
◦ φ(0) < ∞ : tail independence
◦ φ(0) = ∞ and θ0 = 0 : dependence in independence
◦ φ(0) = ∞ and θ0 > 0 : tail dependence
0.0 0.2 0.4 0.6 0.8 1.0
05101520
73
Arthur CHARPENTIER - Extremes and correlation in risk management
Measuring risks ?
the pure premium as a technical benchmark
Pascal, Fermat, Condorcet, Huygens, d’Alembert in the XVIIIth century
proposed to evaluate the “produit scalaire des probabilit´es et des gains”,
< p, x >=
n
i=1
pixi =
n
i=1
P(X = xi) · xi = EP(X),
based on the “r`egle des parties”.
For Qu´etelet, the expected value was, in the context of insurance, the price that
guarantees a financial equilibrium.
From this idea, we consider in insurance the pure premium as EP(X). As in
Cournot (1843), “l’esp´erance math´ematique est donc le juste prix des chances”
(or the “fair price” mentioned in Feller (1953)).
Problem : Saint Peterburg’s paradox, i.e. infinite mean risks (cf. natural
catastrophes)
74
Arthur CHARPENTIER - Extremes and correlation in risk management
the pure premium as a technical benchmark
For a positive random variable X, recall that EP(X) =
∞
0
P(X > x)dx.
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Expected value
Loss value, X
Probabilitylevel,P
Fig. 26 – Expected value EP(X) = xdFX(x) = P(X > x)dx.
75
Arthur CHARPENTIER - Extremes and correlation in risk management
from pure premium to expected utility principle
Ru(X) = u(x)dP = P(u(X) > x))dx
where u : [0, ∞) → [0, ∞) is a utility function.
Example with an exponential utility, u(x) = [1 − e−αx
]/α,
Ru(X) =
1
α
log EP(eαX
) ,
i.e. the entropic risk measure.
See Cramer (1728), Bernoulli (1738), von Neumann & Morgenstern
(1944), Rochet (1994)... etc.
76
Arthur CHARPENTIER - Extremes and correlation in risk management
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Expected utility (power utility function)
Loss value, X
Probabilitylevel,P
Fig. 27 – Expected utility u(x)dFX(x).
77
Arthur CHARPENTIER - Extremes and correlation in risk management
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Expected utility (power utility function)
Loss value, X
Probabilitylevel,P
Fig. 28 – Expected utility u(x)dFX(x).
78
Arthur CHARPENTIER - Extremes and correlation in risk management
from pure premium to distorted premiums (Wang)
Rg(X) = xdg ◦ P = g(P(X > x))dx
where g : [0, 1] → [0, 1] is a distorted function.
Example
• if g(x) = I(X ≥ 1 − α) Rg(X) = V aR(X, α),
• if g(x) = min{x/(1 − α), 1} Rg(X) = TV aR(X, α) (also called expected
shortfall), Rg(X) = EP(X|X > V aR(X, α)).
See D’Alembert (1754), Schmeidler (1986, 1989), Yaari (1987), Denneberg
(1994)... etc.
Remark : Rg(X) might be denoted Eg◦P. But it is not an expected value since
Q = g ◦ P is not a probability measure.
79
Arthur CHARPENTIER - Extremes and correlation in risk management
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Distorted premium beta distortion function)
Loss value, X
Probabilitylevel,P
Fig. 29 – Distorted probabilities g(P(X > x))dx.
80
Arthur CHARPENTIER - Extremes and correlation in risk management
Distortion of values versus distortion of probabilities
q
q
q
q
q
q
q
q
q
q
q
0 2 4 6 8 10
0.00.20.40.60.81.0
Distorted premium beta distortion function)
Loss value, X
Probabilitylevel,P
Fig. 30 – Distorted probabilities g(P(X > x))dx.
81
Arthur CHARPENTIER - Extremes and correlation in risk management
some particular cases a classical premiums
The exponential premium or entropy measure : obtained when the agent
as an exponential utility function, i.e.
π such that U(ω − π) = EP(U(ω − S)), U(x) = − exp(−αx),
i.e. π =
1
α
log EP(eαX
).
Esscher’s transform (see Esscher ( 1936), B¨uhlmann ( 1980)),
π = EQ(X) =
EP(X · eαX
)
EP(eαX)
,
for some α > 0, i.e.
dQ
dP
=
eαX
EP(eαX)
.
Wang’s premium (see Wang ( 2000)), extending the Sharp ratio concept
E(X) =
∞
0
F(x)dx and π =
∞
0
Φ(Φ−1
(F(x)) + λ)dx
82
Arthur CHARPENTIER - Extremes and correlation in risk management
Risk measures
The two most commonly used risk measures for a random variable X (assuming
that a loss is positive) are, q ∈ (0, 1),
• Value-at-Risk (VaR),
V aRq(X) = inf{x ∈ R, P(X > x) ≤ α},
• Expected Shortfall (ES), Tail Conditional Expectation (TCE) or Tail
Value-at-Risk (TVaR)
TV aRq(X) = E (X|X > V aRq(X)) ,
Artzner, Delbaen, Eber & Heath (1999) : a good risk measure is
subadditive,
TVaR is subadditive, VaR is not subadditive (in general).
83
Arthur CHARPENTIER - Extremes and correlation in risk management
Risk measures : a pratitionner (mis)understanding
84
Arthur CHARPENTIER - Extremes and correlation in risk management
Risk measures : a pratitionner (mis)understanding
85
Arthur CHARPENTIER - Extremes and correlation in risk management
Risk measures : a pratitionner (mis)understanding
86
Arthur CHARPENTIER - Extremes and correlation in risk management
Risk measures : a pratitionner (mis)understanding
87
Arthur CHARPENTIER - Extremes and correlation in risk management
Risk measures : a pratitionner (mis)understanding
88
Arthur CHARPENTIER - Extremes and correlation in risk management
Risk measures and diversification
Any copula C is bounded by Frchet-Hoeffding bounds,
max
d
i=1
ui − (d − 1), 0 ≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud},
and thus, any distribution F on F(F1, . . . , Fd) is bounded
max
d
i=1
Fi(xi) − (d − 1), 0 ≤ F(x1, . . . , xd) ≤ min{F1(x1), . . . , Ff (xd)}.
Does this means the comonotonicity is always the worst-case scenario ?
Given a random pair (X, Y ), let (X−
, Y −
) and (X+
, Y +
) denote
contercomonotonic and comonotonic versions of (X, Y ), do we have
R(φ(X−
, Y −
))
?
≤ R(φ(X,
Y )
)
?
≤ R(φ(X+
, Y +
)).
89
Arthur CHARPENTIER - Extremes and correlation in risk management
Tchen’s theorem and bounding some pure premiums
If φ : R2
→ R is supermodular, i.e.
φ(x2, y2) − φ(x1, y2) − φ(x2, y1) + φ(x1, y1) ≥ 0,
for any x1 ≤ x2 and y1 ≤ y2, then if (X, Y ) ∈ F(FX, FY ),
E φ(X−
, Y −
) ≤ E (φ(X, Y )) ≤ E φ(X+
, Y +
) ,
as proved in Tchen (1981).
Example 7. the stop loss premium for the sum of two risks E((X + Y − d)+) is
supermodular.
90
Arthur CHARPENTIER - Extremes and correlation in risk management
Example 8. For the n-year joint-life annuity,
axy:n =
n
k=1
vk
P(Tx > k and Ty > k) =
n
k=1
vk
kpxy.
Then
a−
xy:n ≤ axy:n ≤ a+
xy:n ,
where
a−
xy:n =
n
k=1
vk
max{kpx + kpy − 1, 0}( lower Frchet bound ),
a+
xy:n =
n
k=1
vk
min{kpx, kpy}( upper Frchet bound ).
91
Arthur CHARPENTIER - Extremes and correlation in risk management
Makarov’s theorem and bounding Value-at-Risk
In the case where R denotes the Value-at-Risk (i.e. quantile function of the P&L
distribution),
R−
≤ R(X−
+ Y −
)≤R(X + Y )≤R(X+
+ Y +
) ≤ R+
,
where e.g. R+
can exceed the comonotonic case. Recall that
R(X + Y ) = VaRq[X + Y ] = F−1
X+Y (q) = inf{x ∈ R|FX+Y (x) ≥ q}.
Proposition 9. Let (X, Y ) ∈ F(FX, FY ) then for all s ∈ R,
τC− (FX, FY )(s) ≤ P(X + Y ≤ s) ≤ ρC− (FX, FY )(s),
where
τC(FX, FY )(s) = sup
x,y∈R
{C(FX(x), FY (y)), x + y = s}
and, if ˜C(u, v) = u + v − C(u, v),
ρC(FX, FY )(s) = inf
x,y∈R
{ ˜C(FX(x), FY (y)), x + y = s}.
92
Arthur CHARPENTIER - Extremes and correlation in risk management
0.0 0.2 0.4 0.6 0.8 1.0
!4!2024
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gaussiens
Fig. 31 – Value-at-Risk for 2 Gaussian risks N(0, 1).
93
Arthur CHARPENTIER - Extremes and correlation in risk management
0.90 0.92 0.94 0.96 0.98 1.00
0123456
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gaussiens
Fig. 32 – Value-at-Risk for 2 Gaussian risks N(0, 1).
94
Arthur CHARPENTIER - Extremes and correlation in risk management
0.0 0.2 0.4 0.6 0.8 1.0
05101520
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gamma
Fig. 33 – Value-at-Risk for 2 Gamma risks G(3, 1).
95
Arthur CHARPENTIER - Extremes and correlation in risk management
0.90 0.92 0.94 0.96 0.98 1.00
05101520
Bornes de la VaR d’un portefeuille
Somme de 2 risques Gamma
Fig. 34 – Value-at-Risk for 2 Gamma risks G(3, 1).
96
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Will the risk of the portfolio increase with correlation ?
Recall the following theoretical result :
Proposition 10. Assume that X and X are in the same Fr´echet space (i.e.
Xi
L
= Xi), and define
S = X1 + · · · + Xn and S = X1 + · · · + Xn.
If X X for the concordance order, then S T V aR S for the stop-loss or
TVaR order.
A consequence is that if X and X are exchangeable,
corr(Xi, Xj) ≤ corr(Xi, Xj) =⇒ TV aR(S, p) ≤ TV aR(S , p), for all p ∈ (0, 1).
See M¨uller & Stoyen (2002) for some possible extensions.
97
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Consider
• d lines of business,
• simply a binomial distribution on each line of business, with small loss
probability (e.g. π = 1/1000).
Let



