SlideShare una empresa de Scribd logo
1 de 113
Descargar para leer sin conexión
1
CLIMATE CHANGE ADAPTATION AND
EIA IN UK URBAN REGENERATION
PROJECTS
The Future of EIA
Chiko Ncube
School of Built Environment
Oxford Brookes University
September, 2011
2
Abstract
Climate Change is one of the defining global challenges of our age and compelling evidence
shows that substantial changes to our climate are already unavoidable. This research is
therefore founded on the key message that action towards the adaptation of climate change is
vital and urgent.
It examines the important role of planning in reducing the vulnerability of urban regions
through the Environmental Impact Assessment process (EIA). This is done primarily by
reviewing Environmental Statements for urban regeneration projects, as well as through
responses to questionnaires and emails and an in-depth literature study. It aims to show if and
how some of the UK‟s high profile and controversial urban regeneration projects have
considered climate change adaptation and what role EIA played in this incorporation.
The findings show that all reviewed projects considered the adaptation of climate change to
varying degrees. It is considered in the flooding assessment for all projects and the proposal
for sustainable urban drainage strategies was also found to be in all statements. Despite this,
clear consideration in other impact chapters such as Landscape and Ecology was lacking.
Long term baselines for projects were hardly used in many projects but when used, they were
found in CO2
related impact chapters such as traffic and air quality. The smaller scaled urban
regeneration projects showed a clear gap in holistically approaching the issues of climate
change by frequently mentioning it under the loose umbrella of „sustainable development‟.
The larger projects such as the Olympic Village and Bilston Urban Village showed a holistic
approach and purposefully integrated it in the earlier stages of the EIA, allowing for the
predicted impacts to influence the design and decision making. Furthermore, the responses
from the questionnaires and emails showed that the extent to which climate change
considerations are factored in is difficult to predict due to many variables such as the type of
development, funding and different economic and political conditions. The results also
showed that although there was a sound agreement on the integration of climate change
adaptation in EIA, however it was found that many adaptation measures were often put aside
for other planning goals.
With the European Commission currently working towards incorporating climate change
considerations in the EIA directive and the UK aiming to publish its first National Adaptation
programme this year, this research comes at a very crucial time.
3
List of Contents
Table of Contents
Abstract 3
List of Contents 4
List of Tables, Figures and Boxes 6
Abbreviations 7
Acknowledgments 8
Chapter One: Introduction 10
1.1 The importance of EIA and climate change adaptation 11
1.2 Urban Regeneration 12
1.3 Research Questions 13
1.4 Methodology 13
1.5 Structure and layout 14
Chapter Two: Literature review 15
2.1 EIA and Policy, Plans and Programmes 16
2.1.1 Global Level 16
2.1.2 European Level 17
2.1.3 National Level 18
2.1.4 Progress towards UK National Adaptation Programme 20
2.2 Climate Change 21
2.3 Climate Change in the UK 23
2.4 Climate Change Adaptation 25
2.5 Climate Change adaptation and urban areas 26
2.6 EIA and Climate Change Adaptation 27
Chapter Three: Methodology 31
3.1 ES review (7/10 projects) 33
3.2 EIA review (4/11 projects) 34
3.3 Questionnaires and emails 35
Chapter Four: Presentation of findings 37
4.1 First Review: Environmental Statement 33
4.2 Second Review: EIA Process 45
4
4.2.1 Ashton Green 45
4.2.2 Bilston Urban Village 47
4.2.3 Brent Cricklewood 51
4.2.4 Olympics
Chapter Five: Analysis 59
5.1 Summary analysis of in-depth review projects 61
5.2 Internal factors 64
5.3 External factors 66
Chapter Six: Conclusion 69
6.1 Areas of further research 71
Appendices 72
References 86
5
List of Figures
Figure 1: UKCIP (09) Projected changes to mean precipitation for the 2080s 24
Figure 2: Change in observed temperature over Western Europe over a 200-year
period (MET office, Adapting institutes)
25
Figure 3: Review of Climate change mitigation in environmental statements 29
Figure 4: Review of Climate change mitigation in environmental statement, significant
variation in sectors
29
Figure 5: Locations of selected projects 33
Figure 6: Proposed comprehensive drainage strategy Bilston Village 47
Figure 7 Showing UKCIP risk framework tool (UKCIP, 2011) 50
Figure 8: Showing phases of London 2012 programme 57
Figure 9: Showing Olympic legacy Phase and Climate Change impacts 58
Figure 10: Showing potential entry points for Climate Change consideration 60
Figure 11: Showing evolution of adaptation Climate Change 69
List of Boxes
Box 1: Adaptation Sub-Committee (ASC) 20
Box 2: Green Infrastructure typologies 35
Box 3: Blue Infrastructure typologies 35
Box 4: Liverpool Waters 38
Box 5: Carlyon Bay 39
Box 6: Edinburgh Harbour 40
Box 7: Huntsgrove 41
Box 8: Centenary Quay Woolston 42
Box 9: London‟s Sporting Village 43
Box 10: Sowerby Bridge Copley Valley 44
Box 11: London Plan 52
6
List of Tables
Table 1: Showing summary for four in-depth review projects 61
Abbreviations
CC: Climate Change
CCA: Climate Change Adaptation
EA: Environment Agency
EIA: Environmental Impact Assessment
ES: Environmental Statement
EU: European Union
EC: European Commission
FRA: Flood Risk Assessment
GHG: Greenhouse Gas
LA: Local Authority
PPP: Plans, Policies and Programmes
SEA: Strategic Environmental Assessment
7
Acknowledgments
I would like to thank God for His Grace and Excellence that has enabled me to complete this
research. My gratitude goes out to my family (Dad, Mum and the other 6) in Zimbabwe for
their unwavering support and consistent love, as well as my IFCS family here (Dr Taiwo,
Pastor Ade and Jessie Williams, Dr Abiose, IFCS Central, Leaders and Members). I would
also like to thank Dr Elizabeth Wilson for her wonderful guidance and for making my
research possible.
8
“Adapt or perish, now as ever, is nature‟s inexorable imperative.”
H.G. Wells (1866-1946)
9
Chapter One: Introduction
Climate Change (CC) remains the world‟s greatest environmental, political, social and
economic challenge. For the past century, Greenhouse gas (GHG) emissions have been
accumulating in the atmosphere, primarily as a result of burning fossils fuels and changes in
land use. Recent decades have shown unequivocal evidence that CC is happening and its
impacts are already observable. According to the Committee on Climate Change (CCC,
2011), the first decade of the twenty-first century was the warmest since instrumental records
began with an increase of 0.8o
C in global average temperatures. It is therefore widely
acknowledged that the impacts of CC are expected to become more severe as changes in the
climate intensify in the near future.
These changes have not only altered the nature of climate risks to which societies have long
been exposed to, but have introduced the possibility of future prospective changes to climate
which dwell outside the experience of human history (Hulme et al, 2010). A new political
and cultural dynamic has begun, one which challenges all levels of governance to re-think
and re-shape the way in which society functions. Environmental Impact Assessment (EIA) in
spatial planning is particularly relevant in this context.
This research grew out of an interest in EIA and climate change, a concern over the limited
attention to incorporating and understanding how to address climate change adaptation
(CCA) in EIA, and a resulting avidity to discover how new urban developments are
responding to CC. Accordingly, the overall aim of this research is to explore how CCA is
being addressed in the EIA process and practice in current urban regeneration projects. CC is
a global problem however the author has chosen the United Kingdom as the region of
investigation for this research.
The term climate change adaptation is relatively new in the UK and continues to rise on the
agendas of researchers, practitioners and decision makers. The Climate-Knowledge and
Innovation Community (2011) additionally acknowledges that CCA will be an important
activity under the UK Government‟s localism, decentralisation and Big Society agenda. In
the future the UK will experience warmer and wetter winters and hotter and drier summers
(DEFRA, 2009). The incidence of extreme weather events will increase and are likely to
10
compound the high cost of weather related disruption. During the floods in summer 2007, 13
people lost their lives and around 48,000 homes and 7,000 businesses were flooded. The
floods caused more than £3 billion of insure damage and the total disruption to the economy
was far greater than anticipated (The Royal Commission, 2010). There are low-regret actions
that could be taken now to reduce the UK‟s vulnerability; however evidence of such
measures is limited (CCC, 2011). Climate risks also appear not to be fully incorporated into
some major strategic decisions especially with regards to land use planning.
The UK‟s vulnerability to CC is increasing and efforts towards adapting to CC are
continually put aside as a result of patterns of development in some areas and demographic
trends. The Adaptation Sub-Committee (ASC) studied nine Local Authorities (LA) and
found that since 2001:
 In almost all of the nine English local authorities studied, development in areas of
flood risk had increased, and in four of them the rate of development was higher than
across the locality as a whole.
 Three of the four coastal authorities saw an increase in development in areas of
eroding coastline, and in two of them the rate of development on unprotected
coastline was higher than across the authority as a whole.
 The area of hard surfacing increased in five of the six urban authorities studied,
primarily at the expense of urban green space, which declined in all six. This is likely
to exacerbate surface water flooding risk and the urban heat island effect.
(CCC, 2011)
This research investigates the drivers towards the consideration of CCA in urban projects
despite these pressures and discusses the possible ways forward in building project resilience
through EIA.
1.1 The importance of EIA and Climate change adaptation
Planning in a regime where up to a 60 centimetre increase in sea level during the next 100
years is possible, poses enormous uncertainty. Dealing with this uncertainty and adapting to
the expected changes is an important role that should be played by the planning system.
However it is still seen that CC is perceived as a distant phenomenon by planners and
adaptation needs are „backstaged‟ by other planning goals. Effective and strategic planning
11
and management could lead to huge financial savings and key reduction in place and society
vulnerability. In order to achieve this, the discipline and practice of planning can deploy tools
such as impact assessment, climate risk assessment, futures thinking and the ecosystem
approach (Wilson et al., 2010).
The EIA process has been recognised by organisations such as the EC and The Institute of
Environmental Management and Assessment (IEMA) as a potential vehicle for CCA and a
recognised aid to decision making in planning. The purpose of an EIA is to ensure that
development options under consideration are environmentally sound and sustainable, and that
any environmental consequences are recognised early in the project cycle and taken account
in the project design (World Bank, 2009).
Currently, assessing the impacts of CC is not mandatory in EIA, and the tool is viewed by
many practitioners as limited and better at addressing the „acute‟ impacts of development as
opposed to the „chronic‟ impacts of CC (Environment Agency, 2011). Despite this, recent
research and projects have shown that there is ample scope for employing EIA procedures as
a tool to enhance the resilience of projects to the impacts of CC (Agrawala et al., 2010).
Every project is designed with some assumption about the climate in which it will function
(Caricom, 2009) and the conventional way is to assume that the historical climate data and
past experiences is a reliable guide to the future. This assumption is no longer good enough,
thus design criteria must be based on the CC over the life of the project. Many projects for
which EIA‟s are required have relatively long life spans (20 to 100 years) and therefore this
incorporation could facilitate the successful „climate-proofing‟ of projects and serve as a
substantial economic investment. This proves particularly important in urban regions which
are extremely vulnerable due to their high population density, large numbers of poor and
elderly residents, their dense physical structure and their dependencies on often ageing
infrastructure systems.
1.2 Urban regeneration
Over the past 20 years, a bewildering array of government programmes have been launched
in the UK as an attempt to reverse the decline in inner city areas by both improving the
physical structure and more elusively, the economy of those areas (Guardian, 2001).
Examples of well considered regeneration schemes are still few with many projects still cheer
leading an urban renewal of rapid glass towers and asymmetric housing. Elliot Morley, the
12
Minister of State in 2005 recognised that the impacts of CC will increasingly affect the
integrity of the built environment unless action is taken now. Buildings have an expected
lifetime of up to 100 years and therefore new buildings need to be able to withstand the
impacts of CC in order to guarantee their long term sustainability (GLA, 2005). Urban
regeneration projects of today house a generation of tomorrow that will undoubtedly
experience the increasing impacts of CC. Research from the United Nations University
(UNU-Institute of Advanced Studies, 2010) has suggested that urban regeneration, a process
through which inner-city areas are renewed, redeveloped or rehabilitated, can address many
of the challenges posed by CC and can also provide essential and effective solutions towards
making our cities more resilient. EIA is particularly relevant in this context as its primary aim
is to enable better decision making within the planning process of a project by examining the
environmental consequences of development actions, in advance (Glasson et al, 2005; 4).
1.3 Research Questions
The following research questions have been constructed to clarify the purpose of this study:
Primary Research Question
1. Can EIA procedures be used as a vehicle for enhancing the resilience of projects to
the impacts of climate change?
In order to help answer the main research question, other more detailed questions are
considered.
Secondary research Questions
2. What progress has the UK made in incorporating climate change adaptation measures
within the context of EIA modalities for long term projects, particularly urban
regeneration projects?
3. What factors explain the limitations to the incorporation of climate change adaptation
in EIA?
4. Can Urban Regeneration address many of the challenges posed by climate change?
1.4 Methodology
In order to answer these questions, this investigation will comprise of a documentation
review of eleven past urban regeneration projects subject to an EA. The ES is used as the
13
solitary document for review for the following seven projects: Liverpool Waters, Carlyon
Bay, Edingburgh Harbour, Huntsgrove, Centenary Quay Woolston, Surrey canal London‟s
sporting village and Sowerby Bridge Copley Valley. An in-depth review of the entire EIA
process was done for these selected 4 projects: Ashton Green (Leicester), Bilston Urban
Village (Wolverhampton), Brent Cricklewood and the Olympics (London). These urban
regeneration projects have long term lifetimes and therefore they will be subject to climate
extremes, climate variability and climate change. Questionnaires and emails were sent to
some of the environmental consultants and LAs involved in the selected projects. The
responses given have enabled the author to gain a greater understanding of the EIA process
for that project and the drivers for the consideration of CCA. In addition, a thorough policy
and literature review was carried out to form the background of the review. In this short time
frame of investigation, the dynamic speed of change in this new field of enquiry and action
around CCA is reflected as new guidance documents and regional and local adaptation
programmes were released up to the point of conclusion for the study.
This study is likely to be relevant not only to EIA practitioners, planners and climate change
researchers but also to LAs considering the incorporation of CCA in EIA. The EC is currently
developing guidelines by 2011 to ensure that climate impacts are taken into account in the
EIA Directive. The Commission identifies that CC is not sufficiently considered in EIA, and
the review of the impacts is often limited to CO2
and other GHG emissions (CEC, 2009: 9).
The UK Government is also required by the climate Change Act to lay its adaptation
programme before Parliament „as soon as is reasonably practical‟ following the publication of
the Climate Change Risk Assessment (CCRA). This study is consequently a useful study and
is significant to the current wider context of how planning and impact assessment can
effectively address the impacts of CC.
1.5 Structure and Layout
Following the Introduction, is the Literature Review in chapter Two, which includes a Plans,
Policy and Programme review relevant to the research topic. The methodology in chapter
Three explains the ES document review and an in-depth EIA process review. Chapter Four
presents details of the selected projects and the measures taken towards adapting to CC.
Chapter Five offers an analysis of the findings and Chapter Six draws to a close the final
discussion and conclusion of this research with recommendations for areas of further
research.
14
Chapter Two: Literature Review
This chapter reflects on the debates in literature which are relevant to the author‟s research
questions and purpose of study. The chapter aims to additionally provide a policy and
guidance context which provides conceptual and analytical frameworks relevant to the
research analysis.
Traditionally, cities have been located outside arguments and discussions about the means of
which to address environmental problems. This separation can be traced through the heritage
of the conservation ideal which dominated environmental thoughts between the nineteenth
and the late twentieth century. These thoughts identified themselves with „the rural‟ or
„wilderness‟ which needed to be preserved against the encroachment of the city (Bulkeley et
al, 2003). Despite this concept of the environment as somehow „external‟ to the city, cities
have become places in which key environmental issues have been addressed. They have
seemingly become central to the pursuit of sustainable development. The ICLEI – Local
Governments for Sustainability (International Council for Local Environmental Initiative),
have concluded in recent reports, that cities are at the frontline of adaptation (ICLEI, 2010).
Many countries and regions are pushing to act on adaptation by creating adaptation strategies;
with leading cities such as London, Copenhagen, and Rotterdam conducting assessments of
likely CC impacts for their regions.
The process of building policy frameworks to address CC has evolved increasingly since the
1980s when it emerged as an international political concern. Alongside this evolution, has
been the development of the flexible term „multi-level governance‟. This term follows the
notion that governance is not solely led by the nation-state but that it occurs at multiple tiers
and through multiple institutions. The PEER report (2009) reaches the same conclusion while
also highlighting the need for national involvement through the provision of incentives and
frameworks for action. Similarly the 1st
World Congress on Cities and Adaptation to Climate
Change in Bonn in 2010 came to a common understanding that multi-level governance is the
key for building resilient cities. Local Governments have been found to be in the best position
to understand the needs of citizens and to identify the range of stakeholders that need to be
included in a local adaptation strategy. The distinction and division of responsibilities still
15
remains largely vague, however there remains an underlying conclusion that different levels
of government have to work together to develop synergies and mainstream the introduction
of adaptation concerns into policy making and implementation (ICLEI, 2010).
Governance is no longer ordered or hierarchical. In the response to global change,
active agents in local communities seek partnerships and coordinated programmes of
action through various levels of government from local to multinational. (O‟Riordan
et al., 2001)
Adaptation will have impacts primarily on a local scale in comparison to mitigation which is
a global effort requiring broad changes of behaviour and technological advancements (World
Bank, 2010). Hence, the UK has significant responsibilities for placing its own adaptation
policies and their success or failure is in the hands of national and local government, UK
business, and communities from major cities to the smallest villages.
This chapter will review relevant publications and information concerning CC and EIA.
2.1 EIA and Policy, Plans and Programmes
Recent publications on CCA from planning policies to practice guidance that have touched
on the topic or attempted to frame and define the appropriate relationship of EIA and CC and
CCA are identified below:
2.1.1 Global Level
Climate change politics at the global level has primarily focused on the development of an
international regime. The core of this regime consists of two multilateral treaties: the 1992
UNFCCC and its 1997 Kyoto Protocol.
 United Nations Framework Convention on Climate Change (UNFCCC), 1992
The UNFCCC was drafted and adopted in May 1992, then signed by more than 150 nations
attending the 1992 Earth Summit in Rio de Janeiro. Membership of the UNFCCC requires
signatories to launch national strategies for addressing greenhouse gas emissions and
adapting to expected impacts. All participating parties are committed to formulate and
implement measures to facilitate adequate adaptation to climate change. The focus was
primarily on the problem of reducing the potential impacts of CC through the efforts to
16
reduce GHG emissions. Adaptation as a second response received relatively little attention in
the international negotiations.
However, in the last several years, the issue of adaptation to CC has moved high on the
UNFCCC negotiating agenda. Various workshops and expert meetings have been facilitated
by the UNFCCC Secretariat with the aim to enhance the knowledge about adaptation CCA.
The last few Conference of parties (COPs) of the UNFCCC has increased attention to the
limitations of dealing with inevitable impacts of CC through adaptation (e.g. through the
creation of specific funds at COP7 2001, the implementation of activities to understand
specific vulnerabilities at COP10 and the COP11 five-year programme of work on impacts,
vulnerability and adaptation for better informed decision making).
 Kyoto Protocol, 1997
The Kyoto Protocol is an international agreement linked to the UNFCCC. The major feature
of the Kyoto Protocol is that it sets binding targets for 37 industrialised countries and the
European community for reducing greenhouse gas emissions. The distinction between the
Protocol and the Convention is that the Convention encourages parties to stabilize GHG
emissions however the Protocol commits them to do so.
Under Article 10 of the Kyoto Protocol signatories agree to „Formulate, implement, publish
and regularly update national and where appropriate, regional programmes containing
measures to mitigate CC and measures to facilitate adequate adaptation to climate change‟
(Wilson et al, 2010). The Kyoto Protocol is designed to assist countries in adapting to the
adverse effects of climate change. It also facilitates the development and deployment of
techniques that can help increase resilience to the impacts of CC (UNFCCC, 2010).
2.1.2 European Level
Due to the regional variability and severity of climate impacts, most adaptation measures will
be taken at national, regional and local level. However these measures can be supported and
strengthened by an integrated and coordinated approach at the EU level (EN, 2009).
Adaptation is expected to be a long and continuous process, and action at the European level
aims to strengthen dialogue with partner countries on adaptation issues and to ensure there
are adequate resources to provide a sustainable and sound economic basis for future
generations. The EU has proposed a Framework for Action on Adaptation which will come
into force in 2012 after the end of the first commitment period of the Kyoto Protocol.
17
The EU, in its five-year monitoring reviews of the EIA Directive, concluded that:
„The EIA Directive does not expressly address climate change issues... Any review of the
impacts of climate change is often limited to CO2 and other GHG emissions from
industry and from increases in transport as part of air quality studies or as indirect
impacts...In addition, the effects on global climate, the cumulative effects of an additional
project and adaptation to climate change are not sufficiently considered.‟ (CEC, 2009g,
para. 3.5.4)
 ECCP II Working Group 2: Impacts and Adaptation
At European level a comprehensive package of policy measures to reduce GHG emissions
has been initiated through the European Climate Change Programme (ECCP). The goal of
the ECCP is to identify and develop all the necessary elements of an EU strategy to
implement the Kyoto Protocol. The ECCP II Working Group 2 launched in 2005 aims to
integrate adaptation fully into relevant European policy areas, to identify good, cost-effective
practice in the development of adaptation policy. Urban planning and the built environment
are amongst the priority topics for the Group.
 EU White paper: Adapting to Climate Change: Towards a European Framework for
action (2009)
In April 2009, the EC presented a White Paper on CCA and the need to support adaptation by
promoting a more strategic approach to ensure timely and effective adaptation measures are
taken and ensuring coherency across different sectors and levels of governance. Additionally
the White Paper detailed the significance of extreme climatic events on infrastructure and the
urgent need to set out a framework to reduce the EU‟s vulnerability to CC impacts and work
towards the post-2012 climate agreement which will subsequently address adaptation (Town
and Country Planning Association, 2009).
2.1.3 National Level
At a national level, the UK historically became known as the „dirty man‟ of Europe for its
lack of action on environmental problems (Bulkeley et al., 2003). However by the second
half of the 1980s, environmental issues were receiving increasing government attention.
Since then, the UK has taken a leading role in the international negotiations with the
18
introduction of the Climate Change Act in 2008 as the first country to have a legal binging
framework.
A number of programmes, measures and campaigns have been introduced to culminate the
Climate Change Act such as The UK Climate Change Programme published in 1996, 2000
and 2006 which committed the government to produce guidance on planning and climate
change. The programmes focused primarily on mitigation but also acknowledged the
necessity of adaptation.
In addition to voluntary and market instruments changes to building regulations have been
made to improve the energy efficiency of new housing and build adaptive capacity. However
the Adaptation‟s sub-committee, the independent climate expert for the Government
concludes in its executive summary „How well prepared is the UK for climate change‟ (2010)
that there is still no tangible action on the ground to reduce the UK‟s vulnerability to climate
change.
 Climate Change Act, 2008 HM Government
The Act sets out a framework for dealing with adaptation, recognising that the country needs
to be prepared to deal with the changes to the climate that we are already starting to face,
alongside wider economic and demographic trends.
The Act includes:
 The requirement to undertake a UK-wide Climate Change Risk Assessment (CCRA)
and report on it by January 2012.
 The requirement to set out a statutory Adaptation Programme following the CCRA
 An Adaptation Reporting Power allowing the Government to direct certain
infrastructure companies and regulators to prepare reports on how they are assessing
and acting on the risks and opportunities from a changing climate.
 Establishing the Adaptation Sub-Committee of the Committee on CC to provide
expert independent advice to Government on CCA.
(DEFRA, 2011)
19
2.1.4 Progress towards UK National Adaptation Programme
The UK Government‟s first Adaptation Programme aims to be laid before parliament by the
end of 2012 and the Central Government has progressed towards meeting this need for
adaptation in an incremental way through various published documents.
 HM Government (2011); Climate Resilient Infrastructure: Preparing for a Changing
Climate
This document highlights important themes such as: the risk CC presents to infrastructure
interdependencies; adaptation investment; and potential economic opportunities. It is
designed to catalyse action to adapt infrastructure in the energy, ICT, transport and water
sectors (infrastructure networks). This Government-wide document recognises that
adaptation is an issue and aims to be a valuable input to the UK Government‟s first
Adaptation Programme. It emphasises that:
The responses to CC require two kinds of action:
1. Mitigation by reducing GHG to 80% below 1990 levels by 2050 as required by the
Climate Change Act (2008).
2. Adaptation to climate change due to past, current and future GHG emissions.
Box 1: Adaptation Sub-Committee (ASC)
The ASC has identified five priority areas for immediate action in preparing for climate
change:
1. Taking a strategic approach to land-use planning;
2. Providing national infrastructure;
3. Designing and renovating buildings;
4. Managing natural resources sustainably
5. Effective emergency planning
Source: DEFRA, 2011
20
 DEFRA (Department for Environment, Food and Rural Affairs)
DEFRA has been pivotal to the UK Government‟s progress to CCA and leads the
government‟s climate change mitigation policy. In March 2010, sixteen Government
Departments published Departmental Adaptation Plans (DAPs) and Carbon Reduction
Delivery Plans. These complementary plans set out policies on CCA and CC mitigation
respectively. DEFRA‟s climate change plan (2010) sets out how it will continue to deal with
the challenges and opportunities of climate change including adaptation with partners such as
Natural England and the Forestry Commission. It has recently been announced that the
Environment Agency (EA) will take on a new, additional role as the Government‟s delivery
body in England for advice on climate adaptation. DEFRA will provide EA with an
additional 2 million pounds per year to deliver climate adaptation advice, an increase on the
current 1.5million per year budget will be paid to UKCIP and the UK‟s regional climate
change partnerships.
 UK Climate Impacts Programme (UKCIP)
Adapting to CC advice is currently delivered for DEFRA by UKCIP, regional Climate
Change Partnerships and the Local & Regional Adaptation Partnership (LRAP). UKCIP is a
programme which focuses on the challenge of the impacts of unavoidable climate change.
The programme began its work in 1997 when CC was still regarded as an environmental
issue on the fringes of policymaking. UKCIP has created a host of tools and resources to help
organisations prepare for the impacts of a changing climate, such as, UKCIP‟s Adaptation
Wizard, which provides step-by-step guidance for organisations starting the process of
adapting to climate change.
2.2 Climate change
In 2007, the Intergovernmental Panel on Climate Change (IPCC) published its Fourth
Assessment Report. This report gave a thorough review of the science and challenges of
climate change. The report played an important role in creating global awareness of the
