SlideShare una empresa de Scribd logo
1 de 18
Descargar para leer sin conexión
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
RETAINING WALL ANALYSIS (EN1997-1:2004)
In accordance with EN1997-1:2004 incorporating Corrigendum dated
February 2009 and the recommended values
Retaining wall details
Stem type; Cantilever with inclined front face
Stem height; hstem = 4000 mm
Stem thickness; tstem = 450 mm
Slope length to front of stem; lslf = 100 mm
Angle to rear face of stem; α = 90 deg
Angle to front face of stem; αf = 88.6 deg
Stem density; γstem = 25 kN/m
3
Toe length; ltoe = 1000 mm
Heel length; lheel = 4000 mm
Base thickness; tbase = 450 mm
Base density; γbase = 25 kN/m
3
Height of retained soil; hret = 3000 mm
Angle of soil surface; β = 15 deg
Depth of cover; dcover = 500 mm
Height of water; hwater = 300 mm
Water density; γw = 9.8 kN/m
3
Retained soil properties
Soil type; Medium dense well graded sand and gravel
Moist density; γmr = 20 kN/m
3
Saturated density; γsr = 22.3 kN/m
3
Characteristic effective shear resistance angle; φ'r.k = 25 deg
Characteristic wall friction angle; δr.k = 16 deg
Base soil properties
Moist density; γmb = 20 kN/m3
Characteristic cohesion; c'b.k = 5 kN/m
2
Characteristic adhesion; ab.k = 5 kN/m
2
Characteristic effective shear resistance angle; φ'b.k = 25 deg
Characteristic wall friction angle; δb.k = 20 deg
Characteristic base friction angle; δbb.k = 25 deg
Loading details
Variable surcharge load; SurchargeQ = 10 kN/m
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Calculate retaining wall geometry
Base length; lbase = ltoe + lslf + tstem + lheel = 5550 mm
Saturated soil height; hsat = hwater + dcover = 800 mm
Moist soil height; hmoist = hret - hwater = 2700 mm
Length of surcharge load; lsur = lheel = 4000 mm
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
- Distance to vertical component; xsur_v = lbase - lheel / 2 = 3550 mm
Effective height of wall; heff = hbase + dcover + hret + lsur × tan(β) = 5022 mm
- Distance to horizontal component; xsur_h = heff / 2 = 2511 mm
Area of wall stem; Astem = hstem × (tstem + lslf / 2) = 2 m
2
- Distance to vertical component; xstem = (hstem × tstem × (ltoe + lslf + tstem / 2) + hstem × lslf
/ 2 × (ltoe + 2 × lslf / 3)) / Astem = 1299 mm
Area of wall base; Abase = lbase × tbase = 2.498 m
2
- Distance to vertical component; xbase = lbase / 2 = 2775 mm
Area of saturated soil; Asat = hsat × lheel = 3.2 m
2
- Distance to vertical component; xsat_v = lbase - (hsat × lheel
2
/ 2) / Asat = 3550 mm
- Distance to horizontal component; xsat_h = (hsat + hbase) / 3 = 417 mm
Area of water; Awater = hsat × lheel = 3.2 m
2
- Distance to vertical component; xwater_v = lbase - (hsat × lheel
2
/ 2) / Asat = 3550 mm
- Distance to horizontal component; xwater_h = (hsat + hbase) / 3 = 417 mm
Area of moist soil; Amoist = hmoist × lheel + tan(β) × lheel
2
/ 2 = 12.944 m
2
- Distance to vertical component; xmoist_v = lbase - (hmoist × lheel
2
/ 2 + tan(β) × lheel
3
/ 6) /
Amoist = 3660 mm
- Distance to horizontal component; xmoist_h = ((heff - hsat - hbase) × (tbase + hsat + (heff - hsat
- hbase) / 3) / 2 + (hsat + tbase)
2
/2) / (hsat + tbase + (heff -
hsat - hbase) / 2) = 1757 mm
Area of base soil; Apass = dcover × (ltoe + lslf × dcover / (2 × hstem)) = 0.503
m
2
- Distance to vertical component; xpass_v = lbase - (dcover × ltoe × (lbase - ltoe / 2) + lslf ×
dcover
2
/ (2 × hstem) × (lbase - ltoe - lslf × dcover / (3 ×
hstem))) / Apass = 503 mm
- Distance to horizontal component; xpass_h = (dcover + hbase) / 3 = 317 mm
Area of excavated base soil; Aexc = hpass × (ltoe + lslf × hpass / (2 × hstem)) = 0.503
m
2
- Distance to vertical component; xexc_v = lbase - (hpass × ltoe × (lbase - ltoe / 2) + lslf ×
hpass
2
/ (2 × hstem) × (lbase - ltoe - lslf × hpass / (3 ×
hstem))) / Aexc = 503 mm
- Distance to horizontal component; xexc_h = (hpass + hbase) / 3 = 317 mm
Partial factors on actions - Table A.3 - Combination 1
Permanent unfavourable action; γG = 1.35
Permanent favourable action; γGf = 1.00
Variable unfavourable action; γQ = 1.50
Variable favourable action; γQf = 0.00
Partial factors for soil parameters – Table A.4 - Combination 1
Angle of shearing resistance; γφ' = 1.00
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Effective cohesion; γc' = 1.00
Weight density; γγ = 1.00
Retained soil properties
Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 25 deg
Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 16 deg
Base soil properties
Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 25 deg
Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 20 deg
Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 25 deg
Design effective cohesion; c'b.d = c'b.k / γc' = 5 kN/m
2
Design adhesion; ab.d = ab.k / γc' = 5 kN/m
2
Using Coulomb theory
Active pressure coefficient; KA = sin(α + φ'r.d)
2
/ (sin(α)
2
× sin(α - δr.d) × [1 +
√[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α +
β))]]
2
) = 0.469
Passive pressure coefficient; KP = sin(αf - φ'b.d)
2
/ (sin(αf)
2
× sin(αf + δb.d) × [1 -
√[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(αf + δb.d) ×
sin(αf))]]
2
) = 4.403
Sliding check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m
Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m
Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m
Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m
Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m
Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v +
Fwater_v = 452.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =
33.9 kN/m
Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)
2
/ 2 = 5.9 kN/m
Water; Fwater_h = γG × γw × (hwater + dcover + hbase)
2
/ 2 = 10.3
kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat -
hbase)
2
/ 2 + (heff - hsat - hbase) × (hsat + hbase)) = 143.9
kN/m
Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 194.1
kN/m
Check stability against sliding
Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/ 2
= 37.3 kN/m
Base friction; Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 216 kN/m
Resistance to sliding; Frest = Fexc_h + Ffriction = 253.4 kN/m
Factor of safety; FoSsl = Frest / Ftotal_h = 1.306
PASS - Resistance to sliding is greater than sliding force
Overturning check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m
Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m
Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m
Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m
Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m
Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v +
Fwater_v = 452.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =
33.9 kN/m
Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)
2
/ 2 = 5.9 kN/m
Water; Fwater_h = γG × γw × (hwater + dcover + hbase)2
/ 2 = 10.3
kN/m
Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat -
hbase)
2
/ 2 + (heff - hsat - hbase) × (hsat + hbase)) = 143.9
kN/m
Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/
2 = -37.3 kN/m
Total; Ftotal_h = Fsat_h + Fmoist_h + Fexc_h + Fwater_h + Fsur_h =
156.7 kN/m
Overturning moments on wall
Surcharge load; Msur_OT = Fsur_h × xsur_h = 85.2 kNm/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Saturated retained soil; Msat_OT = Fsat_h × xsat_h = 2.5 kNm/m
Water; Mwater_OT = Fwater_h × xwater_h = 4.3 kNm/m
Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 252.8 kNm/m
Total; Mtotal_OT = Msat_OT + Mmoist_OT + Mwater_OT + Msur_OT =
344.8 kNm/m
Restoring moments on wall
Wall stem; Mstem_R = Fstem × xstem = 65 kNm/m
Wall base; Mbase_R = Fbase × xbase = 173.3 kNm/m
Saturated retained soil; Msat_R = Fsat_v × xsat_v = 141.3 kNm/m
Water; Mwater_R = Fwater_v × xwater_v = 111.4 kNm/m
Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 947.6 kNm/m
Base soil; Mexc_R = Fexc_v × xexc_v - Fexc_h × xexc_h = 16.9 kNm/m
Total; Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R +
Mexc_R + Mwater_R = 1455.4 kNm/m
Check stability against overturning
Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 4.222
PASS - Maximum restoring moment is greater than overturning moment
Bearing pressure check
Vertical forces on wall
Wall stem; Fstem = γG × Astem × γstem = 67.5 kN/m
Wall base; Fbase = γG × Abase × γbase = 84.3 kN/m
Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 60 kN/m
Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 53.7 kN/m
Water; Fwater_v = γG × Awater × γw = 42.4 kN/m
Moist retained soil; Fmoist_v = γG × Amoist × γmr = 349.5 kN/m
Base soil; Fpass_v = γG × Apass × γmb = 13.6 kN/m
Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v +
Fwater_v + Fsur_v = 671 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =
33.9 kN/m
Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)
2
/ 2 = 5.9 kN/m