1 if there is a claim on line i
0 if not
, and S = X1 + · · · + Xd.
Will the correlation among the Xi’s increase the Value-at-Risk of S ?
Consider a probit model, i.e. Xi = 1(Xi ≤ ui), where X ∼ N(0, Σ), i.e. a
Gaussian copula.
Assume that Σ = [σi,j] where σi,j = ρ ∈ [−1, 1] when i = j.
98
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 35 – 99.75% TVaR (or expected shortfall) for Gaussian copulas.
99
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 36 – 99% TVaR (or expected shortfall) for Gaussian copulas.
100
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
What about other risk measures, e.g. Value-at-Risk ?
corr(Xi, Xj) ≤ corr(Xi, Xj) V aR(S, p) ≤ V aR(S , p), for all p ∈ (0, 1).
(see e.g. Mittnik & Yener (2008)).
101
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 37 – 99.75% VaR for Gaussian copulas.
102
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 38 – 99% VaR for Gaussian copulas.
103
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
What could be the impact of tail dependence ?
Previously, we considered a Gaussian copula, i.e. tail independence. What if there
was tail dependence ?
Consider the case of a Student t-copula, with ν degrees of freedom.
104
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 39 – 99.75% TVaR (or expected shortfall) for Student t-copulas.
105
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 40 – 99% TVaR (or expected shortfall) for Student t-copulas.
106
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 41 – 99.75% VaR for Student t-copulas.
107
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
Fig. 42 – 99% VaR for Student t-copulas.
108
Arthur CHARPENTIER - Extremes and correlation in risk management
The more correlated, the more risky ?
109
Arthur CHARPENTIER - Extremes and correlation in risk management
On the CEIPS recommendations
110
Arthur CHARPENTIER - Extremes and correlation in risk management
On the CEIPS recommendations
111
Arthur CHARPENTIER - Extremes and correlation in risk management
On the CEIPS recommendations
112
Arthur CHARPENTIER - Extremes and correlation in risk management
On the CEIPS recommendations
113
Arthur CHARPENTIER - Extremes and correlation in risk management
On the CEIPS recommendations
114
Arthur CHARPENTIER - Extremes and correlation in risk management
On the CEIPS recommendations
115
Arthur CHARPENTIER - Extremes and correlation in risk management
A first conclusion
116
Arthur CHARPENTIER - Extremes and correlation in risk management
Another possible conclusion
• (standard) correlation is definitively not an appropriate tool to describe
dependence features,
◦ in order to fully describe dependence, use copulas,
◦ since major focus in risk management is related to extremal event, focus on
tail dependence meausres,
• which copula can be appropriate ?
◦ Elliptical copulas offer a nice and simple parametrization, based on pairwise
comparison,
◦ Archimedean copulas might be too restrictive, but possible to introduce
Hierarchical Archimedean copulas,
• Value-at-Risk might yield to non-intuitive results,
◦ need to get a better understanding about Value-at-Risk pitfalls,
◦ need to consider alternative downside risk measures (namely TVaR).
117

Más contenido relacionado

La actualidad más candente (20)

Side 2019 #3
Side 2019 #3Side 2019 #3
Side 2019 #3
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Multiattribute utility copula
Multiattribute utility copulaMultiattribute utility copula
Multiattribute utility copula
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides astin
Slides astinSlides astin
Slides astin
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Econometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 NonlinearitiesEconometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 Nonlinearities
 
Classification
ClassificationClassification
Classification
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
 
Slides lln-risques
Slides lln-risquesSlides lln-risques
Slides lln-risques
 
Side 2019 #5
Side 2019 #5Side 2019 #5
Side 2019 #5
 
Slides ads ia
Slides ads iaSlides ads ia
Slides ads ia
 
Inequality #4
Inequality #4Inequality #4
Inequality #4
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Inequalities #3
Inequalities #3Inequalities #3
Inequalities #3
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Slides ensae 11bis
Slides ensae 11bisSlides ensae 11bis
Slides ensae 11bis
 

Similar a Slides erm-cea-ia (20)

Slides essec
Slides essecSlides essec
Slides essec
 
Slides erm
Slides ermSlides erm
Slides erm
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Slides ima
Slides imaSlides ima
Slides ima
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
Slides delta-2
Slides delta-2Slides delta-2
Slides delta-2
 
Slides guanauato
Slides guanauatoSlides guanauato
Slides guanauato
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
quebec.pdf
quebec.pdfquebec.pdf
quebec.pdf
 
Slides lyon-anr
Slides lyon-anrSlides lyon-anr
Slides lyon-anr
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
slides_online_optimization_david_mateos
slides_online_optimization_david_mateosslides_online_optimization_david_mateos
slides_online_optimization_david_mateos
 
