SlideShare una empresa de Scribd logo
1 de 32
o
Electron-Phonon Coupling
in graphene
Claudio  Attaccalite 
Trieste 10/01/2009 
Outline
●
DFT: ground state properties
Many­Body Perturbation Theory: excited state properties
●
Quasi­Particle band structure
●
Phonons and Electron­Phonon Coupling (EPC) in DFT (LDA 
and GGA) 
●
It is possible to go beyond DFT and obtain an accurate 
description of the EPC
●
Recent Raman experiments can be reproduced completely 
ab­initio
Density Functional Theory
Usually Exc
 in the local density approximation (LDA) or the general 
gradient approximation (GGA)  successfully  describes the ground state 
properties of solids.
E[n]=T 0[n]−
e2
2
∫
nrnr ' 
∣r−r '∣
dr dr 'Exc[n]−∫nrvxcrdr
The ground state energy is expressed in terms of the density and 
an unknown functional Exc
Kohn­Sham eigenfunctions are obtained from
−ℏ
2
2m
∂
2
∂ r
2
V SCF r
 nr=n nr
Beyond DFT:
Many­Body Perturbation Theory 
[T V hVext ] n, k r∫dr'  r ,r' ;En, k  n, k r' =En, k n, k r
Starting from the LDA Hamiltonian we construct the 
Quasi­Particle Dyson equation:
:  Self­Energy Operator; En, k
:  Quasi­particle energies;
... following Hedin(1965): the self­energy operator 
is written as a perturbation series 
of the screened Coulomb interaction
=i G W ⋯
G: dressed Green Function
W: in the screened interaction
W =−1
v
Quasi­Particles Band Structure
Comparison of GW with ARPES experiments 
for graphite A. Gruenis, C.Attaccalite et al. PRL 100, 189701 (2008)
In GW the bandwidth is increased  and 
consequently the Fermi velocity vF
 is enhanced
what about the phonons?
Motivations
●
Kohn anomalies
●
Phonon­mediated superconductivity
●
Jahn­Teller distortions 
●
Electrical resistivity
Electron-Phonon Coupling (EPC)
determines:
Phonon dispersion of Graphite 
(IXS measurements)  and DFT calculations 
● M. Mohr et al. Phys. Rev. B 76, 035439 (2007)
● J. Maultzusch et al. Phys. Rev. Lett. 92, 075501 (2004)
● L. Wirtz and A. Rubio, Solid State Communications 131, 141 (2004)
Phonon dispersion close to K
In spite of the general good  agreement the 
situation is not clear close to KK
Phonon dispersion close to K
In spite of the 
general good  
agreement the 
situation is not clear 
close to KK
Raman Spectroscopy of graphene
k
K
ωphonon
at Γ point, k~0
→ G-line
Single-resonant
G-line
Raman G­line
K K'
{
ℏ q {
q
Raman D­line
dispersive
.... but also from Raman....
How to calculate phonons in GW?
Ideal solution: calculate total energy and its derivatives in GW
Problem: how to calculate total energy in GW
(questions of self-consistence and of numerical feasibility)
Phonon frequencies (squared) are
eigenvalues of the dynamical matrix
Dst
 
q=
∂
2
E
∂ us
 
q∂t

q
Electron­Phonon Coupling 
and dynamical matrix
q=Dq/ m
Dq=BqPq
Pq= 4
N k
∑k
∣D kq 
, k∣2
k , −kq ,

-bands self-energy-bands self-energy
Dkq 
,k 
=〈kq ,
∣ V∣k ,〉Electron-Phonon Coupling
Phonon dispersion without 
dynamical matrix of the  bands 
=Bq/m
..but using GW band structure 
provides a worse result 
Pq= 4
N k
∑k
∣D kq 
, k∣2
k , −kq ,

q=BqPq/ m
because
where 
In fact the GW correction to the electronic bands alone results
in a larger denominator providing a smaller phonon slope and
a worse agreement with experiments.
Frozen Phonons Calculation of the EPC 
The electronic Hamiltonian for 
the  and  * bands
 can be written as 2x2 matrix: 
H k ,0=
ℏ vf k
0
0
−ℏ v f k
H k ,u=H k ,0
∂ H k ,0
∂u
uO u2

a distortion of the lattice according to the ­E2G
∂ H k ,0
∂ u
=2〈 D
2
〉F a
b
b
−a
If we diagonalize H(k,u) at the K­point
where:
〈 D
2
〉F =limd 0
1
16  E
d 
2
!!!!!
We can get the EPC for the  bands with a frozen phonon calculation!!!
EPC and  in different approximations
q=〈 Dq
2
〉F / g
To study the changes on the phonon slope  we recall that Pq
 is 
the ratio of the square EPC and band energies
Pq= 4
N k
∑k
∣D kq 
, k∣2
k , −kq ,

