SlideShare una empresa de Scribd logo
1 de 66
MULTIPLE INTEGRALS
rahimahj@ump.edu.my
 
xddyyxfdxdyyxf
dydxyxfdxdyyxf
dycbxayxR
x,yf
b
a
d
c
b
a
d
c
d
c
b
a
d
c
b
a
  
  















),(),(
),(),(
then
,:),(
regionrrectangulaaincontinuousis)(If
rahimahj@ump.edu.my
Iterated Integral
 


1
0
2
1
1
1
2
2
30(ii)
)23((i)
x
x
ydydx
dydxxyx
Example1
Evaluate the iterated integrals.
rahimahj@ump.edu.my
 
 
 
14
)1(2)2(226
])1()1(3[])1()1(3[
3)23(
obtainweintegrals,iteratedofdefinitiontheUsing(i)
332
1
3
2
1
2
2
1
2222
2
1
1
1
22
2
1
1
1
2






 



xdxx
dxxxxx
dxxyyxdydxxyx
y
y
rahimahj@ump.edu.my
Solution :
rahimahj@ump.edu.my
 
 
2
3535
)1515(
1530
obtainweintegrals,iteratedofdefinitiontheUsing(ii)
1
0
53
1
0
42
1
0
2
1
0
2
2





 


xx
dxxx
dxyydydx
xy
xy
x
x
rahimahj@ump.edu.my
theorem.sFubini’–integralsiteratedanas
calculatedbecanfunctioncontinuousanyofintegrals
doublethe1943),-(1879FubiniGaudiotoAccording
 dycbxayxR  ,:),(
ifregionrrectangulaaontheoremsFubini’
  
b
a
d
c
d
c
b
a
dydxyxfdxdyyxfdAyxf ),(),(),(
R
then
Fubini’s Theorem
rahimahj@ump.edu.my
  
b
a
y
yR
dydxyxfdAyxf
2
1
),(),(   
d
c
x
xR
dxdyyxfdAyxf
2
1
),(),(
 
(-2,1)and(3,1)(0,0),erticesv
h theregion witrtriangulaclosedtheis;),((iii)
sinand0
,,0boundedregiontheis;),((ii)
20,2:),(;4),((i)
),(Evaluate
2
2
Rxyyxf
xyy
xxRyyxf
yyxyyxRyxyxf
dAyxf
R






rahimahj@ump.edu.my
Example2
rahimahj@ump.edu.my
Solution :
 
5
36
5
2
4
2
)26(
]})(2[]2)2(2{[
2)4()4(
2
0
54
3
2
0
432
2
0
32222
2
0
22
2
0
2
2
2












 






yy
y
dyyyy
dyyyyy
dyxyxdxdyyxdAyx
yx
yx
y
y
yx
yxR
rahimahj@ump.edu.my
rahimahj@ump.edu.my
asdillustrateisRregionThe(ii)
Solution :
rahimahj@ump.edu.my
42
2sin
4
1
)2cos1(
4
1
2
sin
2
0
0
0
2
0
sin
0
2
0
sin
0























 




x
x
dxx
dx
x
dx
y
dydxydAy
xx
x
xy
yR
rahimahj@ump.edu.my
asdillustrateisRregionThe(iii)
Solution :
rahimahj@ump.edu.my
2
1
2
2
5
)49(
2
2
1
0
5
1
0
41
0
22
2
1
0
3
2
221
0
3
2
22
















 






y
dy
y
dyyy
y
dy
yx
dxdyxydAxy
yx
yx
y
y
yx
yxR
asdescribedissolidThe
.0and4,9
byboundedsolidtheofvolumetheFind
22
 zzyyx
922
 yx
yz  4
0z
R
rahimahj@ump.edu.my
Example 3
rahimahj@ump.edu.my
:RregiontheissolidtheofbaseThe
Solution :


 

