urgency of a global response to CC (IPCC, 2011). In that same year, the UN Secretary
General called CC „a defining issue of our era‟ and five months later, after a global trip
witnessing the changes firsthand, he referred to it as „the defining challenge of our age‟
(Posas, 2011).
21
The International Alliance of Research Universities (IARU) organised a congress regarding
the opportunities and challenges of CC in 2009. The congress clearly defined this global
phenomenon as a challenge that required combined efforts of scientific disciplines; natural
climate science integrated with the social, political and economic sciences in order to be
adequately addressed. There has been substantial progress in understanding how the climate
is changing through improvements on numerous datasets, data analyses, broader geographical
coverage, better understanding of uncertainties and a wider variety of measurements (IPCC,
2007).
Climate change is defined by the IPCC as „a change in the state of the climate that can be
identifies by changes in the mean and/or the variability of its properties and that persists for
an extended period, typically decades or longer. Climate change refers to any change in
climate over time, whether due to natural variability or as a result of human activity.‟(IPCC,
2007)
The United Nations Framework Convention on Climate Change refers to climate change as
„a change of climate that is attributed directly or indirectly to human activity that alters the
composition of the global atmosphere and that is in addition to natural climate variability
observed over comparable time periods.(IPCC, 2007)
The difference in the two definitions is in the usage of the term. The IPCC definition is not
limited to human activity alone and therefore the IPCC definition of climate change will be
used in this research.
Since it was established that humans are at least part responsible for climate change and that
some impacts can no longer be avoided, academic and policy attention for adaptation has
increased rapidly. However despite this increase in attention, the science of CCA is still in its
infancy (Klein et al., 2005). According to the IPCC synthesis report on Climate Change
2007:
 It is very likely that cold days, cold nights and frosts have become less frequent over
most land areas, while hot days and hot nights have become more frequent.
 It is likely that heat waves have become more frequent over most land areas.
 It is likely that the frequency of heavy precipitation events (or proportion of total
rainfall from heavy falls) has increased over most areas.
22
 It is likely that the incidence of extreme high sea level has increased at a broad range
of sites worldwide since 1975
(IPCC, 2007)
2.3 Climate change in the UK
During the last 40 years, the UK has experienced most of the impacts of climate change. The
winters have grown warmer, with heavier bursts of rain. The summers have been increasingly
drier and hotter causing widespread water shortages. The Thames Barrier was raised on
average three times a year until 2001 and by 2030 it is expected that it will need to be raised
30 times per year (EA, 2011). The Environment Agency highlights that the UK will witness
more extreme events, such as flooding, storms, sea level rise and drought as well as wetter
warmer winters and hotter drier summers.
There are currently 490,000 properties at significant risk of flooding and an additional 35,000
will be at significant risk of flooding by 2035 due to climate change. The total annual river
flow in England and Wales is expected to drop by 10 to 15 per cent by 2050, with 80 per cent
less water in some rivers during the summer months.
23
Figure 1 showing UKCIP (09) Projected changes to annual, winter and summer mean precipitation for the 2080s
24
Figure 2 showing change in observed temperature over Western Europe over a 200-year period (web source)
2.4 Climate Change Adaptation
The IPCC defines Adaptation as “Adjustment in natural or human systems in response to
actual or expected climatic stimuli or their effects, which moderates harm or exploits
beneficial opportunities. Various types of adaptation can be distinguished, including
anticipatory and reactive adaptation, private and public adaptation, and autonomous and
planned adaptation.” (IPCC, 2001)
It is recognised that even the most rigorous and relentless mitigation efforts cannot avoid
further impacts of CC in the next few decades and even if temperature increases can be
limited, which is far from certain, the impacts for some societies and ecosystems will still be
highly significant (Royal Commission, 2010). Klein et al. (2007) recognise that without
mitigation, a magnitude of CC is likely to be reached that will make adaptation impossible for
some natural systems while for most human systems it would involve very high social and
economic costs. It is therefore not a question of whether to mitigate to CC or to adapt to it.
Both CCA and CC mitigation are now essential in reducing the expected impacts of CC.
25
2.5 Climate Change adaptation and Urban areas
Cities are critical in tackling CC by mitigation and adaptation actions. However they are
considered part of the problem as much as they are part of the solution (United Nations
University, 2007). According to UNHABITAT‟s estimations (2007), urban centres are said to
account for more than half of global greenhouse gas emissions and for about two-thirds of
global energy use. The transport sector accounts for 24 per cent of total carbon dioxide
emissions, of which 74 per cent is from road transport. By 2050, the passenger vehicle fleet is
expected to triple in size. The building sector is responsible for 30 per cent of greenhouse gas
emissions globally, with 80-90 per cent emitted during building use and 10-20 per cent
during construction. Established well known researchers David Satterthwaite and David
Dodman (2009) argue that recent IPCC figures on city emissions are inaccurate and that it is
not cities that produce GHGs, but particular activities located there. They conclude on the
urgent point that what is fundamentally important for cities and urban centres is a focus on
adaptation.
Mitigation and adaptation are strongly influenced by urban form and this could result in
possible conflict. For example, at high densities, travel distances are minimised and
community energy schemes become more viable. However, higher densities can intensify
urban heat island effects and reducing urban drainage capacity (Shaw et al., 2007).
Our cities are not currently designed for climate change and therefore planners have an
important role in ensuring that new developments take account of CCA. Acting early may
mean that resilience to CC can be incorporated into the planning and construction process at
relatively low cost (GLA, 2005). Due to compelling socio-economic considerations (i.e.
increasing population), it is highly likely that development may continue in areas vulnerable
to the impacts of climate change
Vulnerability can be defined as “the degree to which a system is susceptible to, and unable to
cope with adverse effects of climate change, including climate variability and extremes.
Vulnerability is a function of the character, magnitude, and rate of climate change and
variation to which a system is exposed, its sensitivity, and its adaptive capacity.” (IPCC
2007)
26
The potential impacts of climate change on urban areas include (ETC/ACC, 2010):
 Sea level rise and storm surge flooding,
 Fluvial flooding,
 Urban drainage flooding,
 Building and infrastructure subsidence and landslides,
 Wind storm,
 Water scarcity , drought and implications for water resources
 Heat and health
 quality and health,
 Resources and amenity
 Diseases
In order to make our communities less vulnerable to the CC impacts listed above, solutions
need to be provided through regional and local spatial planning and EA.
Barry Sadler (1996), with support from impact assessment experts and organisations
worldwide, undertook an international study on the effectiveness of EA. Sadler
(p.45)highlights that EA can and does make a difference to decisions taken and that it
supports environmentally favourable action in implementing development. The insightful
document focuses on EA generally and only recognises CC mitigation with no reflection on
CCA which is very likely due to the time in which it was published .The report includes
section on CC, Strategic Environmental Assessment (SEA) and EIA. Sadler argues that SEA
can permit more effective assessment of CC implications of PPPs and development decisions
than EIA of projects though he considers that the two used together can be most powerful.
2.6 EIA and Climate Change Adaptation
National governments have invested considerable effort in developing methodologies and
tools to screen their projects for the risks posed by CC (Agrawala et al., 2009). It has been
recently identified that an alternative and complementary approach should be considered by
examining the feasibility of incorporating consideration of CC impacts and adaptation within
existing modalities for project design and implementation such as EIA (Agrawala et al.,
2010).
27
The purpose of EIA is to assess the impacts of a proposed project on the environment before
deciding on whether or not to undertake the project, and to develop and apply measures to
avoid or minimise those impacts as conditions of approval for the project. The World Bank
(1999) subsequently describes the purpose of the EIA process as a need to ensure that project
options under consideration are environmentally sound and sustainable.
In 2010, the revised Overarching Energy National Policy 1 (EN1) was published and put an
emphasis to the need for new infrastructure to consider the impacts of CC through the means
of EIA.
“New energy infrastructure will typically be a long-term investment and will need to remain
operational over many decades; in the face of a changing climate...The ES should set out how
the proposal will take account of the projected impacts of climate change. While not required
by the EIA Directive...” (para. 4.8.5)
IEMA states in their recent CCA and EIA guidance (2010), that EIA must ensure future
developments are resilient and that their environmental impacts do not exacerbate CC effects
on human or natural systems. The EIA Directive requires in Article 3 that EIA should assess
the „climate‟ and in Annex IV it refers to „climatic factors‟ for developments, however
assessing the resilience of a proposed project to the impact of CC is not required.
“The environmental impact assessment shall identify, describe and assess in an appropriate
manner, in the light of each individual case and in accordance with Articles 4 to 11, the
direct and indirect effects of a project on the following factors: human beings, fauna and
flora, soil, water, air, climate and the landscape.” (EIA Directive, Article 3)
“...A description of the aspects of the environment likely to be significantly affected by the
proposed project, including in particular, population, fauna, flora, soil, water, air, climatic
factors, material assets, including the architectural and archaeological heritage, landscape
and the inter-relationship between the above factors.” (EIA Directive, Annex IV)
CC mitigation statutory requirements led to the increase of mitigation efforts in EIA.
Adaptation to CC as a newer concept has been far less included in EAs. A Recent MSc thesis
by Laura Seymour showed that only 31% of recent (2007-2009) environmental statements
did not considered GHG emissions (Fig.3). Figure 4 also shows that 56% of Urban
Developments considered GHG emissions (Seymour, 2010).
28
Figure 3 showing Review of Climate change mitigation in environmental statements
(Seymour, 2010)
Figure 4 showing Review of Climate change mitigation in environmental statement, significant variation in sectors.
(Seymour, 2010)
29
82% of practitioners indicated that climate change adaptation is not effectively considered in
current impact assessment practice, planning processes or project consent processes (Met
Office conference, October 2009)
The increasing mention of the EIA process as a vehicle in recent guidance, plans and
programmes puts emphasis to the viability of EIA procedures to accommodate consideration
of the risks posed by climate change.
EIA primarily identifies the impacts of a proposed project on the environment, rather than
the impact of environmental change (including climate change) on the project itself. It is a
new concept, and therefore it could be argued that EIA might not be an appropriate vehicle to
incorporate adaptation considerations. In some projects however, impacts of CC may have
significant implications on the eventual environmental performance of a project (Agrawala et
al., 2010). This is the case for example in urban regeneration projects, which cover a vast
amount of land and potentially include complex drainage systems and waste storage facilities.
Inadequate consideration of CC impacts, such as sea level rise and changes in extreme
weather events, during project design could lead to unexpected downstream environmental
consequences. In addition with recent flooding events in the UK, this has led to increased
attention to the consideration of CC in FRAs. However the potential impacts of cold and heat
waves or droughts are still poorly incorporated. Wilson et al. (2010) suggests three principal
external reasons why EIA has not systematically addressed climate change; the uncertainty of
CC and the difficulty of making predictions, policy fragmentation and inconsistency and
confusion and conflict between the EIA and CC practitioner communities. Despite these
limitations, EIA is still considered a well established and publicly accepted process in many
countries and development co-operation agencies (Agrawala et al., 2010).
The Canadian Environmental Agency (CEAA) has been amongst the first agencies to address
EIA, SEA and CC. The CEAA 2003 guidance for the incorporation of CC considerations in
EIA highlighted the uncertainty of understanding CC impacts and argued that giving
consideration to CC at the project level will increase the awareness of CC mitigation
strategies, help proponents manage or reduce the potential risks associated with CC impacts
and assure the public that CC considerations are being taken into account (CEAA, 2003). The
guidance also makes the point that local information is more challenging to acquire and the
contribution of an individual project to CC cannot be measures. The CEAA (2009) notes that
EIA should be conducted as early as possible in the planning and proposal stages of a project
30
for the analysis to be valuable to decision makers and to incorporate measures to reduce
projected adverse impacts. This is also in line with the requirements for SEA and using both
SEA and EIA in conjunction would result in environmental assessments being conducted at
all levels of decision making.
31
Chapter Three: Methodology
This investigation comprised primarily of a review of EIA documentation, short series of
questionnaires and emails. The available documentation supplied objective information about
how CCA has been considered in past urban projects. The responses to questionnaires and
emails also provided an insight into issues related to the EIA process and various challenges
in practice. These findings from the questionnaires are in effect complementary sources of
information. A broad Internet search of secondary sources e.g. academic literature, media,
presentations) was also conducted. The key search terms used in all possible combinations
included CC, CCA, EIA, ES and urban regeneration.
For detailed information on documentation and from the questionnaires sent, the reader is
referred to appendix B of this research.
Environmental Statements of eleven projects post 2005 were reviewed in this research. Four
out of these projects have been looked at in greater depth (i.e.) entire EIA process. Each
project meets the threshold requirement for an ES and has a medium to long time horizon,
thus it could or will be affected by climate change, or was included because CC had been
identified as an issue.
Urban Development thresholds for the requirement for an Environmental Statement
 The development should fall within the category of „urban development projects‟ in
the EIA Regulations. Such projects, where they are in excess of 0.5 hectares, are
referred to as „Schedule 2 development‟ and require the preparation of an ES, subject
to confirmation by the relevant planning authority.
(EIA Directive)
 “the site area of the scheme is more than 5 hectares or it would provide a total of
more than 10,000 m2 of new commercial floor space”
(Department of the Environment, Transport and the Regions, 1999)
32
The selected projects for the documentation review:
1. Liverpool Waters
2. Carlyon Bay
3. Edinburgh Harbour
4. Huntsgrove
5. Centenary Quay Woolston
6. Surrey canal; London‟s sporting village
7. Sowerby Bridge Copley Valley
The following projects were chosen for an in-depth review of the EIA process:
1. Ashton Green
2. Bilston Urban Village
3. Brent Cricklewood
4. Olympic Village
33
Figure 5 shows the locations of selected projects (Ncube.BC)
The exploration of the eleven past projects reviews CCA measures and additionally the four
selected projects will look at EA procedures, processes or decisions. CC Mitigation
observations will be of secondary importance however links between mitigation and
adaptation will be made.
3.1 ES review (7/11 projects)
The first investigation comprises of a review of only Environmental Statements (ESs)
produced for seven projects. The author chose to investigate the consideration of CCA in EIA
through the ES because the statement is a tool for communication and dialogue with the
public and other interested parties regarding environmental performance of a project (EMAS,
34
2001). Its purpose is to inform decision-making and advice about the impacts and possible
alternatives before proceeding with the development.
This first review aims to show a summary of the consideration of CCA in urban regeneration
projects of various scales and in various locations. It also aims to identify the main CC
impacts that are being considered as well as to identify any common factors. The presentation
of the findings is detailed in summary boxes in chapter Four of this research, with further
details documented in the appendices.
3.2 EIA review (4/11 projects)
The second investigation comprises of a review of the EIA process for four major projects.
The author reviewed documents available on the web concerning the project and additional
information was sourced through internet searches with words related to the project and
CCA.
An in-depth review was done in order to gain greater understanding of the drivers for the
consideration of CCA in the regeneration projects. Four of the largest and high profile
projects were chosen for this review, this gave better quality information and easy document
availability. The EIA process review aims to identify the following:
 The main drivers for the CCA consideration in the development;
 The measures integrated into the EIA process and how it influenced decision-making
in the process;
 The factors that limit the incorporation of CCA in the EIA process.
The review identifies the measures of CCA primarily through the adaptation for green
infrastructure and blue infrastructure (see further project details in Appendix A.). The green
and blue spaces in an urban regeneration have a vital role to play in our capacity to adapt.
35
They provide:
 A natural cooling effect to mitigate the urban „heat island‟.
 space for sustainable urban drainage to absorb and divert excess rainfall
 space for renewable energy resources, such as ground source heat pumps
 vegetation to reduce the effects of air pollution and to store carbon
 place for species to migrate and adapt to the effects of climate change
(Shaw et al., 2007)
Box 2: Green Infrastructure typologies
 Parks and public gardens
 General amenity space
 Woodland
 Watercourses and waterways
 Waterbodies
 Grassland and heathland
 Coastal habitat
 Moorland
 Agricultural land
 Community gardens and
urban farms
 Derelict land
 Street trees
Source: Northwest GI Guide, 2010
Box 3: Blue Infrastructure typologies
 wetlands
 ditches
 ponds
 lakes
 drainage systems
 ecological corridors
Source: greeninfrastructure-eu, 2011
36
3.3 Questionnaires and emails
Responses from questionnaires and emails gathered experience, knowledge and suggestions
from people who played diverse roles within past projects. Fifteen names were contacted,
however responses were few. These included two EIA consultants and two LA officials. The
goals of the consultation were to explore what the drivers and imitations are for the
incorporation of CCA in EIA as well as to gather input on how local authorities review ESs
for urban developments and what they look for with respect to CCA.
The following persons responded to the questionnaires:
1. Simon Lucas, Regeneration Officer, Wolverhampton City Council
2. Iain Bell, Regional Director and Planner, AECOM
The following persons responded by providing information through email:
3. Melanie Robertson, Sustainable Development Officer, Southampton City Council
4. Dan Knight, Energy Projects Officer, Calderdale Council
The questionnaires were tailored accordingly including information about specific projects
were applicable. Emails were personalised and sent for comments and information on CCA,
EIA and specific projects involved in.
The responses provided an insight into issues related to EIA and climate change that may not
have been available in the documents reviewed. The responses given have been integrated
into the final research analysis in chapter Five.
37
Chapter Four: Presentation of findings
This chapter presents the findings from the reviews for the selected projects. The first review
of seven selected projects are summarised in text boxes with further details of the project in
the appendix A, and following that are selected details from the second in-depth review.
38
4.1First Review: Environmental Statement
Box 4 (see appendix A1)
LIVERPOOL WATERS
The Liverpool Waters vision involves regenerating a 60 hectare historic dockland site to
create a world-class, high quality, mixed use waterfront quarter in central Liverpool. It
includes a mixed use development of over 9000 residential homes, visitor attractions and
supporting uses, office/commercial and local shops and services. The development seeks to
deliver 1,319,732 sq m within a 30 year construction programme (2012 – 2041).
There was a good focus on climate change mitigation in particular within the projects energy
strategy. CC was mentioned briefly in the developer‟s aspirations as well as in later chapters
concerning resource efficiency. Adaptation was however more difficult to find within the ES.
The management of water such as rain water harvesting is thoroughly detailed in the ES. Due
to its scale and sensitive location, the design and implementation of sustainable drainage
systems taking climate change into account is vital. The flood risk assessment acknowledged
sea level rise and extreme events.
A Climate Change Baseline assessment of the potential impacts of climate change on the site
was done in November 2008. Traffic, noise and air and landscape and visual assessments
recognised future baseline changes into the assessments in post operation year impact
scenarios and effective monitoring of baseline conditions is mentioned.
Main climate change impacts addressed:
• Sea level rise
• Extreme storm events
Identified drivers of climate change adaptation:
• Local framework is used as guidance for climate change.
• Building and design standards such as BREEAM are used for the project.
39
Box 5 (see appendix A2)
CARLYON BAY
The Carlyon Bay development is a smaller regeneration project comprising of 21.6 hectares
and aims to play an important role in transforming St Austell Bay. The scheme will provide
new sea defences, commercial, retail and 511 homes as a contribution to affordable housing in
the area. Construction of the development is anticipated to take approximately 3.5years
commencing in 2012.
The sustainability statement for the proposed development detailed that the project will
achieve a 15% reduction in carbon dioxide (CO2) emissions from regulated energy use
through on-site renewable energy generation. The ecology assessment detailed several efforts
related to CCA mesures. Features mentioned in ecology chapter included new nesting
opportunities/brown roofs/lighting designed to reduce impact upon nesting birds and bats,
habitat creation. A consideration for CC and increased storminess (1 in 200 year event) was
included in the FRA. It also details the risk of overtopping occurring during storms and
extreme events.
No future baselines or long term horizons were considered outside the construction period.
Main climate change impacts addressed within the project:
 Sea level rise
 Extreme storm events
Identified drivers of climate change adaptation:
 Planning Policy Statement („PPS‟) 25: Development and Flood Risk (2010)
40
Box 6 (see appendixA3)
EDINBURGH HARBOUR
Edinburgh Harbour is a waterfront development proposal with the aims to becoming the
link between Leith Docks and Edinburgh city centre. The 52.3ha development will include
1,870 residential units, commercial and retail as well as public spaces. The Edinburgh
Harbour master plan combines two urban villages (sub areas) Britannia Quay and
Waterfront Plaza as the first of a series of nine urban villages in the Leith Docks
application. The project has a 15 year construction period (2010-2015).
A pattern of public realm and open spaces of different scales and characters are
introduced, however there is no thorough description of the quality of the spaces or any
integration of ecological factors. This was also highlighted in the scoping opinion and
response given suggested that information requested was not „necessary‟ for an ES. SUDS
are proposed on the site where applicable however further details of drainage systems
implemented and management of water resources are poorly mentioned.
The FRA considered the potential effects of CC up to 2057 for flood levels and year 2115
for extreme water levels. The drainage modelling adopted an increase in the storm
intensity of 20% which is consistent with the effects of climate change for a development
with a design life of 60 years as outlined in PPS25.
Main climate change impacts addressed within the project:
 Sea level rise
 Extreme weather events
41
Box 7 (see appendix A4)
HUNTS GROVE
Hunts Grove is located north of Junction 12 of the M5 Motorway near the boundary between
Stroud District and Gloucester City. The proposed development comprises a maximum of
1750 houses, new community facilities and open space, and an area of employment
development to be accessed from Water wells Business Park to the north. The project covers
an area of approximately 105 hectares of which over 32 hectares are proposed as public open
space. The developments‟ construction time is 9years (2006-2015).
The ES describes the function of green infrastructure very thoroughly for the proposed
development. Adaptation to potential climate changes is identified through ecological
corridors, attenuation ponds and nature conservation. There is also key integration of green
infrastructure with necessary grey infrastructure of the development. SUDS are proposed to
minimise surface run-off from the development in addition to the use of porous pavements.
Attenuation basins and dry basins are proposed to accommodate for excess storm flow from
residential area and contain water only during times of heavy rainfall. Rain water recycling is
used for landscape and gardening use.
There is no direct mention of climate change in the Policy used in the ES.
The landscape and visual assessment and the transport assessment used future baselines up to
15 years post operation.
Main climate change impacts addressed within the project:
 Sea level rise
 Extreme rainfall events
 Urban Heat Island effect
Identified Policy Drivers:
 Stroud District Local Plan
 PPS9 Biodiversity and Geological Conservation
 PPG25: Development and Flood Risk
42
Box 8 (see appendix A5)
CENTENARY QUAY WOOLSTON
The planning application for Centenary Quay Woolston (12.5ha) is a mixed use
development including residential, retail, restaurants and cafes, offices, yacht manufacture,
business, industrial, storage and distribution uses, hotel live/work units, community uses,
two energy centres, car parking and considerable public open space, river edge works and
quays.
The ES considers the sustainability of the development as a fundamental consideration in
the design by selecting specific sustainability criterion. The criterion explains briefly that
the effects of climate change will be further taken into account during detailed design of the
buildings in terms of ventilation, heating and cooling requirements. The project proposes
habitat creation such as green roofs, hedges, scrub and high quality planting. SUDS are
proposed as part of the drainage strategy. The system is to incorporate vegetated roofs,
water stores at the base of buildings and then infiltration through new soft landscape. Lined
permeable pavements will ensure a significant reduction in the run-off rate from extreme
rainfall events. Swales are proposed to collect, convey and attenuate and treat surface water
runoff.
No policy mentioned climate change directly; however its‟ adaptation and mitigation was
insinuated through the local policy. Guidance and ratings concerning the designs of the
project such as Eco-Homes and SEEDA were used in order to estimate the contribution of
the scheme to the overall emissions of CO2 from Southampton. It was found insignificant
and emissions on a county and national scale were found negligible. The FRA calculated
extreme still water level for the year 2060 and 2115 and factored in possible effects of CC.
Main climate change impacts addressed within the project:
• Sea level rise
• Extreme weather events
• Urban Heat Island effect
43
Box 9 (see appendix A6)
LONDON’S SPORTING VILLAGE
This mixed use development will include retail, cafes, restaurants, hotels, residential, leisure
and community facilities. The site is approximately 10.5 hectares in size and the construction
period is from 2010-2025.
The development introduces extensive SUDS techniques into the design of the development
such as extensive use of green and brown roofs. The emphasis of the SUDS should be on
flow and volume reduction, ecological and amenity value. Permeable paving will be used to
collect runoff from paved areas. FRA considers the 200 year plus CC flood level for the year
2107 using the Environment Agency modelled tidal flood level.
No consistent use of future baselines where found, with the exception of the FRA. Mitigation
of CC is mentioned through energy efficiency measures and BREEAM ratings.
The Policies integrated are clear drivers for the integration of climate change and climate
change adaptation.
Main climate change impacts addressed within the project:
• Sea level rise
• Extreme weather events
• Urban Heat Island effect
44
Box 10 (see appendix A7)
SOWERBY BRIDGE COPLEY VALLEY
The 14ha proposed development is located in a flood sensitive area. As a development it has
also experienced high community involvement concerning the environmental position of the
project. A redevelopment is of the western end of the Stern Mills site for residential
properties. It includes a retail area with spots related businesses, a nature reserve, a new
bridge link and a new square. The development will undergo a six year construction process
from 2011 to 2017.
The air quality and noise assessments used 2010 traffic flow data for the baseline situation
and then assessed 2015 as an assumed opening year and 2020 with the proposed
development operating at maximum capacity.
Habitat creation is clearly described as part of the development proposal. The role of
wetlands and as part of climate change adaptation is identified s well as potential
reimbursements in terms of natural capital or ecosystem services. 6 Hectares of open space is
provided and varying shaped and scaled water bodies are distributed around the site. Green
roofs are advised as part of the scoping process; however there is no mention of
implementation.