Water; Fwater_h = γG × γw × (hwater + dcover + hbase)
2
/ 2 = 10.3
kN/m
Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat -
hbase)
2
/ 2 + (heff - hsat - hbase) × (hsat + hbase)) = 143.9
kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Base soil; Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase)
2
/
2 = -37.3 kN/m
Total; Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h +
Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0
kN/m
Moments on wall
Wall stem; Mstem = Fstem × xstem = 87.7 kNm/m
Wall base; Mbase = Fbase × xbase = 233.9 kNm/m
Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 127.8 kNm/m
Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 188.3 kNm/m
Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 146.1
kNm/m
Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 1026.4
kNm/m
Base soil; Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 18.7
kNm/m
Total; Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater
+ Msur = 1829 kNm/m
Check bearing pressure
Distance to reaction; x = Mtotal / Ftotal_v = 2726 mm
Eccentricity of reaction; e = x - lbase / 2 = -49 mm
Loaded length of base; lload = 2 × x = 5452 mm
Bearing pressure at toe; qtoe = Ftotal_v / lload = 123.1 kN/m
2
Bearing pressure at heel; qheel = 0 kN/m
2
Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw =
6.7 kN/m
2
Design effective overburden pressure; q' = q / γγ = 6.7 kN/m2
Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2))
2
=
10.662
Nc = (Nq - 1) × cot(φ'b.d) = 20.721
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 9.011
Foundation shape factors; sq = 1
sγ = 1
sc = 1
Load inclination factors; H = Ftotal_h = 0 kN/m
V = Ftotal_v = 671 kN/m
m = 2
iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
m
= 1
iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
(m + 1)
= 1
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb
- γw) × lload × Nγ × sγ × iγ = 425.7 kN/m
2
Factor of safety; FoSbp = nf / max(qtoe, qheel) = 3.459
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
Partial factors on actions - Table A.3 - Combination 2
Permanent unfavourable action; γG = 1.00
Permanent favourable action; γGf = 1.00
Variable unfavourable action; γQ = 1.30
Variable favourable action; γQf = 0.00
Partial factors for soil parameters – Table A.4 - Combination 2
Angle of shearing resistance; γφ' = 1.25
Effective cohesion; γc' = 1.25
Weight density; γγ = 1.00
Retained soil properties
Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 20.5 deg
Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 12.9 deg
Base soil properties
Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 20.5 deg
Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 16.2 deg
Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 20.5 deg
Design effective cohesion; c'b.d = c'b.k / γc' = 4 kN/m
2
Design adhesion; ab.d = ab.k / γc' = 4 kN/m
2
Using Coulomb theory
Active pressure coefficient; KA = sin(α + φ'r.d)
2
/ (sin(α)
2
× sin(α - δr.d) × [1 +
√[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α +
β))]]
2
) = 0.590
Passive pressure coefficient; KP = sin(αf - φ'b.d)
2
/ (sin(αf)
2
× sin(αf + δb.d) × [1 -
√[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(αf + δb.d) ×
sin(αf))]]
2
) = 3.111
Sliding check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m
Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m
Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m
Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m
Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m
Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v +
Fwater_v = 452.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =
37.5 kN/m
Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)
2
/ 2 = 5.6 kN/m
Water; Fwater_h = γG × γw × (hwater + dcover + hbase)
2
/ 2 = 7.7
kN/m
Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat -
hbase)
2
/ 2 + (heff - hsat - hbase) × (hsat + hbase)) = 136
kN/m
Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 186.8
kN/m
Check stability against sliding
Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/ 2
= 27 kN/m
Base friction; Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 172.8 kN/m
Resistance to sliding; Frest = Fexc_h + Ffriction = 199.8 kN/m
Factor of safety; FoSsl = Frest / Ftotal_h = 1.07
PASS - Resistance to sliding is greater than sliding force
Overturning check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m
Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m
Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m
Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m
Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m
Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v +
Fwater_v = 452.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =
37.5 kN/m
Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)
2
/ 2 = 5.6 kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Water; Fwater_h = γG × γw × (hwater + dcover + hbase)
2
/ 2 = 7.7
kN/m
Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat -
hbase)
2
/ 2 + (heff - hsat - hbase) × (hsat + hbase)) = 136
kN/m
Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/
2 = -27 kN/m
Total; Ftotal_h = Fsat_h + Fmoist_h + Fexc_h + Fwater_h + Fsur_h =
159.8 kN/m
Overturning moments on wall
Surcharge load; Msur_OT = Fsur_h × xsur_h = 94.2 kNm/m
Saturated retained soil; Msat_OT = Fsat_h × xsat_h = 2.3 kNm/m
Water; Mwater_OT = Fwater_h × xwater_h = 3.2 kNm/m
Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 238.9 kNm/m
Total; Mtotal_OT = Msat_OT + Mmoist_OT + Mwater_OT + Msur_OT =
338.7 kNm/m
Restoring moments on wall
Wall stem; Mstem_R = Fstem × xstem = 65 kNm/m
Wall base; Mbase_R = Fbase × xbase = 173.3 kNm/m
Saturated retained soil; Msat_R = Fsat_v × xsat_v = 141.3 kNm/m
Water; Mwater_R = Fwater_v × xwater_v = 111.4 kNm/m
Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 947.6 kNm/m
Base soil; Mexc_R = Fexc_v × xexc_v - Fexc_h × xexc_h = 13.6 kNm/m
Total; Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R +
Mexc_R + Mwater_R = 1452.2 kNm/m
Check stability against overturning
Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 4.288
PASS - Maximum restoring moment is greater than overturning moment
Bearing pressure check
Vertical forces on wall
Wall stem; Fstem = γG × Astem × γstem = 50 kN/m
Wall base; Fbase = γG × Abase × γbase = 62.4 kN/m
Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 52 kN/m
Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 39.8 kN/m
Water; Fwater_v = γG × Awater × γw = 31.4 kN/m
Moist retained soil; Fmoist_v = γG × Amoist × γmr = 258.9 kN/m
Base soil; Fpass_v = γG × Apass × γmb = 10.1 kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v +
Fwater_v + Fsur_v = 504.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =
37.5 kN/m
Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)
2
/ 2 = 5.6 kN/m
Water; Fwater_h = γG × γw × (hwater + dcover + hbase)
2
/ 2 = 7.7
kN/m
Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat -
hbase)
2
/ 2 + (heff - hsat - hbase) × (hsat + hbase)) = 136
kN/m
Base soil; Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase)
2
/
2 = -27 kN/m
Total; Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h +
Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0
kN/m
Moments on wall
Wall stem; Mstem = Fstem × xstem = 65 kNm/m
Wall base; Mbase = Fbase × xbase = 173.3 kNm/m
Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 90.4 kNm/m
Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 139 kNm/m
Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 108.2
kNm/m
Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 708.7
kNm/m
Base soil; Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 13.6
kNm/m
Total; Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater
+ Msur = 1298.1 kNm/m
Check bearing pressure
Distance to reaction; x = Mtotal / Ftotal_v = 2573 mm
Eccentricity of reaction; e = x - lbase / 2 = -202 mm
Loaded length of base; lload = 2 × x = 5145 mm
Bearing pressure at toe; qtoe = Ftotal_v / lload = 98.1 kN/m
2
Bearing pressure at heel; qheel = 0 kN/m
2
Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw =
6.7 kN/m
2
Design effective overburden pressure; q' = q / γγ = 6.7 kN/m
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2))
2
=
6.698
Nc = (Nq - 1) × cot(φ'b.d) = 15.273
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 4.251
Foundation shape factors; sq = 1
sγ = 1
sc = 1
Load inclination factors; H = Ftotal_h = 0 kN/m
V = Ftotal_v = 504.6 kN/m
m = 2
iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
m
= 1
iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
(m + 1)
= 1
ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb
- γw) × lload × Nγ × sγ × iγ = 217.7 kN/m
2
Factor of safety; FoSbp = nf / max(qtoe, qheel) = 2.22