Slides ineq-3b
Slides ineq-3bSlides ineq-3b
Slides ineq-3b
 
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
06_AJMS_200_19_RA.pdf
06_AJMS_200_19_RA.pdf06_AJMS_200_19_RA.pdf
06_AJMS_200_19_RA.pdf
 

Más de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Último

PMFBY , Pradhan Mantri Fasal bima yojna
PMFBY , Pradhan Mantri  Fasal bima yojnaPMFBY , Pradhan Mantri  Fasal bima yojna
PMFBY , Pradhan Mantri Fasal bima yojnaDharmendra Kumar
 
The AES Investment Code - the go-to counsel for the most well-informed, wise...
The AES Investment Code -  the go-to counsel for the most well-informed, wise...The AES Investment Code -  the go-to counsel for the most well-informed, wise...
The AES Investment Code - the go-to counsel for the most well-informed, wise...AES International
 
Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...
Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...
Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...amilabibi1
 
NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...
NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...
NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...Amil baba
 
Managing Finances in a Small Business (yes).pdf
Managing Finances  in a Small Business (yes).pdfManaging Finances  in a Small Business (yes).pdf
Managing Finances in a Small Business (yes).pdfmar yame
 
Unveiling Business Expansion Trends in 2024
Unveiling Business Expansion Trends in 2024Unveiling Business Expansion Trends in 2024
Unveiling Business Expansion Trends in 2024Champak Jhagmag
 
Stock Market Brief Deck for "this does not happen often".pdf
Stock Market Brief Deck for "this does not happen often".pdfStock Market Brief Deck for "this does not happen often".pdf
Stock Market Brief Deck for "this does not happen often".pdfMichael Silva
 
cost of capital questions financial management
cost of capital questions financial managementcost of capital questions financial management
cost of capital questions financial managementtanmayarora23
 
Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Vp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppVp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppmiss dipika
 
Role of Information and technology in banking and finance .pptx
Role of Information and technology in banking and finance .pptxRole of Information and technology in banking and finance .pptx
Role of Information and technology in banking and finance .pptxNarayaniTripathi2
 
Financial Preparation for Millennia.pptx
Financial Preparation for Millennia.pptxFinancial Preparation for Millennia.pptx
Financial Preparation for Millennia.pptxsimon978302
 
NCDC and NAFED presentation by Paras .pptx
NCDC and NAFED presentation by Paras .pptxNCDC and NAFED presentation by Paras .pptx
NCDC and NAFED presentation by Paras .pptxnaikparas90
 
Tenets of Physiocracy History of Economic
Tenets of Physiocracy History of EconomicTenets of Physiocracy History of Economic
Tenets of Physiocracy History of Economiccinemoviesu
 
Bladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results PresentationBladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results PresentationBladex
 
NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...
NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...
NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...Amil baba
 
(中央兰开夏大学毕业证学位证成绩单-案例)
(中央兰开夏大学毕业证学位证成绩单-案例)(中央兰开夏大学毕业证学位证成绩单-案例)
(中央兰开夏大学毕业证学位证成绩单-案例)twfkn8xj
 
《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》
《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》
《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》rnrncn29
 
NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...
NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...
NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...Amil baba
 
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证rjrjkk
 

Último (20)

PMFBY , Pradhan Mantri Fasal bima yojna
PMFBY , Pradhan Mantri  Fasal bima yojnaPMFBY , Pradhan Mantri  Fasal bima yojna
PMFBY , Pradhan Mantri Fasal bima yojna
 
The AES Investment Code - the go-to counsel for the most well-informed, wise...
The AES Investment Code -  the go-to counsel for the most well-informed, wise...The AES Investment Code -  the go-to counsel for the most well-informed, wise...
The AES Investment Code - the go-to counsel for the most well-informed, wise...
 
Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...
Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...
Amil Baba In Pakistan amil baba in Lahore amil baba in Islamabad amil baba in...
 
NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...
NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...
NO1 Certified Best Amil In Rawalpindi Bangali Baba In Rawalpindi jadu tona ka...
 
Managing Finances in a Small Business (yes).pdf
Managing Finances  in a Small Business (yes).pdfManaging Finances  in a Small Business (yes).pdf
Managing Finances in a Small Business (yes).pdf
 
Unveiling Business Expansion Trends in 2024
Unveiling Business Expansion Trends in 2024Unveiling Business Expansion Trends in 2024
Unveiling Business Expansion Trends in 2024
 
Stock Market Brief Deck for "this does not happen often".pdf
Stock Market Brief Deck for "this does not happen often".pdfStock Market Brief Deck for "this does not happen often".pdf
Stock Market Brief Deck for "this does not happen often".pdf
 
cost of capital questions financial management
cost of capital questions financial managementcost of capital questions financial management
cost of capital questions financial management
 
Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
Uae-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Vp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppVp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsApp
 
Role of Information and technology in banking and finance .pptx
Role of Information and technology in banking and finance .pptxRole of Information and technology in banking and finance .pptx
Role of Information and technology in banking and finance .pptx
 
Financial Preparation for Millennia.pptx
Financial Preparation for Millennia.pptxFinancial Preparation for Millennia.pptx
Financial Preparation for Millennia.pptx
 
NCDC and NAFED presentation by Paras .pptx
NCDC and NAFED presentation by Paras .pptxNCDC and NAFED presentation by Paras .pptx
NCDC and NAFED presentation by Paras .pptx
 
Tenets of Physiocracy History of Economic
Tenets of Physiocracy History of EconomicTenets of Physiocracy History of Economic
Tenets of Physiocracy History of Economic
 
Bladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results PresentationBladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results Presentation
 
NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...
NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...
NO1 Certified kala jadu karne wale ka contact number kala jadu karne wale bab...
 
(中央兰开夏大学毕业证学位证成绩单-案例)
(中央兰开夏大学毕业证学位证成绩单-案例)(中央兰开夏大学毕业证学位证成绩单-案例)
(中央兰开夏大学毕业证学位证成绩单-案例)
 
《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》
《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》
《加拿大本地办假证-寻找办理Dalhousie毕业证和达尔豪斯大学毕业证书的中介代理》
 
NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...
NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...
NO1 Certified Amil Baba In Lahore Kala Jadu In Lahore Best Amil In Lahore Ami...
 