The high risk of flooding and extreme weather events is considered one of the biggest issues
for this development. CC is incorporated thoroughly in the flood risk assessment as well as
in the design for the bridges. Sustainable Urban Drainage Systems are proposed through
flood basins and rainwater harvesting. The flood defences included are set at climate change
level.
Main climate change impacts addressed within the project:
• Sea level rise
• Extreme weather events
45
4.2 Second Review: EIA Process
4.2.1 Ashton Green Project
Ashton Green is a 130 hectare site owned almost entirely by the City Council and has been a
strategic housing allocation since the mid 1970s. It aims to play a major role in delivering the
new housing that Leicester needs. As an urban extension to Leicester, Ashton Green will be
part of the One Leicester vision for the City. The aim is that it will shape Leicester as
Britain‟s sustainable city by delivering a distinctive, safe, green and well connected place and
it will become a thriving, prosperous mixed community with a dynamic heart and strong
identity within the city. The proposed development of the site is envisaged to take between 15
and 17 years to complete (2012 – 2026).
CCA considerations were found to be made, although it is clear that the primary focus for CC
incorporation was on CC mitigation. Further project details can be found in appendix A8 of
this research.
Identified Drivers for Climate Change adaptation
 International and European City Profile
Leicester, located in the East Midlands is the tenth largest city in the UK and the most
populous city in the East Midlands. Leicester City Council has been known as a strong
unitary authority and it has had a long history of pioneering work on the sustainable
development agenda. This agenda has benefitted from strong political commitment with
councillors who genuinely want to deliver on sustainability (CAG, 2010). This commitment
is further reflected in the 2007 Climate Change Adaptation Action plan and the One Leicester
25 year vision to make Leicester Britain‟s sustainable city. These plans were highlighted in
the EIA documents and for the developments sustainable objectives.
Leicester was designated the first Environment city within the UK in 1990, with the remit to
deliver sustainable development in the confines of a working city. Over the past decades, the
city‟s initiatives have attracted international and European funding sources. The city of
Leicester is also recognised as a world leader in urban energy management and
environmental innovation. Leicester‟s international reputation along with strong political
support acts as a driver for the efforts towards CC and CCA in new urban developments.
46
 Inter Regional Linkages
Leicester sits within the Three Cities sub-area consisting of Leicester, Derby and Nottingham.
The regional Plan Sub-Regional Strategy (SRS) was set up for these cities and this
framework seeks to focus on sustainable urban growth, with an emphasis on green
infrastructure and biodiversity in principal urban areas (within which Ashton Green sits). In
November 2006 the council also signed the Nottingham Declaration which committed the
organisation to tackle global climate change at a regional level. Through this SRS, CC
adaptation and mitigation is recognised to be the most significant issue for the future of the
region. Ashton Green was developed to be the region‟s leading example of environmentally,
socially and economically sustainable development in Leicester. The regional commitment
increases Leicester‟s accountability for climate protection and sustainable development.
 Local policy, local networks and local commitment
Crucial to Leicester‟s success in addressing CC issues is its development of local policy
initiatives and local support. Leicester City Council has long been considered a front-runner
in local environmental policy (Bulkeley, 2006). Since the 1970‟s, the Council has been
concerned with developing open space within the city, and enhancing habitats for urban
wildlife as well as the reduction of GHG emissions. With the 2003 introduction of the city‟s
climate change strategy, the council has committed to develop plans with partners and local
communities to progressively increase the city centre‟s resilience to climate change. Bulkeley
in his book „Cities and climate change‟ (2006), suggests that it has been those local
authorities with a history of interest and action in climate change which have continued to be
the most active, and which have benefitted most from the additional funding available.
Planning policy and guidance mentioned in ES concerning CC includes:
 PPS1: Delivering Sustainable Development (2005) & Planning Policy Statement:
Planning and Climate Change – Supplement to Planning Policy Statement 1 (2007)
 PPS22: Renewable Energy (2004)
 PPS25: Development and Flood Risk (2006)
 By Design: Urban Design in the Planning System – Towards Better Practice (DETR
& CABE 2000)
 Code for Sustainable Homes, BREAM standards
47
4.2.2 Bilston Urban Village
Bilston Urban Village is widely known as the CCA pilot of the west midlands. It has been
mentioned as a key example of good practice on CCA for urban regeneration projects
(DEFRA, 2007). This development aims to be a major part of the neighbourhood planning
exercise under the localism bill and will aim to reflect the success of sustainable
neighbourhoods. Progress is being made currently on site, however adverse economic
conditions have lengthened the time of construction for certain elements of the development.
In view of this, various design and CCA efforts have been revised and costs of adaptation
have been reviewed causing more significant delays (Wolverhampton City Council, 2010).
Despite various constraints Bilston urban village still stands as a flagship project for building
climate resilience for new developments.
It is less than 1km south of Bilston High Street, which forms the heart of the community, and
4km from Wolverhampton City Centre. The site comprises approximately 43 hectares of
previously developed land of which much is derelict land. Further project details can be
found in appendix A9 of this research.
Figure 6 showing proposed comprehensive drainage strategy (Wolverhampton City Council, 2010)
48
Identified Drivers for Climate Change Adaptation
 Development of a £200 million mixed use project
The £200 million plus development, principally funded by Wolverhampton City Council,
Advantage West Midlands and Places for People (the lead developer) is expected to create
350 jobs during the construction phase and almost 750 jobs once the scheme is completed.
The „urban village‟ was originally intended to demonstrate sustainability through a mixture of
housing, employment, retail, leisure and community facilities. The consideration of climate
change was mandatory for such a high profile project. However the developers ensured that
CCA was considered in the design and early layout and remediation of the site.
 Site Vulnerability
The 41 hectare development is highly susceptible to flooding. The Bilston brook, originally
an open watercourse runs directly through the centre of the site and is enclosed in culverts fed
by existing storm water sewer tributaries. In addition, 34 hectares consists of impermeable
surfaces which make the site more vulnerable to surface water flooding. Historic severe
flooding in Northamptonshire also led to high consideration of sustainable drainage features
and attention to the contouring of the new landform. The FRA showed clear and
comprehensive consideration of CC. A thorough drainage strategy taking CC into account
was also laid out (Fig.6).
 Local commitment to tackle climate change
The midlands city of Wolverhampton recently acknowledged the fatal impacts of climate
change and the urgent need to address them locally. A declaration on climate change in 2006
was signed by political groups in the city to acknowledge the increasing impact that climate
change will have on the community during the 21st century. This agreement commits to
tackle the climate change causes and effects and aims to ensure that the city is well equipped
to cope with inevitable climate change in the years to come. To fulfil this declaration, a
climate change strategy and action plan was developed for 2009 to 2012.
49
 Drive of Key players
Without the enthusiasm and vision of key players within the project, it is acknowledged that
CCA would not have been so thoroughly considered (CAG, 2010). The developer,
Sustainability West Midlands Climate Change Partnership worked on case studies which
demonstrated action on CC and they additionally tested a new decision-making tool produced
by UKCIP (CAG, 2010). This interaction of passionate local authority officers and
developers is largely the reason why CCA was incorporated and followed through.
Key players involved
 Sustainability Officer, Wolverhampton City Council
 Sustainability West Midlands Climate Change Partnership
 Advantage West Midlands (regional RDA)
 UKCIP
Methods for Climate Change Adaptation
The development used the process, Risk, Uncertainty and Decision Making Framework tool
developed by UKCIP. As shown in figure 7, the framework is an 8-stage iterative process
based on standard decision-making and risk principles. It encourages the users to consider
climate risks alongside non-climate risks.
50
Figure 7 showing UKCIP risk framework tool (Agrawala et al, 2011)
51
4.2.3 Brent Cricklewood
The Brent Cross and Cricklewood Regeneration is a site of 150ha divided into two parts
either side of the North Circular Road; the Cricklewood Rail Lands and Eastern Lands to the
south and the existing Brent Cross Shopping Centre to the north. The vision for the site as
intended by the Applicants is to create an environmentally sustainable mixed use „urban
quarter‟ with a long term management regime. Further project details can be found in
appendix A10 of this research.
Identified Drivers for Climate Change Adaptation
 Building and design standards and environmental performance targets:
Building regulations are increasingly being used to tackle CC by setting higher standards and
making them simpler and more transparent a. Cricklewood shows clear commitment to
achieving high ratings for the Code for Sustainable Homes for all residential developments
with regard to residential building emissions. The development also aims to meet the
„essential standards‟ as set out in the London Plan Supplementary Planning Guidance on
Sustainable design and construction. Homes are also envisioned to be lifetime homes and to
meet sustainable energy performance.
 Policy Drivers:
Local Policy: LB Barnet Council Core Strategy
The challenges facing the council in protecting and enhancing Barnet‟s suburbs,
accommodating growth are amongst others, the demand and use of environmental resources
and impacts on pollution and climate change. The draft Core Strategy sets out key issues
concerning environmental sensitivity and addressing climate change as a driver of change
within the area.
Regional Planning Policy; London Plan:
Since the introduction of the London Plan, it has been recognised as a crucial driver for CCA
in new London developments including Brent Cross and Cricklewood and the Olympics.
52
Other relevant policies include; PPS Planning and Climate Change Supplement to PPS1;
PPS3; PPG13; PPS22; the Mayor‟s Energy Strategy; Sustainable Design and Construction
SP.
Box 11: London Plan (HM Government, 2011)
Policy 4A.1 Tackling climate change
The Mayor will, and boroughs should, in their DPDs require developments to make the
fullest contribution to the mitigation of and adaptation to climate change and to minimise
emissions of carbon dioxide.
Integration of adaptation measures with mitigation to tackle climate change will be sought
through the approach set out in Policy 4A.9.
Policy 4A.9 Adaptation to Climate Change
The Mayor will, and other agencies should, promote and support the most effective
adaptation to climate change, including: minimising overheating and contribution to heat
island effects
(Policy 4A.10)
• minimising solar gain in summer (Policy 4A.10)
• contributing to reducing flood risk including applying principles of sustainable urban
drainage (Policies 4A.13 and 4A.14)
• minimising water use (Policy 4A.16) and
• Protecting and enhancing green infrastructure.
These contributions should most effectively reflect the context of each development – for
example, its nature, size, location, accessibility and operation. The Mayor will and
boroughs should ensure that development is located, designed and built for the climate
that it will experience over its intended lifetime.
53
 Key Collaboration:
The consultants Scott Wilson and partners of the Brent Cross Cricklewood project made sure
in October 2005, that flood risk and wider issues such as biodiversity and recreation were
considered as part of the initial planning application. An Environment Agency report on the
project stated that „Early discussions with the developers meant that they could find a win-
win solution for all involved.‟ This collaboration resulted in easier approval for the outline
planning application in 2008 (EA, 2010). The partners of this large project (Hammerson plc,
Standard Life, Brookfield Europe) were found to be extremely enthusiastic about working
together and delivering a sustainable and adaptive Brent Cross Cricklewood (Future of
London, 2010).
54
4.2.4 Olympics
The Olympic Games have primarily been viewed as a catalyst for regeneration within a
region. Inevitably, this great ambition has been matched by high levels of infrastructure
investment and a supported mix of public and private sector funding (Poynter et al., 2009,31).
Unlike many other sporting events, the Olympics can also be considered as a global
movement redefining and defending specific values such as community and social
regeneration and sustainability. Paul Toyne in the „Olympic cities: 2012 and the remaking of
London‟ (2009) states that „the Olympic games cannot afford to be anything other than a
force for good simply because of its huge impacts and the global frenzy.‟ Further project
details can be found in appendix A11 of this research.
The vision of the scheme is summarised in the design and access statement as;
„To create an exceptional Olympic Games with a lasting legacy, and in so doing reclaim the
Lower Lea Valley for London, to create a benchmark for a 21st
century urban environment by
delivering unique, diverse and vibrant places for all those who live, work and visit the area.
The Olympic Games will facilitate one of the largest and most significant urban regeneration
projects ever undertaken in the UK, transforming the Lower Lea Valley into a vibrant new
urban quarter and a place of local and national pride.‟
The site occupies a total area of approximately 246ha. The ES covers the effects of the Lower
Lea Valley Olympic and Legacy Scheme from 2006 through to 2021. The project is in four
phases:
1. Olympics Construction Phase (2007-2011)
2. Olympic and Paralympics Games Phase (2012)
3. Olympic Legacy Transformation Phase (2013-2014)
4. Olympic Legacy Phase (2015-2021)
The Olympic Site is broadly defines as the area bounded by:
 A12 (East Cross Route) and Ruckholt Road (A106) to the north;
 River Lee Navigation (Hackney Cut) and River Lea to the west;
 The Lea Valley railway line, Stratford City development site and Waterworks, river to
the east;
55
 Bow Back River and the River Lea to the south.
The Site is made of five main elements:
1. The Olympic Park and Concourse;
2. The Olympic Sports and Non-sports Venues (permanent and temporary);
3. The Athletes‟ Village;
4. The International Broadcast Centre and Main Press Centre (IBC?MPC); and
5. The Ancillary Olympic Facilities
The London-2012 regeneration will also create over 9,000 new homes, new sports and leisure
facilities, a health centre and school in the local area.
London hosting the Olympic Games in 2012 has been seen as a significant opportunity for
London to enhance its sustainability and to initiate environmental improvements. It has been
universally seen that the potential of the Olympic design is to redress the deficiencies of the
host city‟s built environment and to contribute to long term sustainable development, of
which addressing climate change is a major part of it (Pitts, 2009).
Drivers for Climate Change Adaptation
 London 2012
The year 2012 is globally significant. This is the year that the Kyoto Protocol is set to expire
and it is hoped that a new path forward will begin towards the mitigation of climate change
and the initiation of adaptation strategies. Rio+20 Earth Summit is also taking place in 2012.
These historic sustainable development events draw attention to how important it is that the
Olympics are a vehicle of change and its sustainability commitments are achieved. Showing
substantial evidence of CCA is high on the substantial agenda for the Olympics.
 Communications and Stakeholder engagement
Tasked with delivering the lasting Olympic legacy vision is a wide array of stakeholders, but
the principal accountability lies within two bodies:
1. Olympic Delivery Authority (ODA)
2. London Organising Commitee of the Olympic Games and Paralympic Games
(LOCOG)
56
The London Sustainable Development Commission in partnership with the National
Sustainable Development Commission established a „watchdog‟ for the Games, The
Commission for Sustainble london 2012. Whilst the Commission provides external
governance, the board of stakeholders ensures delivery of sustainability objectives by
working closely with the host London Boroughs, the GLA group, nations and regions, central
Government, British Olympic Authority and other sports authorities. DEFRA is workking
extensively with the key stakeholders to develop objectives and a delivery strategy for
building a lasting and sustainable legacy.
 Established Policy Framework
A clear and thorough policy framework context was provided for the Olympics in order to
ensure successful delivery of the „sustainability‟ vision. Policies, plans and programmes
mentioned in the ES such as the Effective London Plan can be found in the appendices of this
research. In addition to these, the London 2012 Organising Committee developed a
sustainability policy and accompanying plan, which set out the concept of One Planet Living
and actions to achieve it. It focuses on five headline themes of which CC is a primary issue.
 Sustainability benchmarking tools
Design teams will provide a report to the ODA during RIBA Stage C for client approval,
setting out how they will do this, using the London Climate Change Adaptation Checklist. All
housing will also be in accordance with the new Code for Sustainable Homes. All Olympic
Village homes are to meet Life time Homes standard post Games and venues and housing
will be designed, as far as is reasonably practical, to adapt to future climate change.
 Legacy
Beyond the site-specific work is the development of building a lasting and sustainable legacy.
With the 2012 Games a unique catalyst, the UK aims to make the Olympic Park a blueprint
for sustainable living. The environmental focus of the Olympic Legacy is on energy and
CCA. Due to the lifetime of the development, long term plans are outlined for flood
management, building design, landscaping and ecological management and operational
planning. This encourages longer baselines to be used and wider time horizons.
57
Figure 8 shows the phases of the 2012 programme (ODA, 2010)
58
Figure 9 showing Olympic Legacy Phase completion (2015-2021) and CC impacts during building lifetime of
100 years.(web source, 2011)
59
Chapter Five: Analysis
This chapter will draw on literature and policy review discussed in Chapter Two to discuss
and analyse the findings from the author‟s research. The chapter aims to show the limitations
of the incorporation of CCA in EIA by identifying key internal and external factors to EIA.
An analysis summary table of the four in-depth reviews is also shown.
The results and identified drivers for the incorporation of CCA in the reviewed projects show
the high potential of EIA as a vehicle towards better CC planning and decision-making. Early
consideration of CC as an important concern in EIA is emphasised and this will enable a clear
understanding of the scope of adaptation issues as well as the risks posed to the development.
IEMA introduced CCA in EIA guidelines this 2011, which state that:
„...from the earliest stages of design the EIA should focus its attention on
 The potential in-combination effects of both the project and future climate change on
the receiving environment with a focus on locational and operational impacts;
 The resilience of design features, construction materials and planned operational
processes to the predicted consequences of climate change;
 During scoping, climate change mitigation and adaptation issues and opportunities
should be considered alongside each other to maximise integration in project design.‟
(IEMA, 2011)
Figure 10 sourced from OECD, describes the possible entry points for considering CC
impacts and adaptation within the EIA procedures. Bilston urban village showed CC impact
entry point at the strategic phase by identifying the site vulnerability whereas other projects
showed adaptation measures in the detailed assessment phase, particularly after review and
consultation. Bilston village further shows through EIA documents that early incorporation of
CCA measures in EIA is a good investment and saves potential high costs of retrofitting in
the future. Identifying CCA measures and costs early maximises the integration in project
design, for example in the Olympic park design, the role of green and blue infrastructure in
adapting to CC was identified early, and this influenced the design and orientation of the
buildings. The potential increase in temperatures also influenced the foundation designs for
the buildings.
60
The ES is a public document and serves as a basis for consultation and public participation.
The Brent Cross Cricklewood and Sowerby Bridge developments demonstrate that
incorporating CCA at the scoping and consultation stages informs and involves the public
and relevant stakeholders in tackling CC. This helps to enhance transparency of decision-
making processes and provides a temporary community forum at which different perspectives
can be considered.
Figure 10 showing the potential entry points for considering climate change impacts and adaptation in EIA
(Agrawala et al., 2010)
61
5.1 Summary analysis of in-depth review projects
Table 1 showing summary analysis for four in-depth review projects
Urban
Regeneration
Project
Strengths Constraints Key Messages
Ashton Green
 Strong policy
context with key
inter-regional
linkages and
Leicester
sustainable core
vision
 Master plan
approach towards
consideration of
CC
 Strong
dependency on
CC mitigation
without
linkages to CC
adaptation
 Leicester
vision and
local
development
frameworks
still only
guidance with
no planning
requirement
tied in
 Developing
Regional
support and
good policy
context for the
approach to
CCA
 Working with
local and
regional
partners
enabled more
ambitious
project than
would have
occurred
otherwise
Bilston Urban
Village
 Early
identification of
site vulnerabilities
 Proposed
adaptation
measures
included in master
planning, found to
be cheaper and
more effective
 Heavy
dependency on
key
individuals, a
sudden change
in authority
may threaten
commitment to
approach
 Climate Risk
Assessment
and climate
reports were
well thought of
in initial stages
not as
afterthought
 Whole site and
master
62
than „retrofitting‟ planning
approach
ensured
adaptation
considered in
all key
processes
Brent Cross
and
Cricklewood
 Early consultation
with partnerships
and developers
concerning CC
 Scope of
public
consultation
concerning CC
and its
approach could
have been
wider to gain
more
community
engagement
 Key partner
consultation
concerning
CCA measures
proposed early
in EIA process
enabling better
decision
making
 Historic
planning
delays brought
joint and more
refined
approach to
development
and successful
collaboration
Olympics
 Global
Sustainability
expectations for
development
ensure necessary
attention given to
sustainability
objectives (CC)
 Complexity of
stakeholder
network could
lead to possible
delays
 Unique
timescale for
the Olympics
 Early
consideration
of CC and
CCA in EIA
enabled
impacts
assessed to
influence
63
 Wide and
effective
consultation
supporting global,
national and local
involvement
 Unambiguous and
technically sound
guidelines
ensured clear
awareness of
council and local
requirements for
developers
 Overall City
vision led to
substantial efforts
towards CCA
incorporation
potentially led
to CC planning
goals to be
excluded
decision
making in
design stages
 High profile
and
international
development
ensured access
to more
funding and
support
opportunities
 The
demonstration
of the
additional
benefits of
adaptation
action was key
to community
engagement
It is also evident that even where practice and research have developed; there are still
limitations in the implementation of adaptation and in futures thinking. The author will
analyse these limitations by examining the explanations in two aspects: Factors internal to
and external to EIA.
64
5.2 Internal factors
 ‘Objectives-led’ approach
The review shows that there is a clear lack of holistic integration of CC and CCA in the
projects assessed. None of the 7 Environmental Statements in the first review showed any
indication of CCA measures in its initial scoping or consultation stages. Brief introductory
sustainability chapters were used in certain projects such as Carlyon Bay and Centenary
Quay, where CC was mentioned as a sustainability and project objective. This use of
„sustainability‟ as a wide encompassing umbrella of which CC falls under showed absence of
understanding the need to holistically address CCA within the projects. Morris et al (2009:
472) argues that reliance on sustainability objectives in EIA increases the risk that
environmental concerns continue to be marginalised under rhetoric of „sustainability‟. When
approached by the author concerning CCA in EIA, Respondent 3 and Respondent 4
responded generally by referring to relevant PPPs, the sustainability checklist and building
regulations with „aspects related to climate change‟. It seems therefore that there is the
possibility of guidance constraining EIA (Wilson et al., 2010) to treat climate change as a set
of limited objectives rather than as an opportunity to assess impacts over time.
 Impact Chapters
The findings of the review clearly indicate that specific topics such as flooding are addressed
more thoroughly although no systematic consideration of CC is made. Looking into the UK‟s
history of flooding and the future impacts of potential extreme flooding by UKCIP, it is
acceptable and good that the CC in FRA is adequately considered in all projects, and a
significant attempt is made to ensure that that extreme weather events is accounted for.
Although the existing 20% CC allowance in flooding guidance makes no allowance for any
regional variation in CC, it reduces the uncertainty in dealing with CC and helps practitioners
make decisions quicker. However, the author suggests that this clear attentiveness only to
flooding and flooding related issues such as drainage creates the assumption of sufficient
CCA consideration in EIA if flooding is covered.
Consequently this assumption is seen throughout the ES review. This is also reflected in
practice as Respondent 2 states that „...Calculation / mitigation of GHG emissions is standard
practice and important... The recent major urban regeneration projects that I have been
involved with in recent years have not given particular prominence to climate change
65
adaptation with the exception of flood risk issues.‟ He additionally comments that „CCA
currently influences project design in relation to flood risk, reducing GHG emissions and
energy efficiency, but after that it is limited.‟
There is a greater need for more integration of the consideration of other climate change
impacts such as the urban heat island effect and increasing water demand leading to potential
drought. An example of other impact consideration is shown in the Brent Cricklewood and
Bilston developments, where use of drought resistant and native species were part of the
landscape strategy to ensure a degree of tolerance to CC and to create communities that will
develop naturally as the climate changes.
 Mitigation and Adaptation
The synergy and possible conflict of CC adaptation and mitigation is detailed in chapter two,
with the conclusion that adaptation and mitigation measures are not alternatives but they are
complementary. However, the reviews show that adaptation and mitigation and are still
depicted and demonstrated as separate. Klein et al agrees that CC adaptation and mitigation
in planning and policy still appear contrived. The mitigation research community has relied
strongly though not exclusively on the „top-down‟ approach, whereas the adaptation research
community has put its emphasis on local and place-based analysis (IPCC, 2007). The ES
review shows CC mitigation measures were given more attention than adaptation where in
most cases CC adaptation did not carry enough weight.
 EIA process: ‘Constrained and formulaic’
Climate change is usually seen as larger than single projects. A CEAA (Canadian
Environmental Assessment Agency) report (2000) on EIA and CC included interview
responses that suggested that CC might be better dealt with outside the EIA process. With
some interviewees expressing the view that climate change may be a „force-fit‟ within the
EIA process. This view was reflected in an informal conversation with Respondent 2, who
insinuated that fully considering CC at project level is complex and there is a possibility that
EIA might not be the right channel for it. This view supports Sadlers approach detailed in
chapter two.
66
5.3 External Factors
In addition to the internal factors, there are reasons identifies that are external to EIA.
 Uncertainty
The uncertainty in climate science and predictions is highlighted as a significant barrier to the
incorporation of CC and CCA within the EIA projects. An Organisation of Economic Co-
operation and Development (OECD) report (2010) on the challenges and opportunities of
integrating CC in EIA, concludes that the availability of, and uncertainties associated with,
climate projections at the project scale are clearly a key bottleneck. The Bilston Urban
Village development uses UKCIP 09 climate scenarios and the Risk, Uncertainty and
Decision Making Framework tool developed by UKCIP and the Olympic Village also uses
UKCIP tools, however uncertainties are still prevalent. Projects are more sensitive to changes
in climate extremes in comparison to changes in mean conditions; however changes in
climate extremes are found to be more difficult to predict and are considered more uncertain.
Furthermore OECD research (2010) stated that local scale climate projections that are
relevant for project level decision-making also tend to be more uncertain than climate
projections over a larger spatial area.
The integration of CC and CCA in EIA also calls for the use of longer horizon baselines in
assessments. As stated in the results chapter, the review shows that post development
baselines are inconsistently used in impact chapters such as the traffic, air quality and
landscape assessments. Wilson et al (2010: 145) suggests that short time horizons for most
EIAs are a possible result of the reluctance to address uncertainty. This is also reflected in the
responses from the questionnaires. Respondent 2 states that „Predicting change long into the
future is problematic – there are many uncertainties.‟ He agrees that there is adequate
information available for the incorporation of CC in EIA within the requirements of the law
however, „There is a difficulty predicting so long into the future and in establishing the
effects of specific actions. GHG emissions studies may lack detail on some aspects of a
projects‟ emissions.‟
 Plans, Policies and Programmes
The review has identified that policy and guidance is the biggest driver for the integration of
CCA in EIA. Many of the ESs referred to key planning policies such as the PPS1 and PPS25,
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects
Climate change adaptation in urban regeneration projects