Thus we studied:
Hartree­Fock equilibrium structure
...the same result ...
but with another approach
Electron and phonon
renormalization
of the EPC vertex
D. M. Basko et I. L. Aleiner
Phys. Rev. B 77, 0414099(R) 2008
Dirac massless fermions
+
Renormalization Group
How to model  the phonon dispersion 
to determine the GW phonon dispersion we assume
q
GW
≃Bq
GW
rGW
Pq
DFT
/m
rGW
=
K
GW
K
DFT
≃
PK
GW
PK
DFT
Bq
GW
≃BK
GW
We assume Bq
 constant because it is expected 
to have a small dependence from q and fit it from
the experimental measures
where
The resulting K A  phonon frequency is ′ 1192 cm−1
 which is our best 
estimation and is almost 100 cm−1
 smaller than in DFT. 
Results:  phonons around K
Phys. Rev. B 78, 081406(R) (2008) M. Lazzeri, C. Attaccalite, L. Wirtz and F. Mauri
Results:  the Raman D­line dispersion
Conclusions
●
The GW approach can be used to calculate EPC
●
In graphene and graphite DFT(LDA and GGA) 
underestimates the phonon dispersion of the highest 
optical branch at the zone­boundaries
●
B3LYP gives a results similar to GW but overestimates 
the EPC
●
It is possible to reproduce completely ab­initio the 
Raman D­line shift  
Acknowledgment
http://www.pwscf.org
http://www.yambo-code.org
2) My collaborators 
M. Lazzeri, L. Wirtz,  A. Rubio and F. Mauri
Codes I used:Codes I used:
1) The support from:
http://www.crystal.unito.it
The case of Doped Graphene
Therefore the effective interaction felt by the
electrons starts to be weaker due
the stronger screening of the Coulomb potential.
With doping graphene evolves from a semi­metal to a real metal. 
http://arxiv.org/abs/0808.0786 C. Attaccalite et al.
Solid State Commun. 143, 58 (2007) M. Polini et al.
Electron­phonon Coupling at K
LDA results is recovered in doping graphene
WORK IN PROGRESS . . . 
Tuning the B3LYP
The B3LYP hybrid-functional has the from:
Exc=1−A
˙
Ex
LDA
B ˙Ex
BECKE
A ˙Ex
HF
1−C ˙Ec
VWN
C ˙Ec
LYP
B3LYP consist of a mixture of Vosko-Wilk-Nusair and LYP correlation part Ec
and a mixture of LDA/Becke exchange with Hartree-Fock exchange
The parameter A controls the admixture 
of HF exchange in the standard B3LYP is 20%
A(%) M gap
12% 176.96 5.547 31.93
13% 185.50 5.662 32.99
14% 194.39 5.695 34.13
15% 203.65 5.769 35.30
20% 256.03 6.140 41.70
GW 193 4.89 39.5
<DK
2
> K
It is possible to reproduce GW results
tuning the non-local exchange in B3LYP !!!!!
Many­Body perturbation Theory 2
Approximations for G and W (Hybertsen and Louie, 1986):
• Random phase approximation (RPA) for the dielectric function.
• General plasmon­pole model for dynamical screening.
G≈GLDA
we use the LDA results as starting point
and so the Dyson equation becomes
TVhV extV xcn, k ∫' r ,r ' ;En, k  n, k=En, k n, k r
' r ,r' ; En , k =' r ,r' ;En, k − r ,r ' V xcr
 Raman spectroscopy of graphene
k
K
ωphonon
at Γ point, k~0
→ G-line
Single-resonant
G-line
Ref.: S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley-VCH (2004)
D-line
0 1500 3000
Raman shift (cm-1)
Intensity(a.u)
graphite 2.33 eV
D
G
D‘ G‘
TO mode between K and M
dispersive
Electron­Hole Coupling

Más contenido relacionado

La actualidad más candente

BIOS 203 Lecture 4: Ab initio molecular dynamics
BIOS 203 Lecture 4: Ab initio molecular dynamicsBIOS 203 Lecture 4: Ab initio molecular dynamics
BIOS 203 Lecture 4: Ab initio molecular dynamics
bios203
 
Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...
Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...
Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...
Abthul Hakkeem
 

La actualidad más candente (20)

Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
 
bloch.pdf
bloch.pdfbloch.pdf
bloch.pdf
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
Hartree-Fock Review
Hartree-Fock Review Hartree-Fock Review
Hartree-Fock Review
 
BIOS 203 Lecture 4: Ab initio molecular dynamics
BIOS 203 Lecture 4: Ab initio molecular dynamicsBIOS 203 Lecture 4: Ab initio molecular dynamics
BIOS 203 Lecture 4: Ab initio molecular dynamics
 
Introduction to density functional theory
Introduction to density functional theory Introduction to density functional theory
Introduction to density functional theory
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene Quantum Theory of Spin and Anomalous Hall effects in Graphene
Quantum Theory of Spin and Anomalous Hall effects in Graphene
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
 
Ising model
Ising modelIsing model
Ising model
 
Weiss field model
Weiss field modelWeiss field model
Weiss field model
 
Origin of quantum mechanics
Origin of quantum mechanicsOrigin of quantum mechanics
Origin of quantum mechanics
 
Introduction to DFT Part 1
Introduction to DFT Part 1 Introduction to DFT Part 1
Introduction to DFT Part 1
 
Fermi Gas Model
Fermi Gas ModelFermi Gas Model
Fermi Gas Model
 
Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...
Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...
Fabrication and characterization of bismuth ferrite nanofiber by electrospinn...
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
 
NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation FunctionalsNANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 5 - Exchange-Correlation Functionals
 
Bethe salpeter equation
Bethe salpeter equationBethe salpeter equation
Bethe salpeter equation
 

Similar a Electron-phonon coupling in graphene

Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Anax Fotopoulos
 
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
juanrojochacon
 

Similar a Electron-phonon coupling in graphene (20)

Binping xiao superconducting surface impedance under radiofrequency field
Binping xiao   superconducting surface impedance under radiofrequency fieldBinping xiao   superconducting surface impedance under radiofrequency field
Binping xiao superconducting surface impedance under radiofrequency field
 
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
Investigation of Steady-State Carrier Distribution in CNT Porins in Neuronal ...
 
Graphene as tunable electron-phonon material
Graphene as tunable electron-phonon materialGraphene as tunable electron-phonon material
Graphene as tunable electron-phonon material
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
Serie de dyson
Serie de dysonSerie de dyson
Serie de dyson
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
 
Neutron Skin Measurements at Mainz
Neutron Skin Measurements at MainzNeutron Skin Measurements at Mainz
Neutron Skin Measurements at Mainz
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
 
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
 
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
 
Non-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldNon-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic field
 
Bj26404407
Bj26404407Bj26404407
Bj26404407
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015
 
AMR.459.529
AMR.459.529AMR.459.529
AMR.459.529
 

Más de Claudio Attaccalite

Más de Claudio Attaccalite (20)

Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Luminescence of hexagonal boron nitride monolayer
Luminescence of hexagonal boron nitride monolayerLuminescence of hexagonal boron nitride monolayer
Luminescence of hexagonal boron nitride monolayer
 
Non-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developmentsNon-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developments
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
CompMatScience.pdf
CompMatScience.pdfCompMatScience.pdf
CompMatScience.pdf
 
A squashed and squeezed h-BN
A squashed and squeezed h-BNA squashed and squeezed h-BN
A squashed and squeezed h-BN
 
Approximations in DFT
Approximations in DFTApproximations in DFT
Approximations in DFT
 
Real Time Spectroscopy
Real Time SpectroscopyReal Time Spectroscopy
Real Time Spectroscopy
 
TSN department
TSN departmentTSN department
TSN department
 
Science ouverte
Science ouverteScience ouverte
Science ouverte
 
Optics properties of hexagonal boron nitride
Optics properties of hexagonal boron nitrideOptics properties of hexagonal boron nitride
Optics properties of hexagonal boron nitride
 
Slides Concours CNRS DR2 2021
Slides Concours CNRS DR2 2021Slides Concours CNRS DR2 2021
Slides Concours CNRS DR2 2021
 
Linear response theory
Linear response theoryLinear response theory
Linear response theory
 
Recent theoreritcal developments for 2D heterostructues
Recent theoreritcal developments for 2D heterostructuesRecent theoreritcal developments for 2D heterostructues
Recent theoreritcal developments for 2D heterostructues
 