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
 

Slides erm-cea-ia

  • 1. Arthur CHARPENTIER - Extremes and correlation in risk management Explain and demonstrate the importance of the tails of the distributions, tail correlations and low frequency/high severity events Arthur Charpentier Universit´e de Rennes 1 & ´Ecole Polytechnique http ://blogperso.univ-rennes1.fr/arthur.charpentier/ 1
  • 2. Arthur CHARPENTIER - Extremes and correlation in risk management SCR and Solvency 2
  • 3. Arthur CHARPENTIER - Extremes and correlation in risk management SCR and Solvency 3
  • 4. Arthur CHARPENTIER - Extremes and correlation in risk management SCR and Solvency 4
  • 5. Arthur CHARPENTIER - Extremes and correlation in risk management SCR and Solvency 5
  • 6. Arthur CHARPENTIER - Extremes and correlation in risk management On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 6
  • 7. Arthur CHARPENTIER - Extremes and correlation in risk management On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 7
  • 8. Arthur CHARPENTIER - Extremes and correlation in risk management On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 8
  • 9. Arthur CHARPENTIER - Extremes and correlation in risk management On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 9
  • 10. Arthur CHARPENTIER - Extremes and correlation in risk management On risk dependence in QIS’s http ://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF 10
  • 11. Arthur CHARPENTIER - Extremes and correlation in risk management How to capture dependence in risk models ? Is correlation relevant to capture dependence information ? Consider (see McNeil, Embrechts & Straumann (2003)) 2 log-normal risks, • X ∼ LN(0, 1), i.e. X = exp(X ) where X ∼ N(0, 1) • Y ∼ LN(0, σ2 ), i.e. Y = exp(Y ) where Y ∼ N(0, σ2 ) Recall that corr(X , Y ) takes any value in [−1, +1]. Since corr(X, Y )=corr(X , Y ), what can be corr(X, Y ) ? 11
  • 12. Arthur CHARPENTIER - Extremes and correlation in risk management How to capture dependence in risk models ? 0 1 2 3 4 5 −0.50.00.51.0 Standard deviation, sigma Correlation Fig. 1 – Range for the correlation, cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2 ). 12
  • 13. Arthur CHARPENTIER - Extremes and correlation in risk management How to capture dependence in risk models ? 0 1 2 3 4 5 −0.50.00.51.0 Standard deviation, sigma Correlation Fig. 2 – cor(X, Y ), X ∼ LN(0, 1) ,Y ∼ LN(0, σ2 ), Gaussian copula, r = 0.5. 13
  • 14. Arthur CHARPENTIER - Extremes and correlation in risk management What about official actuarial documents ? 14
  • 15. Arthur CHARPENTIER - Extremes and correlation in risk management What about official actuarial documents ? 15
  • 16. Arthur CHARPENTIER - Extremes and correlation in risk management What about official actuarial documents ? 16
  • 17. Arthur CHARPENTIER - Extremes and correlation in risk management What about regulatory technical documents ? 17
  • 18. Arthur CHARPENTIER - Extremes and correlation in risk management What about regulatory technical documents ? 18
  • 19. Arthur CHARPENTIER - Extremes and correlation in risk management What about regulatory technical documents ? 19
  • 20. Arthur CHARPENTIER - Extremes and correlation in risk management What about regulatory technical documents ? 20
  • 21. Arthur CHARPENTIER - Extremes and correlation in risk management Motivations : dependence and copulas Definition 1. A copula C is a joint distribution function on [0, 1]d , with uniform margins on [0, 1]. Theorem 2. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginal distributions, then F(x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, with F ∈ F(F1, . . . , Fd). Conversely, if F ∈ F(F1, . . . , Fd), there exists C such that F(x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C is unique, and given by C(u) = F(F−1 1 (u1), . . . , F−1 d (ud)) for all ui ∈ [0, 1] We will then define the copula of F, or the copula of X. 21
  • 22. Arthur CHARPENTIER - Extremes and correlation in risk management Copula density Level curves of the copula Fig. 3 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v). 22
  • 23. Arthur CHARPENTIER - Extremes and correlation in risk management Copula density Level curves of the copula Fig. 4 – Density of a copula, c(u, v) = ∂2 C(u, v) ∂u∂v . 23
  • 24. Arthur CHARPENTIER - Extremes and correlation in risk management Some very classical copulas • The independent copula C(u, v) = uv = C⊥ (u, v). The copula is standardly denoted Π, P or C⊥ , and an independent version of (X, Y ) will be denoted (X⊥ , Y ⊥ ). It is a random vector such that X⊥ L = X and Y ⊥ L = Y , with copula C⊥ . In higher dimension, C⊥ (u1, . . . , ud) = u1 × . . . × ud is the independent copula. • The comonotonic copula C(u, v) = min{u, v} = C+ (u, v). The copula is standardly denoted M, or C+ , and an comonotone version of (X, Y ) will be denoted (X+ , Y + ). It is a random vector such that X+ L = X and Y + L = Y , with copula C+ . (X, Y ) has copula C+ if and only if there exists a strictly increasing function h such that Y = h(X), or equivalently (X, Y ) L = (F−1 X (U), F−1 Y (U)) where U is U([0, 1]). 24
  • 25. Arthur CHARPENTIER - Extremes and correlation in risk management Some very classical copulas In higher dimension, C+ (u1, . . . , ud) = min{u1, . . . , ud} is the comonotonic copula. • The contercomotonic copula C(u, v) = max{u + v − 1, 0} = C− (u, v). The copula is standardly denoted W, or C− , and an contercomontone version of (X, Y ) will be denoted (X− , Y − ). It is a random vector such that X− L = X and Y − L = Y , with copula C− . (X, Y ) has copula C− if and only if there exists a strictly decreasing function h such that Y = h(X), or equivalently (X, Y ) L = (F−1 X (1 − U), F−1 Y (U)). In higher dimension, C− (u1, . . . , ud) = max{u1 + . . . + ud − (d − 1), 0} is not a copula. But note that for any copula C, C− (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ C+ (u1, . . . , ud) 25
  • 26. Arthur CHARPENTIER - Extremes and correlation in risk management 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81 Frechetlowerbound 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81Independencecopula 0.2 0.4 0.6 0.8 u_10.2 0.4 0.6 0.8 u_2 00.20.40.60.81 Frechetupperbound Fréchet Lower Bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Independent copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Fréchet Upper Bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Lower Fréchet!Hoeffding bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Indepedent copula random generation 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Scatterplot, Upper Fréchet!Hoeffding bound Fig. 5 – Contercomontonce, independent, and comonotone copulas. 26
  • 27. Arthur CHARPENTIER - Extremes and correlation in risk management Elliptical (Gaussian and t) copulas The idea is to extend the multivariate probit model, X = (X1, . . . , Xd) with marginal B(pi) distributions, modeled as Yi = 1(Xi ≤ ui), where X ∼ N(I, Σ). • The Gaussian copula, with parameter α ∈ (−1, 1), C(u, v) = 1 2π √ 1 − α2 Φ−1 (u) −∞ Φ−1 (v) −∞ exp −(x2 − 2αxy + y2 ) 2(1 − α2) dxdy. Analogously the t-copula is the distribution of (T(X), T(Y )) where T is the t-cdf, and where (X, Y ) has a joint t-distribution. • The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2, C(u, v) = 1 2π √ 1 − α2 t−1 ν (u) −∞ t−1 ν (v) −∞ 1 + x2 − 2αxy + y2 2(1 − α2) −((ν+2)/2) dxdy. 27