Más contenido relacionado

La actualidad más candente

181017 long version middletonj planetary health or plexit iiphf gibraltar
181017 long version middletonj  planetary health or plexit iiphf gibraltar181017 long version middletonj  planetary health or plexit iiphf gibraltar
181017 long version middletonj planetary health or plexit iiphf gibraltarJohn Middleton
 
Module 3 power point presentation 20140520
Module 3 power point presentation 20140520Module 3 power point presentation 20140520
Module 3 power point presentation 20140520Nkosilathi Mpala
 
Sustainability 07-11949
Sustainability 07-11949Sustainability 07-11949
Sustainability 07-11949subhaayyappan
 
Oxygenation of the_earth_s_atmosphere_an
Oxygenation of the_earth_s_atmosphere_anOxygenation of the_earth_s_atmosphere_an
Oxygenation of the_earth_s_atmosphere_anLuis Oliveira
 
Sustainability 10-00869
Sustainability 10-00869Sustainability 10-00869
Sustainability 10-00869paulaminhoto
 
KVA Symposium ocean acidification Cornell 2014
KVA Symposium ocean acidification Cornell 2014KVA Symposium ocean acidification Cornell 2014
KVA Symposium ocean acidification Cornell 2014Sarah Cornell
 
Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09Michael DePue
 
coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012Coralie Rigaud
 
IPCC Assessment Report Four
IPCC Assessment Report FourIPCC Assessment Report Four
IPCC Assessment Report FourManoj Neupane
 
Study: Estimation of regional air-quality damages from Marcellus Shale natura...
Study: Estimation of regional air-quality damages from Marcellus Shale natura...Study: Estimation of regional air-quality damages from Marcellus Shale natura...
Study: Estimation of regional air-quality damages from Marcellus Shale natura...Marcellus Drilling News
 
Summary for policy makers
Summary for policy makersSummary for policy makers
Summary for policy makersFOODCROPS
 
Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...
Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...
Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...Earth Institute of Columbia University
 
Mitigation and adaptation of climate change in aquaculture
Mitigation and adaptation of climate change in aquacultureMitigation and adaptation of climate change in aquaculture
Mitigation and adaptation of climate change in aquacultureramjan5
 
Climatechange2010
Climatechange2010Climatechange2010
Climatechange2010cenafrica
 
Updates on the preparations of Working Group I contribution to the Sixth Asse...
Updates on the preparations of Working Group I contribution to the Sixth Asse...Updates on the preparations of Working Group I contribution to the Sixth Asse...
Updates on the preparations of Working Group I contribution to the Sixth Asse...ipcc-media
 
Regional synthesis - Climatic Impact-Drivers
Regional synthesis - Climatic Impact-DriversRegional synthesis - Climatic Impact-Drivers
Regional synthesis - Climatic Impact-Driversipcc-media
 

La actualidad más candente (20)

PhD thesis Bjarke Stoltze Kaspersen 2015
PhD thesis Bjarke Stoltze Kaspersen 2015PhD thesis Bjarke Stoltze Kaspersen 2015
PhD thesis Bjarke Stoltze Kaspersen 2015
 
181017 long version middletonj planetary health or plexit iiphf gibraltar
181017 long version middletonj  planetary health or plexit iiphf gibraltar181017 long version middletonj  planetary health or plexit iiphf gibraltar
181017 long version middletonj planetary health or plexit iiphf gibraltar
 
Module 3 power point presentation 20140520
Module 3 power point presentation 20140520Module 3 power point presentation 20140520
Module 3 power point presentation 20140520
 
Sustainability 07-11949
Sustainability 07-11949Sustainability 07-11949
Sustainability 07-11949
 
Oxygenation of the_earth_s_atmosphere_an
Oxygenation of the_earth_s_atmosphere_anOxygenation of the_earth_s_atmosphere_an
Oxygenation of the_earth_s_atmosphere_an
 
Sustainability 10-00869
Sustainability 10-00869Sustainability 10-00869
Sustainability 10-00869
 
KVA Symposium ocean acidification Cornell 2014
KVA Symposium ocean acidification Cornell 2014KVA Symposium ocean acidification Cornell 2014
KVA Symposium ocean acidification Cornell 2014
 
Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09
 
coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012
 
IPCC Assessment Report Four
IPCC Assessment Report FourIPCC Assessment Report Four
IPCC Assessment Report Four
 
Study: Estimation of regional air-quality damages from Marcellus Shale natura...
Study: Estimation of regional air-quality damages from Marcellus Shale natura...Study: Estimation of regional air-quality damages from Marcellus Shale natura...
Study: Estimation of regional air-quality damages from Marcellus Shale natura...
 
Summary for policy makers
Summary for policy makersSummary for policy makers
Summary for policy makers
 
CAR Email 7.12.02 (d)
CAR Email 7.12.02 (d)CAR Email 7.12.02 (d)
CAR Email 7.12.02 (d)
 
Growing Season Extension & its Impact on Terrestrial Carbon; Gardening Guidebook
Growing Season Extension & its Impact on Terrestrial Carbon; Gardening GuidebookGrowing Season Extension & its Impact on Terrestrial Carbon; Gardening Guidebook
Growing Season Extension & its Impact on Terrestrial Carbon; Gardening Guidebook
 
Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...
Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...
Beyond 2 Degrees - Setting New Goals for Global Warming Diplomacy - by David ...
 
Mitigation and adaptation of climate change in aquaculture
Mitigation and adaptation of climate change in aquacultureMitigation and adaptation of climate change in aquaculture
Mitigation and adaptation of climate change in aquaculture
 
Climatechange2010
Climatechange2010Climatechange2010
Climatechange2010
 
Updates on the preparations of Working Group I contribution to the Sixth Asse...
Updates on the preparations of Working Group I contribution to the Sixth Asse...Updates on the preparations of Working Group I contribution to the Sixth Asse...
Updates on the preparations of Working Group I contribution to the Sixth Asse...
 