3
3
2
3
3
9
9
2
3
3
9
9
98
2
4
)4()4(
bygivenisvolumetheThus,
2
2
2
2
dxx
dx
y
y
dydxydAyV
V
xy
xy
x
x
xy
xyR
rahimahj@ump.edu.my
rahimahj@ump.edu.my










36
22
)sin(
22
sin
36
2
2sin
36
)12(cos36cos72
)cos3()sin1(9898
2/
2/
2/
2/
2/
2/
2
2/
2/
2
3
3
2

































t
t
dtttdt
tdttdxxV
Hence.cos3,sin3letNow tdtdxtx 
rahimahj@ump.edu.my
Example 4
 
2
0
1
20
2
(ii)
sin
(i)
Evaluate
y
x
x
dxdyedydx
y
y
 
asdillustrateis
RregionThe(i)
Solution :
Reversing The Order of
Integration
rahimahj@ump.edu.my
.integratedbecannot
sin
But  y
y
:nintegratiooforderthereverse,So dydx dxdy
:becomeregiontheThen,
 
 
21cos
cossin
)0(
sin
sin
sinsin
(i)
0
0
0
0
0
0 00








  



















 
yydy
dyy
y
y
dyx
y
y
dxdy
y
y
dydx
y
y
y
y
y
y
yx
x
y
y
yx
x
x
x
y
xy
rahimahj@ump.edu.my
rahimahj@ump.edu.my
asdillustrateisRregionThe(ii)
Solution :
rahimahj@ump.edu.my
.integratedbecannotBut
2
 dxex
:nintegratiooforderthereverseSo, dydx dxdy
:becomeregiontheThen,
rahimahj@ump.edu.my
 
  1
2
1
0
1
0
1
0
1
0
2
0
1
0
2
0
2
0
1
2/
2
2
22







  
















eedue
dxxe
dxye
dydxedxdye
u
u
u
u
x
x
x
x
x
xy
y
x
x
x
xy
y
x
y
y
x
yx
x
scoordinatepolarin the
)(ofintegraltheevaluatemaythen we)(
to)(functionaconvertcanthat weSuppose
the
inevaluateeasier toisitshape,circularinvolvingWhen
 r,fr,fz
x,yz

s.coordinatepolar
rahimahj@ump.edu.my
scoordinatePolar
r
θ
x
y
),( rP
cosrx 
sinry 
22
yxr 






 
x
y1
tan
 r0
 20 
rahimahj@ump.edu.my
R
dA
dV
A
V


R
dArfV
dArfdV
),(
),(


)( r,fz 
)( r,fz 

 



1
0 0
22
2
2
0
4
0
22
)((ii)
)cos((i)
scoordinatepolarto
changingbyintegralsfollowingtheEvaluate
2
y
x
dxdy
yx
y
dydxyx
rahimahj@ump.edu.my
Example 5
asdescribedisRnintegratioofregionThe(i)
rahimahj@ump.edu.my
Solution :
0r
2r
0
2/ 
 
4
4sin
4sinsin
)(cos
)(cos
)cos(
Therefore
2/
0
2
1
2/
0
4
02
1
2/
0
4
0
2
1
2/
0
2
0
2
2
0
4
0
22
2













 
 
 

ddu
dudu
rdrdr
dydxyx
x
rahimahj@ump.edu.my
Solution :
asdescribedisRnintegratioofregionThe(ii)
8422
1
2
1
sin
2
csc
sin
2
sin
)sin(
Therefore
2/
4/
2/
4/
2
2
2/
4/
2
csc
0
22/
4/
csc
0
2
2/
4/
csc
0
2
2
1
0 0
22
2















































 
 



dd
d
r
drdr
rdrd
r
r
dxdy
yx
y
r
r
y
rahimahj@ump.edu.my
asdescribedisbaseitsandsolidThe
3.ExamplesolvetoscoordinatepolartheUse
R
3r
R
y
x
3 3
rahimahj@ump.edu.my
Example 6
  