  • 28. Arthur CHARPENTIER - Extremes and correlation in risk management Archimedean copulas • Archimedian copulas C(u, v) = φ−1 (φ(u) + φ(v)), where φ is decreasing convex (0, 1), with φ(0) = ∞ and φ(1) = 0. Example 3. If φ(t) = [− log t]α , then C is Gumbel’s copula, and if φ(t) = t−α − 1, C is Clayton’s. Note that C⊥ is obtained when φ(t) = − log t. The frailty approach : assume that X and Y are conditionally independent, given the value of an heterogeneous component Θ. Assume further that P(X ≤ x|Θ = θ) = (GX(x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ for some baseline distribution functions GX and GY . Then F(x, y) = ψ(ψ−1 (FX(x)) + ψ−1 (FY (y))), where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ ). 28
  • 29. Arthur CHARPENTIER - Extremes and correlation in risk management 0 20 40 60 80 100 020406080100 Conditional independence, continuous risk factor !3 !2 !1 0 1 2 3 !3!2!10123 Conditional independence, continuous risk factor Fig. 6 – Continuous classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 29
  • 30. Arthur CHARPENTIER - Extremes and correlation in risk management Some more examples of Archimedean copulas ψ(t) range θ (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978) (2) (1 − t)θ [1, ∞) (3) log 1−θ(1−t) t [−1, 1) Ali-Mikhail-Haq (4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986) (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987) (6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993) (7) − log{θt + (1 − θ)} (0, 1] (8) 1−t 1+(θ−1)t [1, ∞) (9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960) (10) log(2t−θ − 1) (0, 1] (11) log(2 − tθ) (0, 1/2] (12) ( 1 t − 1)θ [1, ∞) (13) (1 − log t)θ − 1 (0, ∞) (14) (t−1/θ − 1)θ [1, ∞) (15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994) (16) ( θ t + 1)(1 − t) [0, ∞) 30
  • 31. Arthur CHARPENTIER - Extremes and correlation in risk management Extreme value copulas • Extreme value copulas C(u, v) = exp (log u + log v) A log u log u + log v , where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et max{1 − ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] . An alternative definition is the following : C is an extreme value copula if for all z > 0, C(u1, . . . , ud) = C(u 1/z 1 , . . . , u 1/z d )z . Those copula are then called max-stable : define the maximum componentwise of a sample X1, . . . , Xn, i.e. Mi = max{Xi,1, . . . , Xi,n}. Remark more difficult to characterize when d ≥ 3. 31
  • 32. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Gaussian, Student t (and elliptical) copulas Focuses on pairwise dependence through the correlation matrix,        X1 X2 X3 X4        ∼ N        0, 1 r12 r13 r14 r12 1 r23 r24 r13 r23 1 r34 r14 r24 r34 1        Dependence in [0, 1]d ←→ summarized in d(d + 1)/2 parameters, 32
  • 33. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 1 [φ1(u1) + φ1(u2) + φ1(u3) + φ1(u4)], which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 alpha4 α4 α3 1        33
  • 34. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4 φ−1 2 (φ2(u1) + φ2(u2)) + φ4 φ−1 3 (φ3(u3) + φ3(u4)) ), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 alpha4 α4 α3 1        34
  • 35. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4 φ−1 2 (φ2(u1) + φ2(u2)) + φ4 φ−1 3 (φ3(u3) + φ3(u4)) ), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 alpha4 α4 α3 1        35
  • 36. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4 φ−1 2 (φ2(u1) + φ2(u2)) + φ4 φ−1 3 (φ3(u3) + φ3(u4)) ), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α4 α4 α2 1 α4 α4 α4 α4 1 α3 α4 α4 α3 1        36
  • 37. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4[φ−1 3 (φ3 φ−1 2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α3 α4 α2 1 α3 α4 α3 α3 1 α4 α4 α4 α4 1        37
  • 38. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4[φ−1 3 (φ3 φ−1 2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α3 α4 α2 1 α3 α4 α3 α3 1 α4 α4 α4 α4 1        38
  • 39. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Archimedean copulas Initially, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]. But appears less flexible because of exchangeability features. It is possible to introduce hierarchical Archimedean copulas (see Savu & Trede (2006) or McNeil (2007)). Let U = (U1, U2, U3, U4), C(u1, u2, u3, u4) = φ−1 4 (φ4[φ−1 3 (φ3 φ−1 2 (φ2(u1) + φ2(u2)) + φ3(u3))] + φ4(u4)), which, if φi is parametrized with parameter αi, can be summarized through A =        1 α2 α3 α4 α2 1 α3 α4 α3 α3 1 α4 α4 α4 α4 1        39
  • 40. Arthur CHARPENTIER - Extremes and correlation in risk management On copula parametrization • Extreme value copulas Here, dependence in [0, 1]d ←→ summarized in one functional parameters on [0, 1]d−1 . Further, focuses only on first order tail dependence. 40
  • 41. Arthur CHARPENTIER - Extremes and correlation in risk management Natural properties for dependence measures Definition 4. κ is measure of concordance if and only if κ satisfies • κ is defined for every pair (X, Y ) of continuous random variables, • −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1, • κ (X, Y ) = κ (Y, X), • if X and Y are independent, then κ (X, Y ) = 0, • κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ), • if (X1, Y1) P QD (X2, Y2), then κ (X1, Y1) ≤ κ (X2, Y2), • if (X1, Y1) , (X2, Y2) , ... is a sequence of continuous random vectors that converge to a pair (X, Y ) then κ (Xn, Yn) → κ (X, Y ) as n → ∞. 41
  • 42. Arthur CHARPENTIER - Extremes and correlation in risk management Natural properties for dependence measures If κ is measure of concordance, then, if f and g are both strictly increasing, then κ(f(X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f(X) with f almost surely strictly increasing, and analogously κ(X, Y ) = −1 if Y = f(X) with f almost surely strictly decreasing (see Scarsini (1984)). Rank correlations can be considered, i.e. Spearman’s ρ defined as ρ(X, Y ) = corr(FX(X), FY (Y )) = 12 1 0 1 0 C(u, v)dudv − 3 and Kendall’s τ defined as τ(X, Y ) = 4 1 0 1 0 C(u, v)dC(u, v) − 1. 42
  • 43. Arthur CHARPENTIER - Extremes and correlation in risk management Historical version of those coefficients Similarly Kendall’s tau was not defined using copulae, but as the probability of concordance, minus the probability of discordance, i.e. τ(X, Y ) = 3[P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0)], where (X1, Y1) and (X2, Y2) denote two independent versions of (X, Y ) (see Nelsen (1999)). Equivalently, τ(X, Y ) = 1 − 4Q n(n2 − 1) where Q is the number of inversions between the rankings of X and Y (number of discordance). 43
  • 44. Arthur CHARPENTIER - Extremes and correlation in risk management !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 !0.50.00.51.01.5 Concordant pairs X Y !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 !0.50.00.51.01.5 Discordant pairs X Y Fig. 7 – Concordance versus discordance. 44
  • 45. Arthur CHARPENTIER - Extremes and correlation in risk management Alternative expressions of those coefficients Note that those coefficients can also be expressed as follows ρ(X, Y ) = [0,1]×[0,1] C(u, v) − C⊥ (u, v)dudv [0,1]×[0,1] C+(u, v) − C⊥(u, v)dudv (the normalized average distance between C and C⊥ ), for instance. The case of the Gaussian random vector If (X, Y ) is a Gaussian random vector with correlation r, then (Kruskal (1958)) ρ(X, Y ) = 6 π arcsin r 2 and τ(X, Y ) = 2 π arcsin (r) . 45
  • 46. Arthur CHARPENTIER - Extremes and correlation in risk management From Kendall’tau to copula parameters Kendall’s τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00 Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞ Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞ Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞ Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞ Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞ Morgenstein θ 0.00 0.45 0.90 - - - - - - - - 46