Regional synthesis - Climatic Impact-Drivers
Regional synthesis - Climatic Impact-DriversRegional synthesis - Climatic Impact-Drivers
Regional synthesis - Climatic Impact-Drivers
 
Havu, Minttu: Improved understanding of urban street tree and soil carbon cycle
Havu, Minttu: Improved understanding of urban street tree and soil carbon cycleHavu, Minttu: Improved understanding of urban street tree and soil carbon cycle
Havu, Minttu: Improved understanding of urban street tree and soil carbon cycle
 

Destacado

LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...
LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...
LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...Surendra Bam
 
Carbon Impacts of paper manufacture literature review by RMIT
Carbon Impacts of paper manufacture literature review by RMITCarbon Impacts of paper manufacture literature review by RMIT
Carbon Impacts of paper manufacture literature review by RMITChristopher Sewell
 
Climate Is Always Changing: Regional, National, and Global Trends (and how th...
Climate Is Always Changing: Regional, National, and Global Trends (and how th...Climate Is Always Changing: Regional, National, and Global Trends (and how th...
Climate Is Always Changing: Regional, National, and Global Trends (and how th...LPE Learning Center
 
Climate Change and Adaptation: Where do we go from here?
Climate Change and Adaptation: Where do we go from here?Climate Change and Adaptation: Where do we go from here?
Climate Change and Adaptation: Where do we go from here?Global Risk Forum GRFDavos
 
Climate change adaptation and mitigation measures - Madrid
Climate change adaptation and mitigation measures - MadridClimate change adaptation and mitigation measures - Madrid
Climate change adaptation and mitigation measures - MadridAlessandro Faia
 
DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...
DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...
DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...Global Risk Forum GRFDavos
 
Theme 4 - Climate Change Mitigation and Adaptation
Theme 4 - Climate Change Mitigation and AdaptationTheme 4 - Climate Change Mitigation and Adaptation
Theme 4 - Climate Change Mitigation and AdaptationCIFOR-ICRAF
 
Climate Change Processes and Impacts - Session 3 Managing Project Preparation...
Climate Change Processes and Impacts - Session 3 Managing Project Preparation...Climate Change Processes and Impacts - Session 3 Managing Project Preparation...
Climate Change Processes and Impacts - Session 3 Managing Project Preparation...UNDP Climate
 
National Climate Change Adaptation Planning: Jamaica
National Climate Change Adaptation Planning: JamaicaNational Climate Change Adaptation Planning: Jamaica
National Climate Change Adaptation Planning: JamaicaNAP Global Network
 
Genetics of Climate Change Adaptation
Genetics of Climate Change AdaptationGenetics of Climate Change Adaptation
Genetics of Climate Change AdaptationDr. Shikha Thakur
 
Descriptive analysis of awareness about land pollution, water pollution, air ...
Descriptive analysis of awareness about land pollution, water pollution, air ...Descriptive analysis of awareness about land pollution, water pollution, air ...
Descriptive analysis of awareness about land pollution, water pollution, air ...Poonam Sankhe
 
Climate Change Presentation
Climate Change PresentationClimate Change Presentation
Climate Change Presentationguestd4f22f
 
Evs greenhouse effect - 3rd sem
Evs   greenhouse effect - 3rd semEvs   greenhouse effect - 3rd sem
Evs greenhouse effect - 3rd semAnirban Stifler
 
Sample Entry of Related Literature and Related Study
Sample Entry of Related Literature and Related StudySample Entry of Related Literature and Related Study
Sample Entry of Related Literature and Related StudyJoule Coulomb Ampere
 
Climate change powerpoint
Climate change powerpointClimate change powerpoint
Climate change powerpointpacorz
 

Destacado (18)

LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...
LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...
LONG YEARS COMPARATIVE CLIMATE CHANGE TREND ANALYSIS IN TERMS OF TEMPERATURE,...
 
Carbon Impacts of paper manufacture literature review by RMIT
Carbon Impacts of paper manufacture literature review by RMITCarbon Impacts of paper manufacture literature review by RMIT
Carbon Impacts of paper manufacture literature review by RMIT
 
Climate Is Always Changing: Regional, National, and Global Trends (and how th...
Climate Is Always Changing: Regional, National, and Global Trends (and how th...Climate Is Always Changing: Regional, National, and Global Trends (and how th...
Climate Is Always Changing: Regional, National, and Global Trends (and how th...
 
The causes of air pollution italy
The causes of air pollution   italyThe causes of air pollution   italy
The causes of air pollution italy
 
Climate Change and Adaptation: Where do we go from here?
Climate Change and Adaptation: Where do we go from here?Climate Change and Adaptation: Where do we go from here?
Climate Change and Adaptation: Where do we go from here?
 
237968686 evs-1
237968686 evs-1237968686 evs-1
237968686 evs-1
 
Climate change adaptation and mitigation measures - Madrid
Climate change adaptation and mitigation measures - MadridClimate change adaptation and mitigation measures - Madrid
Climate change adaptation and mitigation measures - Madrid
 
DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...
DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...
DISASTER RISK REDUCTION AND CLIMATE CHANGE (ADAPTATION) – THE NEEDS FOR HARMO...
 
Theme 4 - Climate Change Mitigation and Adaptation
Theme 4 - Climate Change Mitigation and AdaptationTheme 4 - Climate Change Mitigation and Adaptation
Theme 4 - Climate Change Mitigation and Adaptation
 
Climate Change Processes and Impacts - Session 3 Managing Project Preparation...
Climate Change Processes and Impacts - Session 3 Managing Project Preparation...Climate Change Processes and Impacts - Session 3 Managing Project Preparation...
Climate Change Processes and Impacts - Session 3 Managing Project Preparation...
 
National Climate Change Adaptation Planning: Jamaica
National Climate Change Adaptation Planning: JamaicaNational Climate Change Adaptation Planning: Jamaica
National Climate Change Adaptation Planning: Jamaica
 
Genetics of Climate Change Adaptation
Genetics of Climate Change AdaptationGenetics of Climate Change Adaptation
Genetics of Climate Change Adaptation
 
Descriptive analysis of awareness about land pollution, water pollution, air ...
Descriptive analysis of awareness about land pollution, water pollution, air ...Descriptive analysis of awareness about land pollution, water pollution, air ...
Descriptive analysis of awareness about land pollution, water pollution, air ...
 
Climate Change Presentation
Climate Change PresentationClimate Change Presentation
Climate Change Presentation
 
Evs greenhouse effect - 3rd sem
Evs   greenhouse effect - 3rd semEvs   greenhouse effect - 3rd sem
Evs greenhouse effect - 3rd sem
 
Sample Entry of Related Literature and Related Study
Sample Entry of Related Literature and Related StudySample Entry of Related Literature and Related Study
Sample Entry of Related Literature and Related Study
 
My thesis proposal
My thesis proposalMy thesis proposal
My thesis proposal
 
Climate change powerpoint
Climate change powerpointClimate change powerpoint
Climate change powerpoint
 

Similar a Climate change adaptation in urban regeneration projects

Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...science journals
 
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...science journals
 
Cambridge Climate Leaders Reference Guide
Cambridge Climate Leaders Reference GuideCambridge Climate Leaders Reference Guide
Cambridge Climate Leaders Reference GuideGlenn Klith Andersen
 
Climatechange 2001 the scientific basis
Climatechange 2001   the scientific basisClimatechange 2001   the scientific basis
Climatechange 2001 the scientific basisIntrosust
 
Climate change response in Europe: what's the reality Analysis of adaptation ...
Climate change response in Europe: what's the reality Analysis of adaptation ...Climate change response in Europe: what's the reality Analysis of adaptation ...
Climate change response in Europe: what's the reality Analysis of adaptation ...Ecologistas en Accion
 
Environmental Challenges and Social Implications
Environmental Challenges and Social ImplicationsEnvironmental Challenges and Social Implications
Environmental Challenges and Social ImplicationsViorica Revenco
 
Lecture 7: Urban Climate Change Mitigation and Adaptation
Lecture 7: Urban Climate Change Mitigation and AdaptationLecture 7: Urban Climate Change Mitigation and Adaptation
Lecture 7: Urban Climate Change Mitigation and AdaptationESD UNU-IAS
 
Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...
Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...
Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...Shahadat Hossain Shakil
 
Climate Action: the need for a systemic approach
Climate Action: the need for a systemic approachClimate Action: the need for a systemic approach
Climate Action: the need for a systemic approachESD UNU-IAS
 
Students - Introduction to climate change science
Students - Introduction to climate change scienceStudents - Introduction to climate change science
Students - Introduction to climate change scienceipcc-media
 
EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...
EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...
EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...Environmental Protection Agency, Ireland
 

Similar a Climate change adaptation in urban regeneration projects (20)

Climate Change: Effects on the UK
Climate Change: Effects on the UKClimate Change: Effects on the UK
Climate Change: Effects on the UK
 
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
 
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
Strategic environmental-assessment-and-sustainable-developmentclimate-change-...
 
FP7 activities in the Environment
FP7 activities in the EnvironmentFP7 activities in the Environment
FP7 activities in the Environment
 
ipcc_wg3_booklet
ipcc_wg3_bookletipcc_wg3_booklet
ipcc_wg3_booklet
 
CAR Email 6.19.03
CAR Email 6.19.03CAR Email 6.19.03
CAR Email 6.19.03
 
Cambridge Climate Leaders Reference Guide
Cambridge Climate Leaders Reference GuideCambridge Climate Leaders Reference Guide
Cambridge Climate Leaders Reference Guide
 
Climatechange 2001 the scientific basis
Climatechange 2001   the scientific basisClimatechange 2001   the scientific basis
Climatechange 2001 the scientific basis
 
Climate change response in Europe: what's the reality Analysis of adaptation ...
Climate change response in Europe: what's the reality Analysis of adaptation ...Climate change response in Europe: what's the reality Analysis of adaptation ...
Climate change response in Europe: what's the reality Analysis of adaptation ...
 
C5 t3
C5 t3C5 t3
C5 t3
 
Clase 8 Texto 1
Clase 8 Texto 1 Clase 8 Texto 1
Clase 8 Texto 1
 
Fact_Sheets-English
Fact_Sheets-EnglishFact_Sheets-English
Fact_Sheets-English
 
Climate change
Climate changeClimate change
Climate change
 
Environmental Challenges and Social Implications
Environmental Challenges and Social ImplicationsEnvironmental Challenges and Social Implications
Environmental Challenges and Social Implications
 
Lecture 7: Urban Climate Change Mitigation and Adaptation
Lecture 7: Urban Climate Change Mitigation and AdaptationLecture 7: Urban Climate Change Mitigation and Adaptation
Lecture 7: Urban Climate Change Mitigation and Adaptation
 
CAR Email 9.25.02 (c)
CAR Email 9.25.02 (c)CAR Email 9.25.02 (c)
CAR Email 9.25.02 (c)
 
Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...
Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...
Assessment of the Extent to which Strategic Environmental Assessment (SEA) ca...
 
Climate Action: the need for a systemic approach
Climate Action: the need for a systemic approachClimate Action: the need for a systemic approach
Climate Action: the need for a systemic approach
 
Students - Introduction to climate change science
Students - Introduction to climate change scienceStudents - Introduction to climate change science
Students - Introduction to climate change science
 
EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...
EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...
EPA H2020 SC5 Info Day: Research requirements following COP21 - The Paris Agr...
 

Último

How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIyuj
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...katerynaivanenko1
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfShivakumar Viswanathan
 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10uasjlagroup
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfneelspinoy
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfSumit Lathwal
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)jennyeacort
 
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一F dds
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024CristobalHeraud
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case StudySophia Viganò
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryWilliamVickery6
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCRdollysharma2066
 
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一Fi sss
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in designnooreen17
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricksabhishekparmar618
 

Último (20)

How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AI
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 
Call Girls in Pratap Nagar, 9953056974 Escort Service
Call Girls in Pratap Nagar,  9953056974 Escort ServiceCall Girls in Pratap Nagar,  9953056974 Escort Service
Call Girls in Pratap Nagar, 9953056974 Escort Service
 
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
MT. Marseille an Archipelago. Strategies for Integrating Residential Communit...
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdf
 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdf
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdf
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
 
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case Study
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William Vickery
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
 
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in design
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricks
 