36cos918)sin918(
sin
3
2
)sin4()sin4(
)sin4()4(
bygivenisVvolumetheThus,
2
0
2
0
2
0
3
0
3
2
2
0
3
0
2
2
0
3
0












 







d
d
r
r
drdrrrdrdr
dArdAyV
r
r
r
r
RR
rahimahj@ump.edu.my
rahimahj@ump.edu.my
A lamina is a flat sheet (or plate) that is so thin as to
be considered two-dimensional.
Suppose the lamina occupies a region D of the xy-
plane and its density (in units of mass per area) at a
point (x, y) in D is given by ρ(x, y), where ρ is a
continuous function on D. This means that
A
m
yx


 lim),(
where Δm and ΔA are the mass and area of a small
rectangle that contains (x, y) and the limit is taken as
the dimensions of the rectangle approach 0.
Laminas & Density
Definition mass of a planar lamina
of variable density
rahimahj@ump.edu.my
   
   
 
1 1
0 0
11
2
00
A triangular lamina with vertices 0,0 , 0,1
and 1,0 has density function , .
Find its total mass.
Solution :
,
1 1
...
2 24
x
R
x
x y xy
m x y dA xy dydx
m xy dx unit of mass


 
 

 
 
    
  

Example 7
rahimahj@ump.edu.my
The moment of a point about an axis is the product of
its mass and its distance from the axis.
To find the moments of a lamina about the x- and y-
axes, we partition D into small rectangles and assume
the entire mass of each subrectangle is concentrated
at an interior point. Then the moment of Rij about the
x-axis is given by
and the moment of Rk about the y-axis is given by
  ****
),())(mass( ijijijij yAyxy  
  ****
),())(mass( ijijijij xAyxx  
Moment
rahimahj@ump.edu.my
  


m
i
n
j D
ijijij
nm
x dAyxyAyxyM
1 1
***
,
),(),(lim 
The moment about the x-axis of the entire
lamina is
The moment about the y-axis of the entire
lamina is
  


m
i
n
j D
ijijij
nm
y dAyxxAyxxM
1 1
***
,
),(),(lim 
rahimahj@ump.edu.my
Center of Mass
The center of mass of a lamina is the “balance point.”
That is, the place where you could balance the lamina
on a “pencil point.” The coordinates (x, y) of the center
of mass of a lamina occupying the region D and having
density function ρ(x, y) is
where the mass m is given by
 
D
x
D
y
dAyxy
mm
M
ydAyxx
mm
M
x ),(
1
),(
1


D
dAyxm ),(
Moments and Center of Mass of A
Variable Density Planar Lamina
     2
Find the mass and center of mass of the lamina
that occupies the region and has the given
density of function .
a) , 0 2, 1 1 ; ,
4 4
: , ,0
3 3
) is bounded by , 0, 0, and 1;x
D
D x y x y x y xy
Ans
b D y e y x x
x



      
 
 
 
   
 
 
 
 
 
32
2
2 2
,
4 11 1
: 1 , ,
4 2 1 9 1
y y
ee
Ans e
e e

 
 
   
Example 8
rahimahj@ump.edu.my
Example 9
Find the surface area of the portion of the surface
that lies above the rectangle R in the xy-
plane whose coordinates satisfy
2
4 xz 
40and10  yx
rahimahj@ump.edu.my
Example 10
Find the surface area of the portion of the paraboloid
below the plane
22
yxz  1z
GregionclosedD-3aon
)(variablesthreeoffunctionaofnintegratio
anisscoordinateCartesianinintegralsTriple
x,y,zf
dzdAdzdydxdV 
rahimahj@ump.edu.my
rahimahj@ump.edu.my
Example 11
Gregiontheofvolume(ii)The
6),,(wheredV),,((i)
evaluateplane,-andplane-,1
byboundedoctantfirstin theregiontheisGIf
G
2
zzyxfzyxf
yzxyyz,xy



belowshownas
isplane-xyon theRprojectionitsandGregionThe
rahimahj@ump.edu.my
Solution:
obtainweThus.1and
10byboundedRregionaisplane-
on theGofprojectionThe1)(zand
0)(6z,)(havewecaseIn this
2
2
1




yxy
,, xxxy
– y.x,y
x,yzx,y,zf
 


 