  • 47. Arthur CHARPENTIER - Extremes and correlation in risk management From Spearman’s rho to copula parameters Spearman’s ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00 Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞ A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞ Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞ Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞ Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞ Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞ Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - - 47
  • 48. Arthur CHARPENTIER - Extremes and correlation in risk management 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Marges uniformes CopuledeGumbel !2 0 2 4 !2024 Marges gaussiennes Fig. 8 – Simulations of Gumbel’s copula θ = 1.2. 48
  • 49. Arthur CHARPENTIER - Extremes and correlation in risk management 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Marges uniformes CopuleGaussienne !2 0 2 4 !2024 Marges gaussiennes Fig. 9 – Simulations of the Gaussian copula (θ = 0.95). 49
  • 50. Arthur CHARPENTIER - Extremes and correlation in risk management Tail correlation and Solvency II 50
  • 51. Arthur CHARPENTIER - Extremes and correlation in risk management Tail correlation and Solvency II 51
  • 52. Arthur CHARPENTIER - Extremes and correlation in risk management Strong tail dependence Joe (1993) defined, in the bivariate case a tail dependence measure. Definition 5. Let (X, Y ) denote a random pair, the upper and lower tail dependence parameters are defined, if the limit exist, as λL = lim u→0 P X ≤ F−1 X (u) |Y ≤ F−1 Y (u) , = lim u→0 P (U ≤ u|V ≤ u) = lim u→0 C(u, u) u , and λU = lim u→1 P X > F−1 X (u) |Y > F−1 Y (u) = lim u→0 P (U > 1 − u|V ≤ 1 − u) = lim u→0 C (u, u) u . 52
  • 53. Arthur CHARPENTIER - Extremes and correlation in risk management Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GAUSSIAN q q Fig. 10 – L and R cumulative curves. 53
  • 54. Arthur CHARPENTIER - Extremes and correlation in risk management Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) GUMBEL q q Fig. 11 – L and R cumulative curves. 54
  • 55. Arthur CHARPENTIER - Extremes and correlation in risk management Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) CLAYTON q q Fig. 12 – L and R cumulative curves. 55
  • 56. Arthur CHARPENTIER - Extremes and correlation in risk management Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q qq q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) STUDENT (df=5) q q Fig. 13 – L and R cumulative curves. 56
  • 57. Arthur CHARPENTIER - Extremes and correlation in risk management Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) STUDENT (df=3) q q Fig. 14 – L and R cumulative curves. 57
  • 58. Arthur CHARPENTIER - Extremes and correlation in risk management Estimation of tail dependence 58
  • 59. Arthur CHARPENTIER - Extremes and correlation in risk management Estimating (strong) tail dependence From P ≈ P X > F−1 X (u) , Y > F−1 Y (u) P Y > F−1 Y (u) for u closed to 1, as for Hill’s estimator, a natural estimator for λ is obtained with u = 1 − k/n, λ (k) U = 1 n n i=1 1(Xi > Xn−k:n, Yi > Yn−k:n) 1 n n i=1 1(Yi > Yn−k:n) , hence λ (k) U = 1 k n i=1 1(Xi > Xn−k:n, Yi > Yn−k:n). λ (k) L = 1 k n i=1 1(Xi ≤ Xk:n, Yi ≤ Yk:n). 59
  • 60. Arthur CHARPENTIER - Extremes and correlation in risk management Asymptotic convergence, how fast ? 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 (Upper) tail dependence, Gaussian copula, n=200 Exceedance probability 0.001 0.005 0.050 0.500 0.00.20.40.60.81.0 Log scale, (lower) tail dependence Exceedance probability (log scale) Fig. 15 – Convergence of L and R functions, Gaussian copula, n = 200. 60
  • 61. Arthur CHARPENTIER - Extremes and correlation in risk management Asymptotic convergence, how fast ? 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 (Upper) tail dependence, Gaussian copula, n=200 Exceedance probability 0.001 0.005 0.050 0.500 0.00.20.40.60.81.0 Log scale, (lower) tail dependence Exceedance probability (log scale) Fig. 16 – Convergence of L and R functions, Gaussian copula, n = 2, 000. 61
  • 62. Arthur CHARPENTIER - Extremes and correlation in risk management Asymptotic convergence, how fast ? 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 (Upper) tail dependence, Gaussian copula, n=200 Exceedance probability 0.001 0.005 0.050 0.500 0.00.20.40.60.81.0 Log scale, (lower) tail dependence Exceedance probability (log scale) Fig. 17 – Convergence of L and R functions, Gaussian copula, n = 20, 000. 62
  • 63. Arthur CHARPENTIER - Extremes and correlation in risk management Weak tail dependence If X and Y are independent (in tails), for u large enough P(X > F−1 X (u), Y > F−1 Y (u)) = P(X > F−1 X (u)) · P(Y > F−1 Y (u)) = (1 − u)2 , or equivalently, log P(X > F−1 X (u), Y > F−1 Y (u)) = 2 · log(1 − u). Further, if X and Y are comonotonic (in tails), for u large enough P(X > F−1 X (u), Y > F−1 Y (u)) = P(X > F−1 X (u)) = (1 − u)1 , or equivalently, log P(X > F−1 X (u), Y > F−1 Y (u)) = 1 · log(1 − u). =⇒ limit of the ratio log(1 − u) log P(Z1 > F−1 1 (u), Z2 > F−1 2 (u)) . 63
  • 64. Arthur CHARPENTIER - Extremes and correlation in risk management Weak tail dependence Coles, Heffernan & Tawn (1999) defined Definition 6. Let (X, Y ) denote a random pair, the upper and lower tail dependence parameters are defined, if the limit exist, as ηL = lim u→0 log(u) log P(Z1 ≤ F−1 1 (u), Z2 ≤ F−1 2 (u)) = lim u→0 log(u) log C(u, u) , and ηU = lim u→1 log(1 − u) log P(Z1 > F−1 1 (u), Z2 > F−1 2 (u)) = lim u→0 log(u) log C (u, u) . 64
  • 65. Arthur CHARPENTIER - Extremes and correlation in risk management Gaussian copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GAUSSIAN q q Fig. 18 – χ functions. 65
  • 66. Arthur CHARPENTIER - Extremes and correlation in risk management Gumbel copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails GUMBEL q q Fig. 19 – χ functions. 66
  • 67. Arthur CHARPENTIER - Extremes and correlation in risk management Clayton copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails CLAYTON q q Fig. 20 – χ functions. 67
  • 68. Arthur CHARPENTIER - Extremes and correlation in risk management Student t copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Chi dependence functions lower tails upper tails STUDENT (df=3) q q Fig. 21 – χ functions. 68
  • 69. Arthur CHARPENTIER - Extremes and correlation in risk management Application in risk management : Loss-ALAE q q qq q q q q q q q q q q q q q q q q q q q q qq qq q q qqq qq q qq q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qqqq q q q qqq qq qq qqq q qq q q q qqqqq q q q q q qq q q q q q q qq qq q q q q q q q q q q q q q qq q q qq q q q q q q qqq q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q qq qq q q q qq qq qq qq qq q q qqq qqq qq q qq q q q q q q q q q q q q q q q q q q q q q qqqq q qqq qq qqqq q q qqq qq qq qq q qq q qqq qqqq qqq qqqqq qq qqqq qq qq q qq q q q q q q q q q q q q q q q q q q q qqqq qq q q q qq qqq q q q q qq q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q qq qq q qq q q qq q q q q q q qq q q q q qq q q q q q q q qq q q q q q q q qqqq qq q qqqqq q q qqqq qqqqq q qq q q q q qq qqqq qqqqqq q qqq qq qqqqqqqq qq qqqq q qqq q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q qq q qq qqq qq qqq q q q q qq q qq qq q qq qq q qq q qqq qqq q qq q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q qq q q q qqq qq q q q qqqqqqq qqq q qq qqq q qqq qqq qq qq qq q qqq qqq qqqqqqqqqqq qqq qq qqq qqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q qq qq qqqq q q q q q q q qq q q q q q q q q q q q q q q q q qq q q q q q q q q q qq qq qqq qqqqqqqqq q qq qqq q qq qq qqqq qq q qq q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q qq qq q q q q q q q qqq qq qq qq qqq q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq qq qq q q q q q q qq q qqqqq q qq q q qq q q qqq qqqqq q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq qq q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q qq q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q qq q q q q q q q q q qq q q q q q q q qq q q q qq qq q qq qq q q q q qq qqq qq q q q qq q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq qq qqqq qqqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q qq q q q q qq q q q qq q q q q q q q q q q q q qq q q q qqqqq q q q q q q q q q q q q q q q q q q q qqq qq q q q q qq 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Loss AllocatedExpenses Fig. 22 – Losses and allocated expenses. 69