The story of Academic Publishing: from Galileo to Nature
The story of Academic Publishing: from Galileo to NatureThe story of Academic Publishing: from Galileo to Nature
The story of Academic Publishing: from Galileo to Nature
 
Theory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BNTheory of phonon-assisted luminescence: application to h-BN
Theory of phonon-assisted luminescence: application to h-BN
 
Phonon-assisted luminescence in hexagonal boron nitride
Phonon-assisted luminescence in hexagonal boron nitridePhonon-assisted luminescence in hexagonal boron nitride
Phonon-assisted luminescence in hexagonal boron nitride
 
Non-linear response of two dimensional crystals and layered materials
Non-linear response of two dimensional crystals and layered materialsNon-linear response of two dimensional crystals and layered materials
Non-linear response of two dimensional crystals and layered materials
 
Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2
 
Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1
 

Último

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 

Electron-phonon coupling in graphene

Notas del editor

  1. Here, we show that: i) the GW approach, which provides the most accurate ab-initio treatment of electron correlation, can be used to compute the electron-phonon interaction and the phonon dispersion; ii) in graphite and graphene, DFT (LDA and GGA) underestimates by a factor 2 the slope of the phonon dispersion of the highest optical branch at the zone-boundary and the square of its electron-phonon coupling by almost 80%; iii) GW reproduces both the experimental phonon dispersion near K, the value of the EPC and the electronic band dispersion; iv) the B3LYP hybrid functional2 reproduces well the experimental phonon dispersion, but overestimates both EPC and band dispersion; v) within Hartree-Fock the graphite structure is unstable.
  2. The electron-phonon coupling (EPC) is one of the fundamental quantities in condensed matter. It determines phonon-dispersions and Kohn anomalies, phonon-mediated superconductivity, electrical resistivity, Jahn-Teller distortions etc. Nowadays, density functional theory within local and semi-local approximations (DFT) is considered the ”standard model” to compute ab-initio the electron-phonon interaction and phonon dispersions. Thus, a failure of DFT would have major consequences in a broad context. In GGA and LDA approximations,
  3. Phonon dispersion of graphite. Lines are DFT calculations, dots and triangles are IXS measure-ments from Refs. 8,9, respectively.
  4. Time: 0.00 to 0.75 (min)‏ Whenever a new material is found, Raman spectroscopy is among the first steps in order to characterize it. Graphite itself is an old and intensively studied material. However its building-block, a single-layer of graphene has only recently been transfered to a substrate Due to the high structural anisotropy – it is composed of stacked layers which are only weakly coupled - few-layer graphene is a promising playground to investigate the crossover from 3D to 2D physics. Raman spectrocopy is an appropiated tool, since it probes vibrational properties and beside of that also the electronic bandstructure via the mechanism of double-resonant Raman scattering.
  5. Time: 1.50 to 2.50 (min)‏ Before showing results on few-layer graphene let me shortly remind you of Raman spectrosopy on graphite. A typical Raman spectrum is shown at the bottom of the slide with peaks corresponding to phonons created in the exposed graphite. Such an inelastic process is schematically depicted above: we see the electronic bandstructure with two bands crossing at the K point. We choose the one of graphene for simplicity. First, an electron is resonantly excited from the valence to the conduction band by an incoming photon. In a next step a phonon with vanishing wave vector is created, the electron will relax to a virtual state from where it will recombine, emitting a photon with a lower energy: it is this energy difference which is plotted in the horizontal axis. This so-called single-resonant process will give rise to the G line at 1582 /cm, and with a two-phonon emitted we get its overtone, the G‘ line.
  6. Time: 1.50 to 2.50 (min)‏ Before showing results on few-layer graphene let me shortly remind you of Raman spectrosopy on graphite. A typical Raman spectrum is shown at the bottom of the slide with peaks corresponding to phonons created in the exposed graphite. Such an inelastic process is schematically depicted above: we see the electronic bandstructure with two bands crossing at the K point. We choose the one of graphene for simplicity. First, an electron is resonantly excited from the valence to the conduction band by an incoming photon. In a next step a phonon with vanishing wave vector is created, the electron will relax to a virtual state from where it will recombine, emitting a photon with a lower energy: it is this energy difference which is plotted in the horizontal axis. This so-called single-resonant process will give rise to the G line at 1582 /cm, and with a two-phonon emitted we get its overtone, the G‘ line.