R
R
yz
z
R
yz
zGG
dAy
dAz
dAzdzzdVdVzyxf
2
1
0
2
1
0
)1(3
3
66),,(
rahimahj@ump.edu.my
(i)
 
35
16
75
3
)331()1(
)1(
)1(3
1
0
7
53
1
0
642
1
0
32
1
0
13
1
0
1
2
2
2












 








x
xxx
dxxxxdxx
dxy
dydxy
x
x
y
xy
x
x
y
xy
rahimahj@ump.edu.my
♣
  










 RR
yz
zG
dAydAdzdVV )1(
1
0
15
4
103222
1
2
)1(
1
0
531
0
4
2
1
0
12
1
0
1
2
2























 








xxx
dx
x
x
dx
y
y
dydxy
x
x
y
xy
x
x
y
xy
rahimahj@ump.edu.my
(ii)
)( rdrddzdzdAdV 
x
z
y
dAr
dr
dz
dƟ
rdƟ
rahimahj@ump.edu.my
rahimahj@ump.edu.my
sCoordinatePolarlCylindrica
cosrx 
sinry 
22
yxr 






 
x
y1
tan
 r0
 20 
 z
.
areplane-
on theRprojectionitsandGregiontheofsolidThe
.0and,25,9bybounded
solidtheofvolumethefindtoscoordinatelcylindricaeUs
2222
xy
zyxzyx 
922
 yx
22
25 yxz 
0z
Example 12
 
3
122
3
61
3
)25(
)25(
2
1
25
25
Thus,0.zhavealsoWe.25z
obtainwe,relationUsing
2
0
2
0
9
0
2/3
2
0
9
0
2/1
2
0
3
0
2
2
25
0
22
222
2
1











 















 
 






dd
u
dudurdrdr
dArdAdzdVV
-r
ryx
r
r
RR
rz
zG
rahimahj@ump.edu.my
Solution:
rahimahj@ump.edu.my
Example 13
areplane-xyon theRprojectionitsandGregiontheofsolidThe
9.zplanetheandparaboloidby the
boundedsolidtheofvolumethefindtoscoordinatelcylindricaUse
22
 yxz
2
81
4
81
42
9
)9(
)9(
)9(
isvolumerequiredtheThus
2
0
2
0
3
0
422
0
3
0
3
2
0
3
0
2
2
9
2





























 
 






d
d
rr
drdrr
rdrdr
dArdAdzdVV
r
r
RR
z
rzG
rahimahj@ump.edu.my
Solution:
ρ
dρ
Ɵ
Ɵ
dƟ
ϕ
dϕ
dρ
x
y
z
rahimahj@ump.edu.my
 dsin
d
 dsin
rahimahj@ump.edu.my
sCoordinatePolarSpherical


ddd
ddddV
sin
)sin)()((
2


rahimahj@ump.edu.my
belowdillustrateasGregiontheofsolidThe
.3spheretheinsideand
3
1
conetheaboveliesthatsolidtheofvolumetheFind




Example 14
 














9
2
9
)1cos(9cos9
sin9sin
3
sin
isvolumerequiredtheThus
2
0
2
0
3
2
0
0
2
0 0
2
0 0
3
0
3
2
0 0
3
0
2
3
33
3














d
dd
dddd
ddddVV
G
rahimahj@ump.edu.my
Solution:
rahimahj@ump.edu.my
“In order to succeed, your desire for success
should be greater than your fear of failure. ”
rahimahj@ump.edu.my