Climate change adaptation in urban regeneration projects

  • 1. 1 CLIMATE CHANGE ADAPTATION AND EIA IN UK URBAN REGENERATION PROJECTS The Future of EIA Chiko Ncube School of Built Environment Oxford Brookes University September, 2011
  • 2. 2 Abstract Climate Change is one of the defining global challenges of our age and compelling evidence shows that substantial changes to our climate are already unavoidable. This research is therefore founded on the key message that action towards the adaptation of climate change is vital and urgent. It examines the important role of planning in reducing the vulnerability of urban regions through the Environmental Impact Assessment process (EIA). This is done primarily by reviewing Environmental Statements for urban regeneration projects, as well as through responses to questionnaires and emails and an in-depth literature study. It aims to show if and how some of the UK‟s high profile and controversial urban regeneration projects have considered climate change adaptation and what role EIA played in this incorporation. The findings show that all reviewed projects considered the adaptation of climate change to varying degrees. It is considered in the flooding assessment for all projects and the proposal for sustainable urban drainage strategies was also found to be in all statements. Despite this, clear consideration in other impact chapters such as Landscape and Ecology was lacking. Long term baselines for projects were hardly used in many projects but when used, they were found in CO2 related impact chapters such as traffic and air quality. The smaller scaled urban regeneration projects showed a clear gap in holistically approaching the issues of climate change by frequently mentioning it under the loose umbrella of „sustainable development‟. The larger projects such as the Olympic Village and Bilston Urban Village showed a holistic approach and purposefully integrated it in the earlier stages of the EIA, allowing for the predicted impacts to influence the design and decision making. Furthermore, the responses from the questionnaires and emails showed that the extent to which climate change considerations are factored in is difficult to predict due to many variables such as the type of development, funding and different economic and political conditions. The results also showed that although there was a sound agreement on the integration of climate change adaptation in EIA, however it was found that many adaptation measures were often put aside for other planning goals. With the European Commission currently working towards incorporating climate change considerations in the EIA directive and the UK aiming to publish its first National Adaptation programme this year, this research comes at a very crucial time.
  • 3. 3 List of Contents Table of Contents Abstract 3 List of Contents 4 List of Tables, Figures and Boxes 6 Abbreviations 7 Acknowledgments 8 Chapter One: Introduction 10 1.1 The importance of EIA and climate change adaptation 11 1.2 Urban Regeneration 12 1.3 Research Questions 13 1.4 Methodology 13 1.5 Structure and layout 14 Chapter Two: Literature review 15 2.1 EIA and Policy, Plans and Programmes 16 2.1.1 Global Level 16 2.1.2 European Level 17 2.1.3 National Level 18 2.1.4 Progress towards UK National Adaptation Programme 20 2.2 Climate Change 21 2.3 Climate Change in the UK 23 2.4 Climate Change Adaptation 25 2.5 Climate Change adaptation and urban areas 26 2.6 EIA and Climate Change Adaptation 27 Chapter Three: Methodology 31 3.1 ES review (7/10 projects) 33 3.2 EIA review (4/11 projects) 34 3.3 Questionnaires and emails 35 Chapter Four: Presentation of findings 37 4.1 First Review: Environmental Statement 33 4.2 Second Review: EIA Process 45
  • 4. 4 4.2.1 Ashton Green 45 4.2.2 Bilston Urban Village 47 4.2.3 Brent Cricklewood 51 4.2.4 Olympics Chapter Five: Analysis 59 5.1 Summary analysis of in-depth review projects 61 5.2 Internal factors 64 5.3 External factors 66 Chapter Six: Conclusion 69 6.1 Areas of further research 71 Appendices 72 References 86
  • 5. 5 List of Figures Figure 1: UKCIP (09) Projected changes to mean precipitation for the 2080s 24 Figure 2: Change in observed temperature over Western Europe over a 200-year period (MET office, Adapting institutes) 25 Figure 3: Review of Climate change mitigation in environmental statements 29 Figure 4: Review of Climate change mitigation in environmental statement, significant variation in sectors 29 Figure 5: Locations of selected projects 33 Figure 6: Proposed comprehensive drainage strategy Bilston Village 47 Figure 7 Showing UKCIP risk framework tool (UKCIP, 2011) 50 Figure 8: Showing phases of London 2012 programme 57 Figure 9: Showing Olympic legacy Phase and Climate Change impacts 58 Figure 10: Showing potential entry points for Climate Change consideration 60 Figure 11: Showing evolution of adaptation Climate Change 69 List of Boxes Box 1: Adaptation Sub-Committee (ASC) 20 Box 2: Green Infrastructure typologies 35 Box 3: Blue Infrastructure typologies 35 Box 4: Liverpool Waters 38 Box 5: Carlyon Bay 39 Box 6: Edinburgh Harbour 40 Box 7: Huntsgrove 41 Box 8: Centenary Quay Woolston 42 Box 9: London‟s Sporting Village 43 Box 10: Sowerby Bridge Copley Valley 44 Box 11: London Plan 52
  • 6. 6 List of Tables Table 1: Showing summary for four in-depth review projects 61 Abbreviations CC: Climate Change CCA: Climate Change Adaptation EA: Environment Agency EIA: Environmental Impact Assessment ES: Environmental Statement EU: European Union EC: European Commission FRA: Flood Risk Assessment GHG: Greenhouse Gas LA: Local Authority PPP: Plans, Policies and Programmes SEA: Strategic Environmental Assessment
  • 7. 7 Acknowledgments I would like to thank God for His Grace and Excellence that has enabled me to complete this research. My gratitude goes out to my family (Dad, Mum and the other 6) in Zimbabwe for their unwavering support and consistent love, as well as my IFCS family here (Dr Taiwo, Pastor Ade and Jessie Williams, Dr Abiose, IFCS Central, Leaders and Members). I would also like to thank Dr Elizabeth Wilson for her wonderful guidance and for making my research possible.
  • 8. 8 “Adapt or perish, now as ever, is nature‟s inexorable imperative.” H.G. Wells (1866-1946)
  • 9. 9 Chapter One: Introduction Climate Change (CC) remains the world‟s greatest environmental, political, social and economic challenge. For the past century, Greenhouse gas (GHG) emissions have been accumulating in the atmosphere, primarily as a result of burning fossils fuels and changes in land use. Recent decades have shown unequivocal evidence that CC is happening and its impacts are already observable. According to the Committee on Climate Change (CCC, 2011), the first decade of the twenty-first century was the warmest since instrumental records began with an increase of 0.8o C in global average temperatures. It is therefore widely acknowledged that the impacts of CC are expected to become more severe as changes in the climate intensify in the near future. These changes have not only altered the nature of climate risks to which societies have long been exposed to, but have introduced the possibility of future prospective changes to climate which dwell outside the experience of human history (Hulme et al, 2010). A new political and cultural dynamic has begun, one which challenges all levels of governance to re-think and re-shape the way in which society functions. Environmental Impact Assessment (EIA) in spatial planning is particularly relevant in this context. This research grew out of an interest in EIA and climate change, a concern over the limited attention to incorporating and understanding how to address climate change adaptation (CCA) in EIA, and a resulting avidity to discover how new urban developments are responding to CC. Accordingly, the overall aim of this research is to explore how CCA is being addressed in the EIA process and practice in current urban regeneration projects. CC is a global problem however the author has chosen the United Kingdom as the region of investigation for this research. The term climate change adaptation is relatively new in the UK and continues to rise on the agendas of researchers, practitioners and decision makers. The Climate-Knowledge and Innovation Community (2011) additionally acknowledges that CCA will be an important activity under the UK Government‟s localism, decentralisation and Big Society agenda. In the future the UK will experience warmer and wetter winters and hotter and drier summers (DEFRA, 2009). The incidence of extreme weather events will increase and are likely to
  • 10. 10 compound the high cost of weather related disruption. During the floods in summer 2007, 13 people lost their lives and around 48,000 homes and 7,000 businesses were flooded. The floods caused more than £3 billion of insure damage and the total disruption to the economy was far greater than anticipated (The Royal Commission, 2010). There are low-regret actions that could be taken now to reduce the UK‟s vulnerability; however evidence of such measures is limited (CCC, 2011). Climate risks also appear not to be fully incorporated into some major strategic decisions especially with regards to land use planning. The UK‟s vulnerability to CC is increasing and efforts towards adapting to CC are continually put aside as a result of patterns of development in some areas and demographic trends. The Adaptation Sub-Committee (ASC) studied nine Local Authorities (LA) and found that since 2001:  In almost all of the nine English local authorities studied, development in areas of flood risk had increased, and in four of them the rate of development was higher than across the locality as a whole.  Three of the four coastal authorities saw an increase in development in areas of eroding coastline, and in two of them the rate of development on unprotected coastline was higher than across the authority as a whole.  The area of hard surfacing increased in five of the six urban authorities studied, primarily at the expense of urban green space, which declined in all six. This is likely to exacerbate surface water flooding risk and the urban heat island effect. (CCC, 2011) This research investigates the drivers towards the consideration of CCA in urban projects despite these pressures and discusses the possible ways forward in building project resilience through EIA. 1.1 The importance of EIA and Climate change adaptation Planning in a regime where up to a 60 centimetre increase in sea level during the next 100 years is possible, poses enormous uncertainty. Dealing with this uncertainty and adapting to the expected changes is an important role that should be played by the planning system. However it is still seen that CC is perceived as a distant phenomenon by planners and adaptation needs are „backstaged‟ by other planning goals. Effective and strategic planning
  • 11. 11 and management could lead to huge financial savings and key reduction in place and society vulnerability. In order to achieve this, the discipline and practice of planning can deploy tools such as impact assessment, climate risk assessment, futures thinking and the ecosystem approach (Wilson et al., 2010). The EIA process has been recognised by organisations such as the EC and The Institute of Environmental Management and Assessment (IEMA) as a potential vehicle for CCA and a recognised aid to decision making in planning. The purpose of an EIA is to ensure that development options under consideration are environmentally sound and sustainable, and that any environmental consequences are recognised early in the project cycle and taken account in the project design (World Bank, 2009). Currently, assessing the impacts of CC is not mandatory in EIA, and the tool is viewed by many practitioners as limited and better at addressing the „acute‟ impacts of development as opposed to the „chronic‟ impacts of CC (Environment Agency, 2011). Despite this, recent research and projects have shown that there is ample scope for employing EIA procedures as a tool to enhance the resilience of projects to the impacts of CC (Agrawala et al., 2010). Every project is designed with some assumption about the climate in which it will function (Caricom, 2009) and the conventional way is to assume that the historical climate data and past experiences is a reliable guide to the future. This assumption is no longer good enough, thus design criteria must be based on the CC over the life of the project. Many projects for which EIA‟s are required have relatively long life spans (20 to 100 years) and therefore this incorporation could facilitate the successful „climate-proofing‟ of projects and serve as a substantial economic investment. This proves particularly important in urban regions which are extremely vulnerable due to their high population density, large numbers of poor and elderly residents, their dense physical structure and their dependencies on often ageing infrastructure systems. 1.2 Urban regeneration Over the past 20 years, a bewildering array of government programmes have been launched in the UK as an attempt to reverse the decline in inner city areas by both improving the physical structure and more elusively, the economy of those areas (Guardian, 2001). Examples of well considered regeneration schemes are still few with many projects still cheer leading an urban renewal of rapid glass towers and asymmetric housing. Elliot Morley, the
  • 12. 12 Minister of State in 2005 recognised that the impacts of CC will increasingly affect the integrity of the built environment unless action is taken now. Buildings have an expected lifetime of up to 100 years and therefore new buildings need to be able to withstand the impacts of CC in order to guarantee their long term sustainability (GLA, 2005). Urban regeneration projects of today house a generation of tomorrow that will undoubtedly experience the increasing impacts of CC. Research from the United Nations University (UNU-Institute of Advanced Studies, 2010) has suggested that urban regeneration, a process through which inner-city areas are renewed, redeveloped or rehabilitated, can address many of the challenges posed by CC and can also provide essential and effective solutions towards making our cities more resilient. EIA is particularly relevant in this context as its primary aim is to enable better decision making within the planning process of a project by examining the environmental consequences of development actions, in advance (Glasson et al, 2005; 4). 1.3 Research Questions The following research questions have been constructed to clarify the purpose of this study: Primary Research Question 1. Can EIA procedures be used as a vehicle for enhancing the resilience of projects to the impacts of climate change? In order to help answer the main research question, other more detailed questions are considered. Secondary research Questions 2. What progress has the UK made in incorporating climate change adaptation measures within the context of EIA modalities for long term projects, particularly urban regeneration projects? 3. What factors explain the limitations to the incorporation of climate change adaptation in EIA? 4. Can Urban Regeneration address many of the challenges posed by climate change? 1.4 Methodology In order to answer these questions, this investigation will comprise of a documentation review of eleven past urban regeneration projects subject to an EA. The ES is used as the
  • 13. 13 solitary document for review for the following seven projects: Liverpool Waters, Carlyon Bay, Edingburgh Harbour, Huntsgrove, Centenary Quay Woolston, Surrey canal London‟s sporting village and Sowerby Bridge Copley Valley. An in-depth review of the entire EIA process was done for these selected 4 projects: Ashton Green (Leicester), Bilston Urban Village (Wolverhampton), Brent Cricklewood and the Olympics (London). These urban regeneration projects have long term lifetimes and therefore they will be subject to climate extremes, climate variability and climate change. Questionnaires and emails were sent to some of the environmental consultants and LAs involved in the selected projects. The responses given have enabled the author to gain a greater understanding of the EIA process for that project and the drivers for the consideration of CCA. In addition, a thorough policy and literature review was carried out to form the background of the review. In this short time frame of investigation, the dynamic speed of change in this new field of enquiry and action around CCA is reflected as new guidance documents and regional and local adaptation programmes were released up to the point of conclusion for the study. This study is likely to be relevant not only to EIA practitioners, planners and climate change researchers but also to LAs considering the incorporation of CCA in EIA. The EC is currently developing guidelines by 2011 to ensure that climate impacts are taken into account in the EIA Directive. The Commission identifies that CC is not sufficiently considered in EIA, and the review of the impacts is often limited to CO2 and other GHG emissions (CEC, 2009: 9). The UK Government is also required by the climate Change Act to lay its adaptation programme before Parliament „as soon as is reasonably practical‟ following the publication of the Climate Change Risk Assessment (CCRA). This study is consequently a useful study and is significant to the current wider context of how planning and impact assessment can effectively address the impacts of CC. 1.5 Structure and Layout Following the Introduction, is the Literature Review in chapter Two, which includes a Plans, Policy and Programme review relevant to the research topic. The methodology in chapter Three explains the ES document review and an in-depth EIA process review. Chapter Four presents details of the selected projects and the measures taken towards adapting to CC. Chapter Five offers an analysis of the findings and Chapter Six draws to a close the final discussion and conclusion of this research with recommendations for areas of further research.
  • 14. 14 Chapter Two: Literature Review This chapter reflects on the debates in literature which are relevant to the author‟s research questions and purpose of study. The chapter aims to additionally provide a policy and guidance context which provides conceptual and analytical frameworks relevant to the research analysis. Traditionally, cities have been located outside arguments and discussions about the means of which to address environmental problems. This separation can be traced through the heritage of the conservation ideal which dominated environmental thoughts between the nineteenth and the late twentieth century. These thoughts identified themselves with „the rural‟ or „wilderness‟ which needed to be preserved against the encroachment of the city (Bulkeley et al, 2003). Despite this concept of the environment as somehow „external‟ to the city, cities have become places in which key environmental issues have been addressed. They have seemingly become central to the pursuit of sustainable development. The ICLEI – Local Governments for Sustainability (International Council for Local Environmental Initiative), have concluded in recent reports, that cities are at the frontline of adaptation (ICLEI, 2010). Many countries and regions are pushing to act on adaptation by creating adaptation strategies; with leading cities such as London, Copenhagen, and Rotterdam conducting assessments of likely CC impacts for their regions. The process of building policy frameworks to address CC has evolved increasingly since the 1980s when it emerged as an international political concern. Alongside this evolution, has been the development of the flexible term „multi-level governance‟. This term follows the notion that governance is not solely led by the nation-state but that it occurs at multiple tiers and through multiple institutions. The PEER report (2009) reaches the same conclusion while also highlighting the need for national involvement through the provision of incentives and frameworks for action. Similarly the 1st World Congress on Cities and Adaptation to Climate Change in Bonn in 2010 came to a common understanding that multi-level governance is the key for building resilient cities. Local Governments have been found to be in the best position to understand the needs of citizens and to identify the range of stakeholders that need to be included in a local adaptation strategy. The distinction and division of responsibilities still
  • 15. 15 remains largely vague, however there remains an underlying conclusion that different levels of government have to work together to develop synergies and mainstream the introduction of adaptation concerns into policy making and implementation (ICLEI, 2010). Governance is no longer ordered or hierarchical. In the response to global change, active agents in local communities seek partnerships and coordinated programmes of action through various levels of government from local to multinational. (O‟Riordan et al., 2001) Adaptation will have impacts primarily on a local scale in comparison to mitigation which is a global effort requiring broad changes of behaviour and technological advancements (World Bank, 2010). Hence, the UK has significant responsibilities for placing its own adaptation policies and their success or failure is in the hands of national and local government, UK business, and communities from major cities to the smallest villages. This chapter will review relevant publications and information concerning CC and EIA. 2.1 EIA and Policy, Plans and Programmes Recent publications on CCA from planning policies to practice guidance that have touched on the topic or attempted to frame and define the appropriate relationship of EIA and CC and CCA are identified below: 2.1.1 Global Level Climate change politics at the global level has primarily focused on the development of an international regime. The core of this regime consists of two multilateral treaties: the 1992 UNFCCC and its 1997 Kyoto Protocol.  United Nations Framework Convention on Climate Change (UNFCCC), 1992 The UNFCCC was drafted and adopted in May 1992, then signed by more than 150 nations attending the 1992 Earth Summit in Rio de Janeiro. Membership of the UNFCCC requires signatories to launch national strategies for addressing greenhouse gas emissions and adapting to expected impacts. All participating parties are committed to formulate and implement measures to facilitate adequate adaptation to climate change. The focus was primarily on the problem of reducing the potential impacts of CC through the efforts to
  • 16. 16 reduce GHG emissions. Adaptation as a second response received relatively little attention in the international negotiations. However, in the last several years, the issue of adaptation to CC has moved high on the UNFCCC negotiating agenda. Various workshops and expert meetings have been facilitated by the UNFCCC Secretariat with the aim to enhance the knowledge about adaptation CCA. The last few Conference of parties (COPs) of the UNFCCC has increased attention to the limitations of dealing with inevitable impacts of CC through adaptation (e.g. through the creation of specific funds at COP7 2001, the implementation of activities to understand specific vulnerabilities at COP10 and the COP11 five-year programme of work on impacts, vulnerability and adaptation for better informed decision making).  Kyoto Protocol, 1997 The Kyoto Protocol is an international agreement linked to the UNFCCC. The major feature of the Kyoto Protocol is that it sets binding targets for 37 industrialised countries and the European community for reducing greenhouse gas emissions. The distinction between the Protocol and the Convention is that the Convention encourages parties to stabilize GHG emissions however the Protocol commits them to do so. Under Article 10 of the Kyoto Protocol signatories agree to „Formulate, implement, publish and regularly update national and where appropriate, regional programmes containing measures to mitigate CC and measures to facilitate adequate adaptation to climate change‟ (Wilson et al, 2010). The Kyoto Protocol is designed to assist countries in adapting to the adverse effects of climate change. It also facilitates the development and deployment of techniques that can help increase resilience to the impacts of CC (UNFCCC, 2010). 2.1.2 European Level Due to the regional variability and severity of climate impacts, most adaptation measures will be taken at national, regional and local level. However these measures can be supported and strengthened by an integrated and coordinated approach at the EU level (EN, 2009). Adaptation is expected to be a long and continuous process, and action at the European level aims to strengthen dialogue with partner countries on adaptation issues and to ensure there are adequate resources to provide a sustainable and sound economic basis for future generations. The EU has proposed a Framework for Action on Adaptation which will come into force in 2012 after the end of the first commitment period of the Kyoto Protocol.
  • 17. 17 The EU, in its five-year monitoring reviews of the EIA Directive, concluded that: „The EIA Directive does not expressly address climate change issues... Any review of the impacts of climate change is often limited to CO2 and other GHG emissions from industry and from increases in transport as part of air quality studies or as indirect impacts...In addition, the effects on global climate, the cumulative effects of an additional project and adaptation to climate change are not sufficiently considered.‟ (CEC, 2009g, para. 3.5.4)  ECCP II Working Group 2: Impacts and Adaptation At European level a comprehensive package of policy measures to reduce GHG emissions has been initiated through the European Climate Change Programme (ECCP). The goal of the ECCP is to identify and develop all the necessary elements of an EU strategy to implement the Kyoto Protocol. The ECCP II Working Group 2 launched in 2005 aims to integrate adaptation fully into relevant European policy areas, to identify good, cost-effective practice in the development of adaptation policy. Urban planning and the built environment are amongst the priority topics for the Group.  EU White paper: Adapting to Climate Change: Towards a European Framework for action (2009) In April 2009, the EC presented a White Paper on CCA and the need to support adaptation by promoting a more strategic approach to ensure timely and effective adaptation measures are taken and ensuring coherency across different sectors and levels of governance. Additionally the White Paper detailed the significance of extreme climatic events on infrastructure and the urgent need to set out a framework to reduce the EU‟s vulnerability to CC impacts and work towards the post-2012 climate agreement which will subsequently address adaptation (Town and Country Planning Association, 2009). 2.1.3 National Level At a national level, the UK historically became known as the „dirty man‟ of Europe for its lack of action on environmental problems (Bulkeley et al., 2003). However by the second half of the 1980s, environmental issues were receiving increasing government attention. Since then, the UK has taken a leading role in the international negotiations with the
  • 18. 18 introduction of the Climate Change Act in 2008 as the first country to have a legal binging framework. A number of programmes, measures and campaigns have been introduced to culminate the Climate Change Act such as The UK Climate Change Programme published in 1996, 2000 and 2006 which committed the government to produce guidance on planning and climate change. The programmes focused primarily on mitigation but also acknowledged the necessity of adaptation. In addition to voluntary and market instruments changes to building regulations have been made to improve the energy efficiency of new housing and build adaptive capacity. However the Adaptation‟s sub-committee, the independent climate expert for the Government concludes in its executive summary „How well prepared is the UK for climate change‟ (2010) that there is still no tangible action on the ground to reduce the UK‟s vulnerability to climate change.  Climate Change Act, 2008 HM Government The Act sets out a framework for dealing with adaptation, recognising that the country needs to be prepared to deal with the changes to the climate that we are already starting to face, alongside wider economic and demographic trends. The Act includes:  The requirement to undertake a UK-wide Climate Change Risk Assessment (CCRA) and report on it by January 2012.  The requirement to set out a statutory Adaptation Programme following the CCRA  An Adaptation Reporting Power allowing the Government to direct certain infrastructure companies and regulators to prepare reports on how they are assessing and acting on the risks and opportunities from a changing climate.  Establishing the Adaptation Sub-Committee of the Committee on CC to provide expert independent advice to Government on CCA. (DEFRA, 2011)
  • 19. 19 2.1.4 Progress towards UK National Adaptation Programme The UK Government‟s first Adaptation Programme aims to be laid before parliament by the end of 2012 and the Central Government has progressed towards meeting this need for adaptation in an incremental way through various published documents.  HM Government (2011); Climate Resilient Infrastructure: Preparing for a Changing Climate This document highlights important themes such as: the risk CC presents to infrastructure interdependencies; adaptation investment; and potential economic opportunities. It is designed to catalyse action to adapt infrastructure in the energy, ICT, transport and water sectors (infrastructure networks). This Government-wide document recognises that adaptation is an issue and aims to be a valuable input to the UK Government‟s first Adaptation Programme. It emphasises that: The responses to CC require two kinds of action: 1. Mitigation by reducing GHG to 80% below 1990 levels by 2050 as required by the Climate Change Act (2008). 2. Adaptation to climate change due to past, current and future GHG emissions. Box 1: Adaptation Sub-Committee (ASC) The ASC has identified five priority areas for immediate action in preparing for climate change: 1. Taking a strategic approach to land-use planning; 2. Providing national infrastructure; 3. Designing and renovating buildings; 4. Managing natural resources sustainably 5. Effective emergency planning Source: DEFRA, 2011
  • 20. 20  DEFRA (Department for Environment, Food and Rural Affairs) DEFRA has been pivotal to the UK Government‟s progress to CCA and leads the government‟s climate change mitigation policy. In March 2010, sixteen Government Departments published Departmental Adaptation Plans (DAPs) and Carbon Reduction Delivery Plans. These complementary plans set out policies on CCA and CC mitigation respectively. DEFRA‟s climate change plan (2010) sets out how it will continue to deal with the challenges and opportunities of climate change including adaptation with partners such as Natural England and the Forestry Commission. It has recently been announced that the Environment Agency (EA) will take on a new, additional role as the Government‟s delivery body in England for advice on climate adaptation. DEFRA will provide EA with an additional 2 million pounds per year to deliver climate adaptation advice, an increase on the current 1.5million per year budget will be paid to UKCIP and the UK‟s regional climate change partnerships.  UK Climate Impacts Programme (UKCIP) Adapting to CC advice is currently delivered for DEFRA by UKCIP, regional Climate Change Partnerships and the Local & Regional Adaptation Partnership (LRAP). UKCIP is a programme which focuses on the challenge of the impacts of unavoidable climate change. The programme began its work in 1997 when CC was still regarded as an environmental issue on the fringes of policymaking. UKCIP has created a host of tools and resources to help organisations prepare for the impacts of a changing climate, such as, UKCIP‟s Adaptation Wizard, which provides step-by-step guidance for organisations starting the process of adapting to climate change. 2.2 Climate change In 2007, the Intergovernmental Panel on Climate Change (IPCC) published its Fourth Assessment Report. This report gave a thorough review of the science and challenges of climate change. The report played an important role in creating global awareness of the urgency of a global response to CC (IPCC, 2011). In that same year, the UN Secretary General called CC „a defining issue of our era‟ and five months later, after a global trip witnessing the changes firsthand, he referred to it as „the defining challenge of our age‟ (Posas, 2011).