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
RETAINING WALL DESIGN
In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January
2008 and the recommended values
Concrete details - Table 3.1 - Strength and deformation characteristics for
concrete
Concrete strength class; C20/25
Characteristic compressive cylinder strength; fck = 20 N/mm
2
Characteristic compressive cube strength; fck,cube = 25 N/mm
2
Mean value of compressive cylinder strength; fcm = fck + 8 N/mm
2
= 28 N/mm
2
Mean value of axial tensile strength; fctm = 0.3 N/mm
2
× (fck / 1 N/mm
2
)
2/3
= 2.2 N/mm
2
5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 1.5 N/mm
2
Secant modulus of elasticity of concrete; Ecm = 22 kN/mm
2
× (fcm / 10 N/mm
2
)
0.3
= 29962
N/mm
2
Partial factor for concrete - Table 2.1N; γC = 1.50
Compressive strength coefficient - cl.3.1.6(1); αcc = 1.00
Design compressive concrete strength - exp.3.15; fcd = αcc × fck / γC = 13.3 N/mm
2
Maximum aggregate size; hagg = 20 mm
Reinforcement details
Characteristic yield strength of reinforcement; fyk = 500 N/mm
2
Modulus of elasticity of reinforcement; Es = 200000 N/mm
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Partial factor for reinforcing steel - Table 2.1N; γS = 1.15
Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm
2
Cover to reinforcement
Front face of stem; csf = 40 mm
Rear face of stem; csr = 50 mm
Top face of base; cbt = 50 mm
Bottom face of base; cbb = 75 mm
Check stem design at base of stem
Depth of section; h = 550 mm
Rectangular section in flexure - Section 6.1
Design bending moment combination 1; M = 235.8 kNm/m
Depth to tension reinforcement; d = h - csr - φsr / 2 = 488 mm
K = M / (d
2
× fck) = 0.050
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K)
0.5
, 0.95) × d =
463 mm
Depth of neutral axis; x = 2.5 × (d – z) = 61 mm
Area of tension reinforcement required; Asr.req = M / (fyd × z) = 1171 mm
2
/m
Tension reinforcement provided; 25 dia.bars @ 200 c/c
Area of tension reinforcement provided; Asr.prov = π × φsr
2
/ (4 × ssr) = 2454 mm
2
/m
Minimum area of reinforcement - exp.9.1N; Asr.min = max(0.26 × fctm / fyk, 0.0013) × d = 634
mm
2
/m
Maximum area of reinforcement - cl.9.2.1.1(3); Asr.max = 0.04 × h = 22000 mm
2
/m
max(Asr.req, Asr.min) / Asr.prov = 0.477
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width; wmax = 0.3 mm
Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3
Serviceability bending moment; Msls = 152.3 kNm/m
Tensile stress in reinforcement; σs = Msls / (Asr.prov × z) = 134 N/mm
2
Load duration; Long term
Load duration factor; kt = 0.4
Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 156250
mm
2
/m
Mean value of concrete tensile strength; fct.eff = fctm = 2.2 N/mm
2
Reinforcement ratio; ρp.eff = Asr.prov / Ac.eff = 0.016
Modular ratio; αe = Es / Ecm = 6.675
Bond property coefficient; k1 = 0.8
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Strain distribution coefficient; k2 = 0.5
k3 = 3.4
k4 = 0.425
Maximum crack spacing - exp.7.11; sr.max = k3 × csr + k1 × k2 × k4 × φsr / ρp.eff = 441 mm
Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.177 mm
wk / wmax = 0.59
PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2
Design shear force; V = 153.5 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.641
Longitudinal reinforcement ratio; ρl = min(Asr.prov / d, 0.02) = 0.005
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.329 N/mm
2
Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) × d
VRd.c = 207.2 kN/m
V / VRd.c = 0.741
PASS - Design shear resistance exceeds design shear force
Horizontal reinforcement parallel to face of stem - Section 9.6
Minimum area of reinforcement – cl.9.6.3(1); Asx.req = max(0.25 × Asr.prov, 0.001 × (tstem + lslf)) =
614 mm
2
/m
Maximum spacing of reinforcement – cl.9.6.3(2); ssx_max = 400 mm
Transverse reinforcement provided; 16 dia.bars @ 200 c/c
Area of transverse reinforcement provided; Asx.prov = π × φsx
2
/ (4 × ssx) = 1005 mm
2
/m
PASS - Area of reinforcement provided is greater than area of reinforcement required
Check base design at toe
Depth of section; h = 450 mm
Rectangular section in flexure - Section 6.1
Design bending moment combination 1; M = 48.9 kNm/m
Depth to tension reinforcement; d = h - cbb - φbb / 2 = 367 mm
K = M / (d
2
× fck) = 0.018
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K)
0.5
, 0.95) × d =
349 mm
Depth of neutral axis; x = 2.5 × (d – z) = 46 mm