Más contenido relacionado

La actualidad más candente

Multiple integral(tripple integral)
Multiple integral(tripple integral)Multiple integral(tripple integral)
Multiple integral(tripple integral)
jigar sable
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
Pokkarn Narkhede
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
Nofal Umair
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
Emiey Shaari
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
Ahmed Haider
 

La actualidad más candente (20)

Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Multiple integral(tripple integral)
Multiple integral(tripple integral)Multiple integral(tripple integral)
Multiple integral(tripple integral)
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
 
Applied Calculus Chapter 3 partial derivatives
Applied Calculus Chapter  3 partial derivativesApplied Calculus Chapter  3 partial derivatives
Applied Calculus Chapter 3 partial derivatives
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Application of partial derivatives
Application of partial derivativesApplication of partial derivatives
Application of partial derivatives
 
Group Actions
Group ActionsGroup Actions
Group Actions
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Triple integrals in spherical coordinates
Triple integrals in spherical coordinatesTriple integrals in spherical coordinates
Triple integrals in spherical coordinates
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
Complex numbers 1
Complex numbers 1Complex numbers 1
Complex numbers 1
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integral
 

Similar a Applied Calculus Chapter 4 multiple integrals

Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02
Cleophas Rwemera
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
mocr84810
 
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdfdoubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
Waqas Mehmood
 
On generalized dislocated quasi metrics
On generalized dislocated quasi metricsOn generalized dislocated quasi metrics
On generalized dislocated quasi metrics
Alexander Decker
 
11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics
Alexander Decker
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
neenos
 

Similar a Applied Calculus Chapter 4 multiple integrals (20)

Double integration final
Double integration finalDouble integration final
Double integration final
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02Chapter3partialderivatives 150105021210-conversion-gate02
Chapter3partialderivatives 150105021210-conversion-gate02
 
A Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsA Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point Theorems
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
 
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdfdoubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
 
On generalized dislocated quasi metrics
On generalized dislocated quasi metricsOn generalized dislocated quasi metrics
On generalized dislocated quasi metrics
 
11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics
 
Functions
FunctionsFunctions
Functions
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
 
Final exam mariluz 1
Final exam mariluz 1Final exam mariluz 1
Final exam mariluz 1
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 

Más de J C (14)

Testing of hardened concrete
Testing of hardened concreteTesting of hardened concrete
Testing of hardened concrete
 
Special concrete not made using portland cement
Special concrete not made using portland cementSpecial concrete not made using portland cement
Special concrete not made using portland cement
 
Shrinkage and creep
Shrinkage and creepShrinkage and creep
Shrinkage and creep
 
Polymer modified concrete 1
Polymer modified concrete 1Polymer modified concrete 1
Polymer modified concrete 1
 
No fines concrete
No fines concreteNo fines concrete
No fines concrete
 
Lightweight aggregate concrete
Lightweight aggregate concreteLightweight aggregate concrete
Lightweight aggregate concrete
 
High workability concrete
High workability concreteHigh workability concrete
High workability concrete
 
Chemical attack
Chemical attackChemical attack
Chemical attack
 
Carbonation
CarbonationCarbonation
Carbonation
 
Alkali aggregate reaction
Alkali aggregate reactionAlkali aggregate reaction
Alkali aggregate reaction
 
Aerated concrete
Aerated concreteAerated concrete
Aerated concrete
 
Applied Calculus Chapter 1 polar coordinates and vector
Applied Calculus Chapter  1 polar coordinates and vectorApplied Calculus Chapter  1 polar coordinates and vector
Applied Calculus Chapter 1 polar coordinates and vector
 
Applied Calculus Chapter 2 vector valued function
Applied Calculus Chapter  2 vector valued functionApplied Calculus Chapter  2 vector valued function
Applied Calculus Chapter 2 vector valued function
 
Glass( Civil Engineering Material)
Glass( Civil Engineering Material)Glass( Civil Engineering Material)
Glass( Civil Engineering Material)
 

Último

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Applied Calculus Chapter 4 multiple integrals