  • 70. Arthur CHARPENTIER - Extremes and correlation in risk management Application in risk management : Loss-ALAE 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) qqq qqq qqq qqqqqqqqq qqqqqqqqqq q qqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqq qqqqqq qqqq qqq qqqqqqq qqq qqqqq qq qqq qq q qq q q q q q q q q q q q q q Gumbel copula q q 0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0 Chi dependence functions lower tails upper tails q q q qqq qqq qqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqq qq qqqqqqqqqqqqqq qqq q q q q Gumbel copula q q Fig. 23 – L and R cumulative curves, and χ functions. 70
  • 71. Arthur CHARPENTIER - Extremes and correlation in risk management Application in risk management : car-household q q q q q q q q q q q q q q q q q q qq q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Car claims Householdclaims Fig. 24 – Motor and Household claims. 71
  • 72. Arthur CHARPENTIER - Extremes and correlation in risk management Application in risk management : car-household 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 L and R concentration functions L function (lower tails) R function (upper tails) qqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qq qqq q qq qq qqqqqqqqqqqqqqq qqqqqqqq qqqqqqqqqqqqqq qqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqq qqqq q qqq qqqq qqq qqq qqqqq qqqqq qq qqqqqqq q qqqq qqq q qq q q q q q q q q q q q q q q q q q q q q q q q q q Gumbel copula q q 0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.0 Chi dependence functions lower tails upper tails qqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qq qqq q qqqqqqqqqqqqqqqqqqq qqqqqqqq qqqqqqqqqqqqqq qqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqq qqqqqqq qqqqqqq q q q q q q q q q q q q q Gumbel copula q q Fig. 25 – L and R cumulative curves, and χ functions. 72
  • 73. Arthur CHARPENTIER - Extremes and correlation in risk management Case of Archimedean copulas For an exhaustive study of tail behavior for Archimedean copulas, see Charpentier & Segers (2008). • upper tail : function of φ (1) and θ1 = − lim s→0 sφ (1 − s) φ(1 − s) , ◦ φ (1) < 0 : tail independence ◦ φ (1) = 0 and θ1 = 1 : dependence in independence ◦ φ (1) = 0 and θ1 > 1 : tail dependence • lower tail : function of φ(0) and θ0 = − lim s→0 sφ (s) φ(s) , ◦ φ(0) < ∞ : tail independence ◦ φ(0) = ∞ and θ0 = 0 : dependence in independence ◦ φ(0) = ∞ and θ0 > 0 : tail dependence 0.0 0.2 0.4 0.6 0.8 1.0 05101520 73
  • 74. Arthur CHARPENTIER - Extremes and correlation in risk management Measuring risks ? the pure premium as a technical benchmark Pascal, Fermat, Condorcet, Huygens, d’Alembert in the XVIIIth century proposed to evaluate the “produit scalaire des probabilit´es et des gains”, < p, x >= n i=1 pixi = n i=1 P(X = xi) · xi = EP(X), based on the “r`egle des parties”. For Qu´etelet, the expected value was, in the context of insurance, the price that guarantees a financial equilibrium. From this idea, we consider in insurance the pure premium as EP(X). As in Cournot (1843), “l’esp´erance math´ematique est donc le juste prix des chances” (or the “fair price” mentioned in Feller (1953)). Problem : Saint Peterburg’s paradox, i.e. infinite mean risks (cf. natural catastrophes) 74
  • 75. Arthur CHARPENTIER - Extremes and correlation in risk management the pure premium as a technical benchmark For a positive random variable X, recall that EP(X) = ∞ 0 P(X > x)dx. q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Expected value Loss value, X Probabilitylevel,P Fig. 26 – Expected value EP(X) = xdFX(x) = P(X > x)dx. 75
  • 76. Arthur CHARPENTIER - Extremes and correlation in risk management from pure premium to expected utility principle Ru(X) = u(x)dP = P(u(X) > x))dx where u : [0, ∞) → [0, ∞) is a utility function. Example with an exponential utility, u(x) = [1 − e−αx ]/α, Ru(X) = 1 α log EP(eαX ) , i.e. the entropic risk measure. See Cramer (1728), Bernoulli (1738), von Neumann & Morgenstern (1944), Rochet (1994)... etc. 76
  • 77. Arthur CHARPENTIER - Extremes and correlation in risk management Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Expected utility (power utility function) Loss value, X Probabilitylevel,P Fig. 27 – Expected utility u(x)dFX(x). 77
  • 78. Arthur CHARPENTIER - Extremes and correlation in risk management Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Expected utility (power utility function) Loss value, X Probabilitylevel,P Fig. 28 – Expected utility u(x)dFX(x). 78
  • 79. Arthur CHARPENTIER - Extremes and correlation in risk management from pure premium to distorted premiums (Wang) Rg(X) = xdg ◦ P = g(P(X > x))dx where g : [0, 1] → [0, 1] is a distorted function. Example • if g(x) = I(X ≥ 1 − α) Rg(X) = V aR(X, α), • if g(x) = min{x/(1 − α), 1} Rg(X) = TV aR(X, α) (also called expected shortfall), Rg(X) = EP(X|X > V aR(X, α)). See D’Alembert (1754), Schmeidler (1986, 1989), Yaari (1987), Denneberg (1994)... etc. Remark : Rg(X) might be denoted Eg◦P. But it is not an expected value since Q = g ◦ P is not a probability measure. 79
  • 80. Arthur CHARPENTIER - Extremes and correlation in risk management Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Distorted premium beta distortion function) Loss value, X Probabilitylevel,P Fig. 29 – Distorted probabilities g(P(X > x))dx. 80
  • 81. Arthur CHARPENTIER - Extremes and correlation in risk management Distortion of values versus distortion of probabilities q q q q q q q q q q q 0 2 4 6 8 10 0.00.20.40.60.81.0 Distorted premium beta distortion function) Loss value, X Probabilitylevel,P Fig. 30 – Distorted probabilities g(P(X > x))dx. 81
  • 82. Arthur CHARPENTIER - Extremes and correlation in risk management some particular cases a classical premiums The exponential premium or entropy measure : obtained when the agent as an exponential utility function, i.e. π such that U(ω − π) = EP(U(ω − S)), U(x) = − exp(−αx), i.e. π = 1 α log EP(eαX ). Esscher’s transform (see Esscher ( 1936), B¨uhlmann ( 1980)), π = EQ(X) = EP(X · eαX ) EP(eαX) , for some α > 0, i.e. dQ dP = eαX EP(eαX) . Wang’s premium (see Wang ( 2000)), extending the Sharp ratio concept E(X) = ∞ 0 F(x)dx and π = ∞ 0 Φ(Φ−1 (F(x)) + λ)dx 82
  • 83. Arthur CHARPENTIER - Extremes and correlation in risk management Risk measures The two most commonly used risk measures for a random variable X (assuming that a loss is positive) are, q ∈ (0, 1), • Value-at-Risk (VaR), V aRq(X) = inf{x ∈ R, P(X > x) ≤ α}, • Expected Shortfall (ES), Tail Conditional Expectation (TCE) or Tail Value-at-Risk (TVaR) TV aRq(X) = E (X|X > V aRq(X)) , Artzner, Delbaen, Eber & Heath (1999) : a good risk measure is subadditive, TVaR is subadditive, VaR is not subadditive (in general). 83
  • 84. Arthur CHARPENTIER - Extremes and correlation in risk management Risk measures : a pratitionner (mis)understanding 84