Area of tension reinforcement required; Abb.req = M / (fyd × z) = 323 mm
2
/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Tension reinforcement provided; 16 dia.bars @ 200 c/c
Area of tension reinforcement provided; Abb.prov = π × φbb
2
/ (4 × sbb) = 1005 mm
2
/m
Minimum area of reinforcement - exp.9.1N; Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 477
mm
2
/m
Maximum area of reinforcement - cl.9.2.1.1(3); Abb.max = 0.04 × h = 18000 mm
2
/m
max(Abb.req, Abb.min) / Abb.prov = 0.475
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width; wmax = 0.3 mm
Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3
Serviceability bending moment; Msls = 35.3 kNm/m
Tensile stress in reinforcement; σs = Msls / (Abb.prov × z) = 100.8 N/mm
2
Load duration; Long term
Load duration factor; kt = 0.4
Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 134708
mm
2
/m
Mean value of concrete tensile strength; fct.eff = fctm = 2.2 N/mm
2
Reinforcement ratio; ρp.eff = Abb.prov / Ac.eff = 0.007
Modular ratio; αe = Es / Ecm = 6.675
Bond property coefficient; k1 = 0.8
Strain distribution coefficient; k2 = 0.5
k3 = 3.4
k4 = 0.425
Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 619 mm
Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.187 mm
wk / wmax = 0.625
PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2
Design shear force; V = 97.4 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.738
Longitudinal reinforcement ratio; ρl = min(Abb.prov / d, 0.02) = 0.003
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.359 N/mm
2
Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) × d
VRd.c = 134.9 kN/m
V / VRd.c = 0.722
PASS - Design shear resistance exceeds design shear force
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
Check base design at heel
Depth of section; h = 450 mm
Rectangular section in flexure - Section 6.1
Design bending moment combination 2; M = 238.1 kNm/m
Depth to tension reinforcement; d = h - cbt - φbt / 2 = 388 mm
K = M / (d
2
× fck) = 0.079
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K)
0.5
, 0.95) × d =
358 mm
Depth of neutral axis; x = 2.5 × (d – z) = 73 mm
Area of tension reinforcement required; Abt.req = M / (fyd × z) = 1529 mm
2
/m
Tension reinforcement provided; 25 dia.bars @ 200 c/c
Area of tension reinforcement provided; Abt.prov = π × φbt
2
/ (4 × sbt) = 2454 mm
2
/m
Minimum area of reinforcement - exp.9.1N; Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 504
mm
2
/m
Maximum area of reinforcement - cl.9.2.1.1(3); Abt.max = 0.04 × h = 18000 mm
2
/m
max(Abt.req, Abt.min) / Abt.prov = 0.623
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width; wmax = 0.3 mm
Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3
Serviceability bending moment; Msls = 107.7 kNm/m
Tensile stress in reinforcement; σs = Msls / (Abt.prov × z) = 122.5 N/mm
2
Load duration; Long term
Load duration factor; kt = 0.4
Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 125559
mm
2
/m
Mean value of concrete tensile strength; fct.eff = fctm = 2.2 N/mm
2
Reinforcement ratio; ρp.eff = Abt.prov / Ac.eff = 0.020
Modular ratio; αe = Es / Ecm = 6.675
Bond property coefficient; k1 = 0.8
Strain distribution coefficient; k2 = 0.5
k3 = 3.4
k4 = 0.425
Maximum crack spacing - exp.7.11; sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 387 mm
Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.142 mm
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date
wk / wmax = 0.475
PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2
Design shear force; V = 89.9 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.718
Longitudinal reinforcement ratio; ρl = min(Abt.prov / d, 0.02) = 0.006
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.353 N/mm
2
Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) × d
VRd.c = 186.3 kN/m
V / VRd.c = 0.483
PASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to base - Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2); Abx.req = 0.2 × Abt.prov = 491 mm
2
/m
Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm
Transverse reinforcement provided; 16 dia.bars @ 300 c/c
Area of transverse reinforcement provided; Abx.prov = π × φbx
2
/ (4 × sbx) = 670 mm
2
/m
PASS - Area of reinforcement provided is greater than area of reinforcement required
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
04/04/2014
Chk'd by
Date App'd by Date