  • 21. 21 The International Alliance of Research Universities (IARU) organised a congress regarding the opportunities and challenges of CC in 2009. The congress clearly defined this global phenomenon as a challenge that required combined efforts of scientific disciplines; natural climate science integrated with the social, political and economic sciences in order to be adequately addressed. There has been substantial progress in understanding how the climate is changing through improvements on numerous datasets, data analyses, broader geographical coverage, better understanding of uncertainties and a wider variety of measurements (IPCC, 2007). Climate change is defined by the IPCC as „a change in the state of the climate that can be identifies by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. Climate change refers to any change in climate over time, whether due to natural variability or as a result of human activity.‟(IPCC, 2007) The United Nations Framework Convention on Climate Change refers to climate change as „a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods.(IPCC, 2007) The difference in the two definitions is in the usage of the term. The IPCC definition is not limited to human activity alone and therefore the IPCC definition of climate change will be used in this research. Since it was established that humans are at least part responsible for climate change and that some impacts can no longer be avoided, academic and policy attention for adaptation has increased rapidly. However despite this increase in attention, the science of CCA is still in its infancy (Klein et al., 2005). According to the IPCC synthesis report on Climate Change 2007:  It is very likely that cold days, cold nights and frosts have become less frequent over most land areas, while hot days and hot nights have become more frequent.  It is likely that heat waves have become more frequent over most land areas.  It is likely that the frequency of heavy precipitation events (or proportion of total rainfall from heavy falls) has increased over most areas.
  • 22. 22  It is likely that the incidence of extreme high sea level has increased at a broad range of sites worldwide since 1975 (IPCC, 2007) 2.3 Climate change in the UK During the last 40 years, the UK has experienced most of the impacts of climate change. The winters have grown warmer, with heavier bursts of rain. The summers have been increasingly drier and hotter causing widespread water shortages. The Thames Barrier was raised on average three times a year until 2001 and by 2030 it is expected that it will need to be raised 30 times per year (EA, 2011). The Environment Agency highlights that the UK will witness more extreme events, such as flooding, storms, sea level rise and drought as well as wetter warmer winters and hotter drier summers. There are currently 490,000 properties at significant risk of flooding and an additional 35,000 will be at significant risk of flooding by 2035 due to climate change. The total annual river flow in England and Wales is expected to drop by 10 to 15 per cent by 2050, with 80 per cent less water in some rivers during the summer months.
  • 23. 23 Figure 1 showing UKCIP (09) Projected changes to annual, winter and summer mean precipitation for the 2080s
  • 24. 24 Figure 2 showing change in observed temperature over Western Europe over a 200-year period (web source) 2.4 Climate Change Adaptation The IPCC defines Adaptation as “Adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities. Various types of adaptation can be distinguished, including anticipatory and reactive adaptation, private and public adaptation, and autonomous and planned adaptation.” (IPCC, 2001) It is recognised that even the most rigorous and relentless mitigation efforts cannot avoid further impacts of CC in the next few decades and even if temperature increases can be limited, which is far from certain, the impacts for some societies and ecosystems will still be highly significant (Royal Commission, 2010). Klein et al. (2007) recognise that without mitigation, a magnitude of CC is likely to be reached that will make adaptation impossible for some natural systems while for most human systems it would involve very high social and economic costs. It is therefore not a question of whether to mitigate to CC or to adapt to it. Both CCA and CC mitigation are now essential in reducing the expected impacts of CC.
  • 25. 25 2.5 Climate Change adaptation and Urban areas Cities are critical in tackling CC by mitigation and adaptation actions. However they are considered part of the problem as much as they are part of the solution (United Nations University, 2007). According to UNHABITAT‟s estimations (2007), urban centres are said to account for more than half of global greenhouse gas emissions and for about two-thirds of global energy use. The transport sector accounts for 24 per cent of total carbon dioxide emissions, of which 74 per cent is from road transport. By 2050, the passenger vehicle fleet is expected to triple in size. The building sector is responsible for 30 per cent of greenhouse gas emissions globally, with 80-90 per cent emitted during building use and 10-20 per cent during construction. Established well known researchers David Satterthwaite and David Dodman (2009) argue that recent IPCC figures on city emissions are inaccurate and that it is not cities that produce GHGs, but particular activities located there. They conclude on the urgent point that what is fundamentally important for cities and urban centres is a focus on adaptation. Mitigation and adaptation are strongly influenced by urban form and this could result in possible conflict. For example, at high densities, travel distances are minimised and community energy schemes become more viable. However, higher densities can intensify urban heat island effects and reducing urban drainage capacity (Shaw et al., 2007). Our cities are not currently designed for climate change and therefore planners have an important role in ensuring that new developments take account of CCA. Acting early may mean that resilience to CC can be incorporated into the planning and construction process at relatively low cost (GLA, 2005). Due to compelling socio-economic considerations (i.e. increasing population), it is highly likely that development may continue in areas vulnerable to the impacts of climate change Vulnerability can be defined as “the degree to which a system is susceptible to, and unable to cope with adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, and its adaptive capacity.” (IPCC 2007)
  • 26. 26 The potential impacts of climate change on urban areas include (ETC/ACC, 2010):  Sea level rise and storm surge flooding,  Fluvial flooding,  Urban drainage flooding,  Building and infrastructure subsidence and landslides,  Wind storm,  Water scarcity , drought and implications for water resources  Heat and health  quality and health,  Resources and amenity  Diseases In order to make our communities less vulnerable to the CC impacts listed above, solutions need to be provided through regional and local spatial planning and EA. Barry Sadler (1996), with support from impact assessment experts and organisations worldwide, undertook an international study on the effectiveness of EA. Sadler (p.45)highlights that EA can and does make a difference to decisions taken and that it supports environmentally favourable action in implementing development. The insightful document focuses on EA generally and only recognises CC mitigation with no reflection on CCA which is very likely due to the time in which it was published .The report includes section on CC, Strategic Environmental Assessment (SEA) and EIA. Sadler argues that SEA can permit more effective assessment of CC implications of PPPs and development decisions than EIA of projects though he considers that the two used together can be most powerful. 2.6 EIA and Climate Change Adaptation National governments have invested considerable effort in developing methodologies and tools to screen their projects for the risks posed by CC (Agrawala et al., 2009). It has been recently identified that an alternative and complementary approach should be considered by examining the feasibility of incorporating consideration of CC impacts and adaptation within existing modalities for project design and implementation such as EIA (Agrawala et al., 2010).
  • 27. 27 The purpose of EIA is to assess the impacts of a proposed project on the environment before deciding on whether or not to undertake the project, and to develop and apply measures to avoid or minimise those impacts as conditions of approval for the project. The World Bank (1999) subsequently describes the purpose of the EIA process as a need to ensure that project options under consideration are environmentally sound and sustainable. In 2010, the revised Overarching Energy National Policy 1 (EN1) was published and put an emphasis to the need for new infrastructure to consider the impacts of CC through the means of EIA. “New energy infrastructure will typically be a long-term investment and will need to remain operational over many decades; in the face of a changing climate...The ES should set out how the proposal will take account of the projected impacts of climate change. While not required by the EIA Directive...” (para. 4.8.5) IEMA states in their recent CCA and EIA guidance (2010), that EIA must ensure future developments are resilient and that their environmental impacts do not exacerbate CC effects on human or natural systems. The EIA Directive requires in Article 3 that EIA should assess the „climate‟ and in Annex IV it refers to „climatic factors‟ for developments, however assessing the resilience of a proposed project to the impact of CC is not required. “The environmental impact assessment shall identify, describe and assess in an appropriate manner, in the light of each individual case and in accordance with Articles 4 to 11, the direct and indirect effects of a project on the following factors: human beings, fauna and flora, soil, water, air, climate and the landscape.” (EIA Directive, Article 3) “...A description of the aspects of the environment likely to be significantly affected by the proposed project, including in particular, population, fauna, flora, soil, water, air, climatic factors, material assets, including the architectural and archaeological heritage, landscape and the inter-relationship between the above factors.” (EIA Directive, Annex IV) CC mitigation statutory requirements led to the increase of mitigation efforts in EIA. Adaptation to CC as a newer concept has been far less included in EAs. A Recent MSc thesis by Laura Seymour showed that only 31% of recent (2007-2009) environmental statements did not considered GHG emissions (Fig.3). Figure 4 also shows that 56% of Urban Developments considered GHG emissions (Seymour, 2010).
  • 28. 28 Figure 3 showing Review of Climate change mitigation in environmental statements (Seymour, 2010) Figure 4 showing Review of Climate change mitigation in environmental statement, significant variation in sectors. (Seymour, 2010)
  • 29. 29 82% of practitioners indicated that climate change adaptation is not effectively considered in current impact assessment practice, planning processes or project consent processes (Met Office conference, October 2009) The increasing mention of the EIA process as a vehicle in recent guidance, plans and programmes puts emphasis to the viability of EIA procedures to accommodate consideration of the risks posed by climate change. EIA primarily identifies the impacts of a proposed project on the environment, rather than the impact of environmental change (including climate change) on the project itself. It is a new concept, and therefore it could be argued that EIA might not be an appropriate vehicle to incorporate adaptation considerations. In some projects however, impacts of CC may have significant implications on the eventual environmental performance of a project (Agrawala et al., 2010). This is the case for example in urban regeneration projects, which cover a vast amount of land and potentially include complex drainage systems and waste storage facilities. Inadequate consideration of CC impacts, such as sea level rise and changes in extreme weather events, during project design could lead to unexpected downstream environmental consequences. In addition with recent flooding events in the UK, this has led to increased attention to the consideration of CC in FRAs. However the potential impacts of cold and heat waves or droughts are still poorly incorporated. Wilson et al. (2010) suggests three principal external reasons why EIA has not systematically addressed climate change; the uncertainty of CC and the difficulty of making predictions, policy fragmentation and inconsistency and confusion and conflict between the EIA and CC practitioner communities. Despite these limitations, EIA is still considered a well established and publicly accepted process in many countries and development co-operation agencies (Agrawala et al., 2010). The Canadian Environmental Agency (CEAA) has been amongst the first agencies to address EIA, SEA and CC. The CEAA 2003 guidance for the incorporation of CC considerations in EIA highlighted the uncertainty of understanding CC impacts and argued that giving consideration to CC at the project level will increase the awareness of CC mitigation strategies, help proponents manage or reduce the potential risks associated with CC impacts and assure the public that CC considerations are being taken into account (CEAA, 2003). The guidance also makes the point that local information is more challenging to acquire and the contribution of an individual project to CC cannot be measures. The CEAA (2009) notes that EIA should be conducted as early as possible in the planning and proposal stages of a project
  • 30. 30 for the analysis to be valuable to decision makers and to incorporate measures to reduce projected adverse impacts. This is also in line with the requirements for SEA and using both SEA and EIA in conjunction would result in environmental assessments being conducted at all levels of decision making.
  • 31. 31 Chapter Three: Methodology This investigation comprised primarily of a review of EIA documentation, short series of questionnaires and emails. The available documentation supplied objective information about how CCA has been considered in past urban projects. The responses to questionnaires and emails also provided an insight into issues related to the EIA process and various challenges in practice. These findings from the questionnaires are in effect complementary sources of information. A broad Internet search of secondary sources e.g. academic literature, media, presentations) was also conducted. The key search terms used in all possible combinations included CC, CCA, EIA, ES and urban regeneration. For detailed information on documentation and from the questionnaires sent, the reader is referred to appendix B of this research. Environmental Statements of eleven projects post 2005 were reviewed in this research. Four out of these projects have been looked at in greater depth (i.e.) entire EIA process. Each project meets the threshold requirement for an ES and has a medium to long time horizon, thus it could or will be affected by climate change, or was included because CC had been identified as an issue. Urban Development thresholds for the requirement for an Environmental Statement  The development should fall within the category of „urban development projects‟ in the EIA Regulations. Such projects, where they are in excess of 0.5 hectares, are referred to as „Schedule 2 development‟ and require the preparation of an ES, subject to confirmation by the relevant planning authority. (EIA Directive)  “the site area of the scheme is more than 5 hectares or it would provide a total of more than 10,000 m2 of new commercial floor space” (Department of the Environment, Transport and the Regions, 1999)
  • 32. 32 The selected projects for the documentation review: 1. Liverpool Waters 2. Carlyon Bay 3. Edinburgh Harbour 4. Huntsgrove 5. Centenary Quay Woolston 6. Surrey canal; London‟s sporting village 7. Sowerby Bridge Copley Valley The following projects were chosen for an in-depth review of the EIA process: 1. Ashton Green 2. Bilston Urban Village 3. Brent Cricklewood 4. Olympic Village
  • 33. 33 Figure 5 shows the locations of selected projects (Ncube.BC) The exploration of the eleven past projects reviews CCA measures and additionally the four selected projects will look at EA procedures, processes or decisions. CC Mitigation observations will be of secondary importance however links between mitigation and adaptation will be made. 3.1 ES review (7/11 projects) The first investigation comprises of a review of only Environmental Statements (ESs) produced for seven projects. The author chose to investigate the consideration of CCA in EIA through the ES because the statement is a tool for communication and dialogue with the public and other interested parties regarding environmental performance of a project (EMAS,
  • 34. 34 2001). Its purpose is to inform decision-making and advice about the impacts and possible alternatives before proceeding with the development. This first review aims to show a summary of the consideration of CCA in urban regeneration projects of various scales and in various locations. It also aims to identify the main CC impacts that are being considered as well as to identify any common factors. The presentation of the findings is detailed in summary boxes in chapter Four of this research, with further details documented in the appendices. 3.2 EIA review (4/11 projects) The second investigation comprises of a review of the EIA process for four major projects. The author reviewed documents available on the web concerning the project and additional information was sourced through internet searches with words related to the project and CCA. An in-depth review was done in order to gain greater understanding of the drivers for the consideration of CCA in the regeneration projects. Four of the largest and high profile projects were chosen for this review, this gave better quality information and easy document availability. The EIA process review aims to identify the following:  The main drivers for the CCA consideration in the development;  The measures integrated into the EIA process and how it influenced decision-making in the process;  The factors that limit the incorporation of CCA in the EIA process. The review identifies the measures of CCA primarily through the adaptation for green infrastructure and blue infrastructure (see further project details in Appendix A.). The green and blue spaces in an urban regeneration have a vital role to play in our capacity to adapt.
  • 35. 35 They provide:  A natural cooling effect to mitigate the urban „heat island‟.  space for sustainable urban drainage to absorb and divert excess rainfall  space for renewable energy resources, such as ground source heat pumps  vegetation to reduce the effects of air pollution and to store carbon  place for species to migrate and adapt to the effects of climate change (Shaw et al., 2007) Box 2: Green Infrastructure typologies  Parks and public gardens  General amenity space  Woodland  Watercourses and waterways  Waterbodies  Grassland and heathland  Coastal habitat  Moorland  Agricultural land  Community gardens and urban farms  Derelict land  Street trees Source: Northwest GI Guide, 2010 Box 3: Blue Infrastructure typologies  wetlands  ditches  ponds  lakes  drainage systems  ecological corridors Source: greeninfrastructure-eu, 2011
  • 36. 36 3.3 Questionnaires and emails Responses from questionnaires and emails gathered experience, knowledge and suggestions from people who played diverse roles within past projects. Fifteen names were contacted, however responses were few. These included two EIA consultants and two LA officials. The goals of the consultation were to explore what the drivers and imitations are for the incorporation of CCA in EIA as well as to gather input on how local authorities review ESs for urban developments and what they look for with respect to CCA. The following persons responded to the questionnaires: 1. Simon Lucas, Regeneration Officer, Wolverhampton City Council 2. Iain Bell, Regional Director and Planner, AECOM The following persons responded by providing information through email: 3. Melanie Robertson, Sustainable Development Officer, Southampton City Council 4. Dan Knight, Energy Projects Officer, Calderdale Council The questionnaires were tailored accordingly including information about specific projects were applicable. Emails were personalised and sent for comments and information on CCA, EIA and specific projects involved in. The responses provided an insight into issues related to EIA and climate change that may not have been available in the documents reviewed. The responses given have been integrated into the final research analysis in chapter Five.
  • 37. 37 Chapter Four: Presentation of findings This chapter presents the findings from the reviews for the selected projects. The first review of seven selected projects are summarised in text boxes with further details of the project in the appendix A, and following that are selected details from the second in-depth review.
  • 38. 38 4.1First Review: Environmental Statement Box 4 (see appendix A1) LIVERPOOL WATERS The Liverpool Waters vision involves regenerating a 60 hectare historic dockland site to create a world-class, high quality, mixed use waterfront quarter in central Liverpool. It includes a mixed use development of over 9000 residential homes, visitor attractions and supporting uses, office/commercial and local shops and services. The development seeks to deliver 1,319,732 sq m within a 30 year construction programme (2012 – 2041). There was a good focus on climate change mitigation in particular within the projects energy strategy. CC was mentioned briefly in the developer‟s aspirations as well as in later chapters concerning resource efficiency. Adaptation was however more difficult to find within the ES. The management of water such as rain water harvesting is thoroughly detailed in the ES. Due to its scale and sensitive location, the design and implementation of sustainable drainage systems taking climate change into account is vital. The flood risk assessment acknowledged sea level rise and extreme events. A Climate Change Baseline assessment of the potential impacts of climate change on the site was done in November 2008. Traffic, noise and air and landscape and visual assessments recognised future baseline changes into the assessments in post operation year impact scenarios and effective monitoring of baseline conditions is mentioned. Main climate change impacts addressed: • Sea level rise • Extreme storm events Identified drivers of climate change adaptation: • Local framework is used as guidance for climate change. • Building and design standards such as BREEAM are used for the project.
  • 39. 39 Box 5 (see appendix A2) CARLYON BAY The Carlyon Bay development is a smaller regeneration project comprising of 21.6 hectares and aims to play an important role in transforming St Austell Bay. The scheme will provide new sea defences, commercial, retail and 511 homes as a contribution to affordable housing in the area. Construction of the development is anticipated to take approximately 3.5years commencing in 2012. The sustainability statement for the proposed development detailed that the project will achieve a 15% reduction in carbon dioxide (CO2) emissions from regulated energy use through on-site renewable energy generation. The ecology assessment detailed several efforts related to CCA mesures. Features mentioned in ecology chapter included new nesting opportunities/brown roofs/lighting designed to reduce impact upon nesting birds and bats, habitat creation. A consideration for CC and increased storminess (1 in 200 year event) was included in the FRA. It also details the risk of overtopping occurring during storms and extreme events. No future baselines or long term horizons were considered outside the construction period. Main climate change impacts addressed within the project:  Sea level rise  Extreme storm events Identified drivers of climate change adaptation:  Planning Policy Statement („PPS‟) 25: Development and Flood Risk (2010)
  • 40. 40 Box 6 (see appendixA3) EDINBURGH HARBOUR Edinburgh Harbour is a waterfront development proposal with the aims to becoming the link between Leith Docks and Edinburgh city centre. The 52.3ha development will include 1,870 residential units, commercial and retail as well as public spaces. The Edinburgh Harbour master plan combines two urban villages (sub areas) Britannia Quay and Waterfront Plaza as the first of a series of nine urban villages in the Leith Docks application. The project has a 15 year construction period (2010-2015). A pattern of public realm and open spaces of different scales and characters are introduced, however there is no thorough description of the quality of the spaces or any integration of ecological factors. This was also highlighted in the scoping opinion and response given suggested that information requested was not „necessary‟ for an ES. SUDS are proposed on the site where applicable however further details of drainage systems implemented and management of water resources are poorly mentioned. The FRA considered the potential effects of CC up to 2057 for flood levels and year 2115 for extreme water levels. The drainage modelling adopted an increase in the storm intensity of 20% which is consistent with the effects of climate change for a development with a design life of 60 years as outlined in PPS25. Main climate change impacts addressed within the project:  Sea level rise  Extreme weather events
  • 41. 41 Box 7 (see appendix A4) HUNTS GROVE Hunts Grove is located north of Junction 12 of the M5 Motorway near the boundary between Stroud District and Gloucester City. The proposed development comprises a maximum of 1750 houses, new community facilities and open space, and an area of employment development to be accessed from Water wells Business Park to the north. The project covers an area of approximately 105 hectares of which over 32 hectares are proposed as public open space. The developments‟ construction time is 9years (2006-2015). The ES describes the function of green infrastructure very thoroughly for the proposed development. Adaptation to potential climate changes is identified through ecological corridors, attenuation ponds and nature conservation. There is also key integration of green infrastructure with necessary grey infrastructure of the development. SUDS are proposed to minimise surface run-off from the development in addition to the use of porous pavements. Attenuation basins and dry basins are proposed to accommodate for excess storm flow from residential area and contain water only during times of heavy rainfall. Rain water recycling is used for landscape and gardening use. There is no direct mention of climate change in the Policy used in the ES. The landscape and visual assessment and the transport assessment used future baselines up to 15 years post operation. Main climate change impacts addressed within the project:  Sea level rise  Extreme rainfall events  Urban Heat Island effect Identified Policy Drivers:  Stroud District Local Plan  PPS9 Biodiversity and Geological Conservation  PPG25: Development and Flood Risk
  • 42. 42 Box 8 (see appendix A5) CENTENARY QUAY WOOLSTON The planning application for Centenary Quay Woolston (12.5ha) is a mixed use development including residential, retail, restaurants and cafes, offices, yacht manufacture, business, industrial, storage and distribution uses, hotel live/work units, community uses, two energy centres, car parking and considerable public open space, river edge works and quays. The ES considers the sustainability of the development as a fundamental consideration in the design by selecting specific sustainability criterion. The criterion explains briefly that the effects of climate change will be further taken into account during detailed design of the buildings in terms of ventilation, heating and cooling requirements. The project proposes habitat creation such as green roofs, hedges, scrub and high quality planting. SUDS are proposed as part of the drainage strategy. The system is to incorporate vegetated roofs, water stores at the base of buildings and then infiltration through new soft landscape. Lined permeable pavements will ensure a significant reduction in the run-off rate from extreme rainfall events. Swales are proposed to collect, convey and attenuate and treat surface water runoff. No policy mentioned climate change directly; however its‟ adaptation and mitigation was insinuated through the local policy. Guidance and ratings concerning the designs of the project such as Eco-Homes and SEEDA were used in order to estimate the contribution of the scheme to the overall emissions of CO2 from Southampton. It was found insignificant and emissions on a county and national scale were found negligible. The FRA calculated extreme still water level for the year 2060 and 2115 and factored in possible effects of CC. Main climate change impacts addressed within the project: • Sea level rise • Extreme weather events • Urban Heat Island effect
  • 43. 43 Box 9 (see appendix A6) LONDON’S SPORTING VILLAGE This mixed use development will include retail, cafes, restaurants, hotels, residential, leisure and community facilities. The site is approximately 10.5 hectares in size and the construction period is from 2010-2025. The development introduces extensive SUDS techniques into the design of the development such as extensive use of green and brown roofs. The emphasis of the SUDS should be on flow and volume reduction, ecological and amenity value. Permeable paving will be used to collect runoff from paved areas. FRA considers the 200 year plus CC flood level for the year 2107 using the Environment Agency modelled tidal flood level. No consistent use of future baselines where found, with the exception of the FRA. Mitigation of CC is mentioned through energy efficiency measures and BREEAM ratings. The Policies integrated are clear drivers for the integration of climate change and climate change adaptation. Main climate change impacts addressed within the project: • Sea level rise • Extreme weather events • Urban Heat Island effect
  • 44. 44 Box 10 (see appendix A7) SOWERBY BRIDGE COPLEY VALLEY The 14ha proposed development is located in a flood sensitive area. As a development it has also experienced high community involvement concerning the environmental position of the project. A redevelopment is of the western end of the Stern Mills site for residential properties. It includes a retail area with spots related businesses, a nature reserve, a new bridge link and a new square. The development will undergo a six year construction process from 2011 to 2017. The air quality and noise assessments used 2010 traffic flow data for the baseline situation and then assessed 2015 as an assumed opening year and 2020 with the proposed development operating at maximum capacity. Habitat creation is clearly described as part of the development proposal. The role of wetlands and as part of climate change adaptation is identified s well as potential reimbursements in terms of natural capital or ecosystem services. 6 Hectares of open space is provided and varying shaped and scaled water bodies are distributed around the site. Green roofs are advised as part of the scoping process; however there is no mention of implementation. The high risk of flooding and extreme weather events is considered one of the biggest issues for this development. CC is incorporated thoroughly in the flood risk assessment as well as in the design for the bridges. Sustainable Urban Drainage Systems are proposed through flood basins and rainwater harvesting. The flood defences included are set at climate change level. Main climate change impacts addressed within the project: • Sea level rise • Extreme weather events