  • 85. Arthur CHARPENTIER - Extremes and correlation in risk management Risk measures : a pratitionner (mis)understanding 85
  • 86. Arthur CHARPENTIER - Extremes and correlation in risk management Risk measures : a pratitionner (mis)understanding 86
  • 87. Arthur CHARPENTIER - Extremes and correlation in risk management Risk measures : a pratitionner (mis)understanding 87
  • 88. Arthur CHARPENTIER - Extremes and correlation in risk management Risk measures : a pratitionner (mis)understanding 88
  • 89. Arthur CHARPENTIER - Extremes and correlation in risk management Risk measures and diversification Any copula C is bounded by Frchet-Hoeffding bounds, max d i=1 ui − (d − 1), 0 ≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud}, and thus, any distribution F on F(F1, . . . , Fd) is bounded max d i=1 Fi(xi) − (d − 1), 0 ≤ F(x1, . . . , xd) ≤ min{F1(x1), . . . , Ff (xd)}. Does this means the comonotonicity is always the worst-case scenario ? Given a random pair (X, Y ), let (X− , Y − ) and (X+ , Y + ) denote contercomonotonic and comonotonic versions of (X, Y ), do we have R(φ(X− , Y − )) ? ≤ R(φ(X, Y ) ) ? ≤ R(φ(X+ , Y + )). 89
  • 90. Arthur CHARPENTIER - Extremes and correlation in risk management Tchen’s theorem and bounding some pure premiums If φ : R2 → R is supermodular, i.e. φ(x2, y2) − φ(x1, y2) − φ(x2, y1) + φ(x1, y1) ≥ 0, for any x1 ≤ x2 and y1 ≤ y2, then if (X, Y ) ∈ F(FX, FY ), E φ(X− , Y − ) ≤ E (φ(X, Y )) ≤ E φ(X+ , Y + ) , as proved in Tchen (1981). Example 7. the stop loss premium for the sum of two risks E((X + Y − d)+) is supermodular. 90
  • 91. Arthur CHARPENTIER - Extremes and correlation in risk management Example 8. For the n-year joint-life annuity, axy:n = n k=1 vk P(Tx > k and Ty > k) = n k=1 vk kpxy. Then a− xy:n ≤ axy:n ≤ a+ xy:n , where a− xy:n = n k=1 vk max{kpx + kpy − 1, 0}( lower Frchet bound ), a+ xy:n = n k=1 vk min{kpx, kpy}( upper Frchet bound ). 91
  • 92. Arthur CHARPENTIER - Extremes and correlation in risk management Makarov’s theorem and bounding Value-at-Risk In the case where R denotes the Value-at-Risk (i.e. quantile function of the P&L distribution), R− ≤ R(X− + Y − )≤R(X + Y )≤R(X+ + Y + ) ≤ R+ , where e.g. R+ can exceed the comonotonic case. Recall that R(X + Y ) = VaRq[X + Y ] = F−1 X+Y (q) = inf{x ∈ R|FX+Y (x) ≥ q}. Proposition 9. Let (X, Y ) ∈ F(FX, FY ) then for all s ∈ R, τC− (FX, FY )(s) ≤ P(X + Y ≤ s) ≤ ρC− (FX, FY )(s), where τC(FX, FY )(s) = sup x,y∈R {C(FX(x), FY (y)), x + y = s} and, if ˜C(u, v) = u + v − C(u, v), ρC(FX, FY )(s) = inf x,y∈R { ˜C(FX(x), FY (y)), x + y = s}. 92
  • 93. Arthur CHARPENTIER - Extremes and correlation in risk management 0.0 0.2 0.4 0.6 0.8 1.0 !4!2024 Bornes de la VaR d’un portefeuille Somme de 2 risques Gaussiens Fig. 31 – Value-at-Risk for 2 Gaussian risks N(0, 1). 93
  • 94. Arthur CHARPENTIER - Extremes and correlation in risk management 0.90 0.92 0.94 0.96 0.98 1.00 0123456 Bornes de la VaR d’un portefeuille Somme de 2 risques Gaussiens Fig. 32 – Value-at-Risk for 2 Gaussian risks N(0, 1). 94
  • 95. Arthur CHARPENTIER - Extremes and correlation in risk management 0.0 0.2 0.4 0.6 0.8 1.0 05101520 Bornes de la VaR d’un portefeuille Somme de 2 risques Gamma Fig. 33 – Value-at-Risk for 2 Gamma risks G(3, 1). 95
  • 96. Arthur CHARPENTIER - Extremes and correlation in risk management 0.90 0.92 0.94 0.96 0.98 1.00 05101520 Bornes de la VaR d’un portefeuille Somme de 2 risques Gamma Fig. 34 – Value-at-Risk for 2 Gamma risks G(3, 1). 96
  • 97. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Will the risk of the portfolio increase with correlation ? Recall the following theoretical result : Proposition 10. Assume that X and X are in the same Fr´echet space (i.e. Xi L = Xi), and define S = X1 + · · · + Xn and S = X1 + · · · + Xn. If X X for the concordance order, then S T V aR S for the stop-loss or TVaR order. A consequence is that if X and X are exchangeable, corr(Xi, Xj) ≤ corr(Xi, Xj) =⇒ TV aR(S, p) ≤ TV aR(S , p), for all p ∈ (0, 1). See M¨uller & Stoyen (2002) for some possible extensions. 97
  • 98. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Consider • d lines of business, • simply a binomial distribution on each line of business, with small loss probability (e.g. π = 1/1000). Let    1 if there is a claim on line i 0 if not , and S = X1 + · · · + Xd. Will the correlation among the Xi’s increase the Value-at-Risk of S ? Consider a probit model, i.e. Xi = 1(Xi ≤ ui), where X ∼ N(0, Σ), i.e. a Gaussian copula. Assume that Σ = [σi,j] where σi,j = ρ ∈ [−1, 1] when i = j. 98
  • 99. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 35 – 99.75% TVaR (or expected shortfall) for Gaussian copulas. 99
  • 100. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 36 – 99% TVaR (or expected shortfall) for Gaussian copulas. 100
  • 101. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? What about other risk measures, e.g. Value-at-Risk ? corr(Xi, Xj) ≤ corr(Xi, Xj) V aR(S, p) ≤ V aR(S , p), for all p ∈ (0, 1). (see e.g. Mittnik & Yener (2008)). 101
  • 102. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 37 – 99.75% VaR for Gaussian copulas. 102
  • 103. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 38 – 99% VaR for Gaussian copulas. 103
  • 104. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? What could be the impact of tail dependence ? Previously, we considered a Gaussian copula, i.e. tail independence. What if there was tail dependence ? Consider the case of a Student t-copula, with ν degrees of freedom. 104
  • 105. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 39 – 99.75% TVaR (or expected shortfall) for Student t-copulas. 105
  • 106. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 40 – 99% TVaR (or expected shortfall) for Student t-copulas. 106
  • 107. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 41 – 99.75% VaR for Student t-copulas. 107
  • 108. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? Fig. 42 – 99% VaR for Student t-copulas. 108
  • 109. Arthur CHARPENTIER - Extremes and correlation in risk management The more correlated, the more risky ? 109
  • 110. Arthur CHARPENTIER - Extremes and correlation in risk management On the CEIPS recommendations 110
  • 111. Arthur CHARPENTIER - Extremes and correlation in risk management On the CEIPS recommendations 111
  • 112. Arthur CHARPENTIER - Extremes and correlation in risk management On the CEIPS recommendations 112
  • 113. Arthur CHARPENTIER - Extremes and correlation in risk management On the CEIPS recommendations 113
  • 114. Arthur CHARPENTIER - Extremes and correlation in risk management On the CEIPS recommendations 114
  • 115. Arthur CHARPENTIER - Extremes and correlation in risk management On the CEIPS recommendations 115
  • 116. Arthur CHARPENTIER - Extremes and correlation in risk management A first conclusion 116
  • 117. Arthur CHARPENTIER - Extremes and correlation in risk management Another possible conclusion • (standard) correlation is definitively not an appropriate tool to describe dependence features, ◦ in order to fully describe dependence, use copulas, ◦ since major focus in risk management is related to extremal event, focus on tail dependence meausres, • which copula can be appropriate ? ◦ Elliptical copulas offer a nice and simple parametrization, based on pairwise comparison, ◦ Archimedean copulas might be too restrictive, but possible to introduce Hierarchical Archimedean copulas, • Value-at-Risk might yield to non-intuitive results, ◦ need to get a better understanding about Value-at-Risk pitfalls, ◦ need to consider alternative downside risk measures (namely TVaR). 117