  • 45. 45 4.2 Second Review: EIA Process 4.2.1 Ashton Green Project Ashton Green is a 130 hectare site owned almost entirely by the City Council and has been a strategic housing allocation since the mid 1970s. It aims to play a major role in delivering the new housing that Leicester needs. As an urban extension to Leicester, Ashton Green will be part of the One Leicester vision for the City. The aim is that it will shape Leicester as Britain‟s sustainable city by delivering a distinctive, safe, green and well connected place and it will become a thriving, prosperous mixed community with a dynamic heart and strong identity within the city. The proposed development of the site is envisaged to take between 15 and 17 years to complete (2012 – 2026). CCA considerations were found to be made, although it is clear that the primary focus for CC incorporation was on CC mitigation. Further project details can be found in appendix A8 of this research. Identified Drivers for Climate Change adaptation  International and European City Profile Leicester, located in the East Midlands is the tenth largest city in the UK and the most populous city in the East Midlands. Leicester City Council has been known as a strong unitary authority and it has had a long history of pioneering work on the sustainable development agenda. This agenda has benefitted from strong political commitment with councillors who genuinely want to deliver on sustainability (CAG, 2010). This commitment is further reflected in the 2007 Climate Change Adaptation Action plan and the One Leicester 25 year vision to make Leicester Britain‟s sustainable city. These plans were highlighted in the EIA documents and for the developments sustainable objectives. Leicester was designated the first Environment city within the UK in 1990, with the remit to deliver sustainable development in the confines of a working city. Over the past decades, the city‟s initiatives have attracted international and European funding sources. The city of Leicester is also recognised as a world leader in urban energy management and environmental innovation. Leicester‟s international reputation along with strong political support acts as a driver for the efforts towards CC and CCA in new urban developments.
  • 46. 46  Inter Regional Linkages Leicester sits within the Three Cities sub-area consisting of Leicester, Derby and Nottingham. The regional Plan Sub-Regional Strategy (SRS) was set up for these cities and this framework seeks to focus on sustainable urban growth, with an emphasis on green infrastructure and biodiversity in principal urban areas (within which Ashton Green sits). In November 2006 the council also signed the Nottingham Declaration which committed the organisation to tackle global climate change at a regional level. Through this SRS, CC adaptation and mitigation is recognised to be the most significant issue for the future of the region. Ashton Green was developed to be the region‟s leading example of environmentally, socially and economically sustainable development in Leicester. The regional commitment increases Leicester‟s accountability for climate protection and sustainable development.  Local policy, local networks and local commitment Crucial to Leicester‟s success in addressing CC issues is its development of local policy initiatives and local support. Leicester City Council has long been considered a front-runner in local environmental policy (Bulkeley, 2006). Since the 1970‟s, the Council has been concerned with developing open space within the city, and enhancing habitats for urban wildlife as well as the reduction of GHG emissions. With the 2003 introduction of the city‟s climate change strategy, the council has committed to develop plans with partners and local communities to progressively increase the city centre‟s resilience to climate change. Bulkeley in his book „Cities and climate change‟ (2006), suggests that it has been those local authorities with a history of interest and action in climate change which have continued to be the most active, and which have benefitted most from the additional funding available. Planning policy and guidance mentioned in ES concerning CC includes:  PPS1: Delivering Sustainable Development (2005) & Planning Policy Statement: Planning and Climate Change – Supplement to Planning Policy Statement 1 (2007)  PPS22: Renewable Energy (2004)  PPS25: Development and Flood Risk (2006)  By Design: Urban Design in the Planning System – Towards Better Practice (DETR & CABE 2000)  Code for Sustainable Homes, BREAM standards
  • 47. 47 4.2.2 Bilston Urban Village Bilston Urban Village is widely known as the CCA pilot of the west midlands. It has been mentioned as a key example of good practice on CCA for urban regeneration projects (DEFRA, 2007). This development aims to be a major part of the neighbourhood planning exercise under the localism bill and will aim to reflect the success of sustainable neighbourhoods. Progress is being made currently on site, however adverse economic conditions have lengthened the time of construction for certain elements of the development. In view of this, various design and CCA efforts have been revised and costs of adaptation have been reviewed causing more significant delays (Wolverhampton City Council, 2010). Despite various constraints Bilston urban village still stands as a flagship project for building climate resilience for new developments. It is less than 1km south of Bilston High Street, which forms the heart of the community, and 4km from Wolverhampton City Centre. The site comprises approximately 43 hectares of previously developed land of which much is derelict land. Further project details can be found in appendix A9 of this research. Figure 6 showing proposed comprehensive drainage strategy (Wolverhampton City Council, 2010)
  • 48. 48 Identified Drivers for Climate Change Adaptation  Development of a £200 million mixed use project The £200 million plus development, principally funded by Wolverhampton City Council, Advantage West Midlands and Places for People (the lead developer) is expected to create 350 jobs during the construction phase and almost 750 jobs once the scheme is completed. The „urban village‟ was originally intended to demonstrate sustainability through a mixture of housing, employment, retail, leisure and community facilities. The consideration of climate change was mandatory for such a high profile project. However the developers ensured that CCA was considered in the design and early layout and remediation of the site.  Site Vulnerability The 41 hectare development is highly susceptible to flooding. The Bilston brook, originally an open watercourse runs directly through the centre of the site and is enclosed in culverts fed by existing storm water sewer tributaries. In addition, 34 hectares consists of impermeable surfaces which make the site more vulnerable to surface water flooding. Historic severe flooding in Northamptonshire also led to high consideration of sustainable drainage features and attention to the contouring of the new landform. The FRA showed clear and comprehensive consideration of CC. A thorough drainage strategy taking CC into account was also laid out (Fig.6).  Local commitment to tackle climate change The midlands city of Wolverhampton recently acknowledged the fatal impacts of climate change and the urgent need to address them locally. A declaration on climate change in 2006 was signed by political groups in the city to acknowledge the increasing impact that climate change will have on the community during the 21st century. This agreement commits to tackle the climate change causes and effects and aims to ensure that the city is well equipped to cope with inevitable climate change in the years to come. To fulfil this declaration, a climate change strategy and action plan was developed for 2009 to 2012.
  • 49. 49  Drive of Key players Without the enthusiasm and vision of key players within the project, it is acknowledged that CCA would not have been so thoroughly considered (CAG, 2010). The developer, Sustainability West Midlands Climate Change Partnership worked on case studies which demonstrated action on CC and they additionally tested a new decision-making tool produced by UKCIP (CAG, 2010). This interaction of passionate local authority officers and developers is largely the reason why CCA was incorporated and followed through. Key players involved  Sustainability Officer, Wolverhampton City Council  Sustainability West Midlands Climate Change Partnership  Advantage West Midlands (regional RDA)  UKCIP Methods for Climate Change Adaptation The development used the process, Risk, Uncertainty and Decision Making Framework tool developed by UKCIP. As shown in figure 7, the framework is an 8-stage iterative process based on standard decision-making and risk principles. It encourages the users to consider climate risks alongside non-climate risks.
  • 50. 50 Figure 7 showing UKCIP risk framework tool (Agrawala et al, 2011)
  • 51. 51 4.2.3 Brent Cricklewood The Brent Cross and Cricklewood Regeneration is a site of 150ha divided into two parts either side of the North Circular Road; the Cricklewood Rail Lands and Eastern Lands to the south and the existing Brent Cross Shopping Centre to the north. The vision for the site as intended by the Applicants is to create an environmentally sustainable mixed use „urban quarter‟ with a long term management regime. Further project details can be found in appendix A10 of this research. Identified Drivers for Climate Change Adaptation  Building and design standards and environmental performance targets: Building regulations are increasingly being used to tackle CC by setting higher standards and making them simpler and more transparent a. Cricklewood shows clear commitment to achieving high ratings for the Code for Sustainable Homes for all residential developments with regard to residential building emissions. The development also aims to meet the „essential standards‟ as set out in the London Plan Supplementary Planning Guidance on Sustainable design and construction. Homes are also envisioned to be lifetime homes and to meet sustainable energy performance.  Policy Drivers: Local Policy: LB Barnet Council Core Strategy The challenges facing the council in protecting and enhancing Barnet‟s suburbs, accommodating growth are amongst others, the demand and use of environmental resources and impacts on pollution and climate change. The draft Core Strategy sets out key issues concerning environmental sensitivity and addressing climate change as a driver of change within the area. Regional Planning Policy; London Plan: Since the introduction of the London Plan, it has been recognised as a crucial driver for CCA in new London developments including Brent Cross and Cricklewood and the Olympics.
  • 52. 52 Other relevant policies include; PPS Planning and Climate Change Supplement to PPS1; PPS3; PPG13; PPS22; the Mayor‟s Energy Strategy; Sustainable Design and Construction SP. Box 11: London Plan (HM Government, 2011) Policy 4A.1 Tackling climate change The Mayor will, and boroughs should, in their DPDs require developments to make the fullest contribution to the mitigation of and adaptation to climate change and to minimise emissions of carbon dioxide. Integration of adaptation measures with mitigation to tackle climate change will be sought through the approach set out in Policy 4A.9. Policy 4A.9 Adaptation to Climate Change The Mayor will, and other agencies should, promote and support the most effective adaptation to climate change, including: minimising overheating and contribution to heat island effects (Policy 4A.10) • minimising solar gain in summer (Policy 4A.10) • contributing to reducing flood risk including applying principles of sustainable urban drainage (Policies 4A.13 and 4A.14) • minimising water use (Policy 4A.16) and • Protecting and enhancing green infrastructure. These contributions should most effectively reflect the context of each development – for example, its nature, size, location, accessibility and operation. The Mayor will and boroughs should ensure that development is located, designed and built for the climate that it will experience over its intended lifetime.
  • 53. 53  Key Collaboration: The consultants Scott Wilson and partners of the Brent Cross Cricklewood project made sure in October 2005, that flood risk and wider issues such as biodiversity and recreation were considered as part of the initial planning application. An Environment Agency report on the project stated that „Early discussions with the developers meant that they could find a win- win solution for all involved.‟ This collaboration resulted in easier approval for the outline planning application in 2008 (EA, 2010). The partners of this large project (Hammerson plc, Standard Life, Brookfield Europe) were found to be extremely enthusiastic about working together and delivering a sustainable and adaptive Brent Cross Cricklewood (Future of London, 2010).
  • 54. 54 4.2.4 Olympics The Olympic Games have primarily been viewed as a catalyst for regeneration within a region. Inevitably, this great ambition has been matched by high levels of infrastructure investment and a supported mix of public and private sector funding (Poynter et al., 2009,31). Unlike many other sporting events, the Olympics can also be considered as a global movement redefining and defending specific values such as community and social regeneration and sustainability. Paul Toyne in the „Olympic cities: 2012 and the remaking of London‟ (2009) states that „the Olympic games cannot afford to be anything other than a force for good simply because of its huge impacts and the global frenzy.‟ Further project details can be found in appendix A11 of this research. The vision of the scheme is summarised in the design and access statement as; „To create an exceptional Olympic Games with a lasting legacy, and in so doing reclaim the Lower Lea Valley for London, to create a benchmark for a 21st century urban environment by delivering unique, diverse and vibrant places for all those who live, work and visit the area. The Olympic Games will facilitate one of the largest and most significant urban regeneration projects ever undertaken in the UK, transforming the Lower Lea Valley into a vibrant new urban quarter and a place of local and national pride.‟ The site occupies a total area of approximately 246ha. The ES covers the effects of the Lower Lea Valley Olympic and Legacy Scheme from 2006 through to 2021. The project is in four phases: 1. Olympics Construction Phase (2007-2011) 2. Olympic and Paralympics Games Phase (2012) 3. Olympic Legacy Transformation Phase (2013-2014) 4. Olympic Legacy Phase (2015-2021) The Olympic Site is broadly defines as the area bounded by:  A12 (East Cross Route) and Ruckholt Road (A106) to the north;  River Lee Navigation (Hackney Cut) and River Lea to the west;  The Lea Valley railway line, Stratford City development site and Waterworks, river to the east;
  • 55. 55  Bow Back River and the River Lea to the south. The Site is made of five main elements: 1. The Olympic Park and Concourse; 2. The Olympic Sports and Non-sports Venues (permanent and temporary); 3. The Athletes‟ Village; 4. The International Broadcast Centre and Main Press Centre (IBC?MPC); and 5. The Ancillary Olympic Facilities The London-2012 regeneration will also create over 9,000 new homes, new sports and leisure facilities, a health centre and school in the local area. London hosting the Olympic Games in 2012 has been seen as a significant opportunity for London to enhance its sustainability and to initiate environmental improvements. It has been universally seen that the potential of the Olympic design is to redress the deficiencies of the host city‟s built environment and to contribute to long term sustainable development, of which addressing climate change is a major part of it (Pitts, 2009). Drivers for Climate Change Adaptation  London 2012 The year 2012 is globally significant. This is the year that the Kyoto Protocol is set to expire and it is hoped that a new path forward will begin towards the mitigation of climate change and the initiation of adaptation strategies. Rio+20 Earth Summit is also taking place in 2012. These historic sustainable development events draw attention to how important it is that the Olympics are a vehicle of change and its sustainability commitments are achieved. Showing substantial evidence of CCA is high on the substantial agenda for the Olympics.  Communications and Stakeholder engagement Tasked with delivering the lasting Olympic legacy vision is a wide array of stakeholders, but the principal accountability lies within two bodies: 1. Olympic Delivery Authority (ODA) 2. London Organising Commitee of the Olympic Games and Paralympic Games (LOCOG)
  • 56. 56 The London Sustainable Development Commission in partnership with the National Sustainable Development Commission established a „watchdog‟ for the Games, The Commission for Sustainble london 2012. Whilst the Commission provides external governance, the board of stakeholders ensures delivery of sustainability objectives by working closely with the host London Boroughs, the GLA group, nations and regions, central Government, British Olympic Authority and other sports authorities. DEFRA is workking extensively with the key stakeholders to develop objectives and a delivery strategy for building a lasting and sustainable legacy.  Established Policy Framework A clear and thorough policy framework context was provided for the Olympics in order to ensure successful delivery of the „sustainability‟ vision. Policies, plans and programmes mentioned in the ES such as the Effective London Plan can be found in the appendices of this research. In addition to these, the London 2012 Organising Committee developed a sustainability policy and accompanying plan, which set out the concept of One Planet Living and actions to achieve it. It focuses on five headline themes of which CC is a primary issue.  Sustainability benchmarking tools Design teams will provide a report to the ODA during RIBA Stage C for client approval, setting out how they will do this, using the London Climate Change Adaptation Checklist. All housing will also be in accordance with the new Code for Sustainable Homes. All Olympic Village homes are to meet Life time Homes standard post Games and venues and housing will be designed, as far as is reasonably practical, to adapt to future climate change.  Legacy Beyond the site-specific work is the development of building a lasting and sustainable legacy. With the 2012 Games a unique catalyst, the UK aims to make the Olympic Park a blueprint for sustainable living. The environmental focus of the Olympic Legacy is on energy and CCA. Due to the lifetime of the development, long term plans are outlined for flood management, building design, landscaping and ecological management and operational planning. This encourages longer baselines to be used and wider time horizons.
  • 57. 57 Figure 8 shows the phases of the 2012 programme (ODA, 2010)
  • 58. 58 Figure 9 showing Olympic Legacy Phase completion (2015-2021) and CC impacts during building lifetime of 100 years.(web source, 2011)
  • 59. 59 Chapter Five: Analysis This chapter will draw on literature and policy review discussed in Chapter Two to discuss and analyse the findings from the author‟s research. The chapter aims to show the limitations of the incorporation of CCA in EIA by identifying key internal and external factors to EIA. An analysis summary table of the four in-depth reviews is also shown. The results and identified drivers for the incorporation of CCA in the reviewed projects show the high potential of EIA as a vehicle towards better CC planning and decision-making. Early consideration of CC as an important concern in EIA is emphasised and this will enable a clear understanding of the scope of adaptation issues as well as the risks posed to the development. IEMA introduced CCA in EIA guidelines this 2011, which state that: „...from the earliest stages of design the EIA should focus its attention on  The potential in-combination effects of both the project and future climate change on the receiving environment with a focus on locational and operational impacts;  The resilience of design features, construction materials and planned operational processes to the predicted consequences of climate change;  During scoping, climate change mitigation and adaptation issues and opportunities should be considered alongside each other to maximise integration in project design.‟ (IEMA, 2011) Figure 10 sourced from OECD, describes the possible entry points for considering CC impacts and adaptation within the EIA procedures. Bilston urban village showed CC impact entry point at the strategic phase by identifying the site vulnerability whereas other projects showed adaptation measures in the detailed assessment phase, particularly after review and consultation. Bilston village further shows through EIA documents that early incorporation of CCA measures in EIA is a good investment and saves potential high costs of retrofitting in the future. Identifying CCA measures and costs early maximises the integration in project design, for example in the Olympic park design, the role of green and blue infrastructure in adapting to CC was identified early, and this influenced the design and orientation of the buildings. The potential increase in temperatures also influenced the foundation designs for the buildings.
  • 60. 60 The ES is a public document and serves as a basis for consultation and public participation. The Brent Cross Cricklewood and Sowerby Bridge developments demonstrate that incorporating CCA at the scoping and consultation stages informs and involves the public and relevant stakeholders in tackling CC. This helps to enhance transparency of decision- making processes and provides a temporary community forum at which different perspectives can be considered. Figure 10 showing the potential entry points for considering climate change impacts and adaptation in EIA (Agrawala et al., 2010)
  • 61. 61 5.1 Summary analysis of in-depth review projects Table 1 showing summary analysis for four in-depth review projects Urban Regeneration Project Strengths Constraints Key Messages Ashton Green  Strong policy context with key inter-regional linkages and Leicester sustainable core vision  Master plan approach towards consideration of CC  Strong dependency on CC mitigation without linkages to CC adaptation  Leicester vision and local development frameworks still only guidance with no planning requirement tied in  Developing Regional support and good policy context for the approach to CCA  Working with local and regional partners enabled more ambitious project than would have occurred otherwise Bilston Urban Village  Early identification of site vulnerabilities  Proposed adaptation measures included in master planning, found to be cheaper and more effective  Heavy dependency on key individuals, a sudden change in authority may threaten commitment to approach  Climate Risk Assessment and climate reports were well thought of in initial stages not as afterthought  Whole site and master
  • 62. 62 than „retrofitting‟ planning approach ensured adaptation considered in all key processes Brent Cross and Cricklewood  Early consultation with partnerships and developers concerning CC  Scope of public consultation concerning CC and its approach could have been wider to gain more community engagement  Key partner consultation concerning CCA measures proposed early in EIA process enabling better decision making  Historic planning delays brought joint and more refined approach to development and successful collaboration Olympics  Global Sustainability expectations for development ensure necessary attention given to sustainability objectives (CC)  Complexity of stakeholder network could lead to possible delays  Unique timescale for the Olympics  Early consideration of CC and CCA in EIA enabled impacts assessed to influence
  • 63. 63  Wide and effective consultation supporting global, national and local involvement  Unambiguous and technically sound guidelines ensured clear awareness of council and local requirements for developers  Overall City vision led to substantial efforts towards CCA incorporation potentially led to CC planning goals to be excluded decision making in design stages  High profile and international development ensured access to more funding and support opportunities  The demonstration of the additional benefits of adaptation action was key to community engagement It is also evident that even where practice and research have developed; there are still limitations in the implementation of adaptation and in futures thinking. The author will analyse these limitations by examining the explanations in two aspects: Factors internal to and external to EIA.
  • 64. 64 5.2 Internal factors  ‘Objectives-led’ approach The review shows that there is a clear lack of holistic integration of CC and CCA in the projects assessed. None of the 7 Environmental Statements in the first review showed any indication of CCA measures in its initial scoping or consultation stages. Brief introductory sustainability chapters were used in certain projects such as Carlyon Bay and Centenary Quay, where CC was mentioned as a sustainability and project objective. This use of „sustainability‟ as a wide encompassing umbrella of which CC falls under showed absence of understanding the need to holistically address CCA within the projects. Morris et al (2009: 472) argues that reliance on sustainability objectives in EIA increases the risk that environmental concerns continue to be marginalised under rhetoric of „sustainability‟. When approached by the author concerning CCA in EIA, Respondent 3 and Respondent 4 responded generally by referring to relevant PPPs, the sustainability checklist and building regulations with „aspects related to climate change‟. It seems therefore that there is the possibility of guidance constraining EIA (Wilson et al., 2010) to treat climate change as a set of limited objectives rather than as an opportunity to assess impacts over time.  Impact Chapters The findings of the review clearly indicate that specific topics such as flooding are addressed more thoroughly although no systematic consideration of CC is made. Looking into the UK‟s history of flooding and the future impacts of potential extreme flooding by UKCIP, it is acceptable and good that the CC in FRA is adequately considered in all projects, and a significant attempt is made to ensure that that extreme weather events is accounted for. Although the existing 20% CC allowance in flooding guidance makes no allowance for any regional variation in CC, it reduces the uncertainty in dealing with CC and helps practitioners make decisions quicker. However, the author suggests that this clear attentiveness only to flooding and flooding related issues such as drainage creates the assumption of sufficient CCA consideration in EIA if flooding is covered. Consequently this assumption is seen throughout the ES review. This is also reflected in practice as Respondent 2 states that „...Calculation / mitigation of GHG emissions is standard practice and important... The recent major urban regeneration projects that I have been involved with in recent years have not given particular prominence to climate change
  • 65. 65 adaptation with the exception of flood risk issues.‟ He additionally comments that „CCA currently influences project design in relation to flood risk, reducing GHG emissions and energy efficiency, but after that it is limited.‟ There is a greater need for more integration of the consideration of other climate change impacts such as the urban heat island effect and increasing water demand leading to potential drought. An example of other impact consideration is shown in the Brent Cricklewood and Bilston developments, where use of drought resistant and native species were part of the landscape strategy to ensure a degree of tolerance to CC and to create communities that will develop naturally as the climate changes.  Mitigation and Adaptation The synergy and possible conflict of CC adaptation and mitigation is detailed in chapter two, with the conclusion that adaptation and mitigation measures are not alternatives but they are complementary. However, the reviews show that adaptation and mitigation and are still depicted and demonstrated as separate. Klein et al agrees that CC adaptation and mitigation in planning and policy still appear contrived. The mitigation research community has relied strongly though not exclusively on the „top-down‟ approach, whereas the adaptation research community has put its emphasis on local and place-based analysis (IPCC, 2007). The ES review shows CC mitigation measures were given more attention than adaptation where in most cases CC adaptation did not carry enough weight.  EIA process: ‘Constrained and formulaic’ Climate change is usually seen as larger than single projects. A CEAA (Canadian Environmental Assessment Agency) report (2000) on EIA and CC included interview responses that suggested that CC might be better dealt with outside the EIA process. With some interviewees expressing the view that climate change may be a „force-fit‟ within the EIA process. This view was reflected in an informal conversation with Respondent 2, who insinuated that fully considering CC at project level is complex and there is a possibility that EIA might not be the right channel for it. This view supports Sadlers approach detailed in chapter two.
  • 66. 66 5.3 External Factors In addition to the internal factors, there are reasons identifies that are external to EIA.  Uncertainty The uncertainty in climate science and predictions is highlighted as a significant barrier to the incorporation of CC and CCA within the EIA projects. An Organisation of Economic Co- operation and Development (OECD) report (2010) on the challenges and opportunities of integrating CC in EIA, concludes that the availability of, and uncertainties associated with, climate projections at the project scale are clearly a key bottleneck. The Bilston Urban Village development uses UKCIP 09 climate scenarios and the Risk, Uncertainty and Decision Making Framework tool developed by UKCIP and the Olympic Village also uses UKCIP tools, however uncertainties are still prevalent. Projects are more sensitive to changes in climate extremes in comparison to changes in mean conditions; however changes in climate extremes are found to be more difficult to predict and are considered more uncertain. Furthermore OECD research (2010) stated that local scale climate projections that are relevant for project level decision-making also tend to be more uncertain than climate projections over a larger spatial area. The integration of CC and CCA in EIA also calls for the use of longer horizon baselines in assessments. As stated in the results chapter, the review shows that post development baselines are inconsistently used in impact chapters such as the traffic, air quality and landscape assessments. Wilson et al (2010: 145) suggests that short time horizons for most EIAs are a possible result of the reluctance to address uncertainty. This is also reflected in the responses from the questionnaires. Respondent 2 states that „Predicting change long into the future is problematic – there are many uncertainties.‟ He agrees that there is adequate information available for the incorporation of CC in EIA within the requirements of the law however, „There is a difficulty predicting so long into the future and in establishing the effects of specific actions. GHG emissions studies may lack detail on some aspects of a projects‟ emissions.‟  Plans, Policies and Programmes The review has identified that policy and guidance is the biggest driver for the integration of CCA in EIA. Many of the ESs referred to key planning policies such as the PPS1 and PPS25,