Más contenido relacionado

La actualidad más candente

Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENDr.Costas Sachpazis
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing exampleabdullahmohideen
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -Prakash Rawal
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Dr.Costas Sachpazis
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Dr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Dr.Costas Sachpazis
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Bearing capacity shear_wave
Bearing capacity shear_waveBearing capacity shear_wave
Bearing capacity shear_waveBinod2
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missSHAMJITH KM
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Dr.Costas Sachpazis
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Dr.Costas Sachpazis
 

La actualidad más candente (20)

Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing example
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Bearing capacity shear_wave
Bearing capacity shear_waveBearing capacity shear_wave
Bearing capacity shear_wave
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
 
Bearing capasity of soil
Bearing capasity of soilBearing capasity of soil
Bearing capasity of soil
 

Similar a Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)

Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Dr.Costas Sachpazis
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Dr.Costas Sachpazis
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Dr.Costas Sachpazis
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Dr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Dr.Costas Sachpazis
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Dr.Costas Sachpazis
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisDr.Costas Sachpazis
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNIAEME Publication
 
Retaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant PilesRetaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant PilesDr.youssef hamida
 
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallDr.Youssef Hammida
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Dr.Costas Sachpazis
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxSamirsinh Parmar
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleDr.Costas Sachpazis
 
Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005Marco Peters
 
Design of Horse-Shoe Shaped Cross Passage for a Twin Tunnel System
Design of Horse-Shoe Shaped Cross Passage for a Twin Tunnel SystemDesign of Horse-Shoe Shaped Cross Passage for a Twin Tunnel System
Design of Horse-Shoe Shaped Cross Passage for a Twin Tunnel SystemIRJET Journal
 

Similar a Sachpazis cantilever retaining wall analysis & design (en1997-1-2004) (20)

Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
 
Retaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant PilesRetaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant Piles
 
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sheet pile presentation
Sheet pile presentationSheet pile presentation
Sheet pile presentation
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptx
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005Underground expansion of Drents Museum-005
Underground expansion of Drents Museum-005
 
Design of Horse-Shoe Shaped Cross Passage for a Twin Tunnel System
Design of Horse-Shoe Shaped Cross Passage for a Twin Tunnel SystemDesign of Horse-Shoe Shaped Cross Passage for a Twin Tunnel System
Design of Horse-Shoe Shaped Cross Passage for a Twin Tunnel System
 

Más de Dr.Costas Sachpazis

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Dr.Costas Sachpazis
 

Más de Dr.Costas Sachpazis (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
 

Último

Best VIP Call Girls Noida Sector 47 Call Me: 8448380779
Best VIP Call Girls Noida Sector 47 Call Me: 8448380779Best VIP Call Girls Noida Sector 47 Call Me: 8448380779
Best VIP Call Girls Noida Sector 47 Call Me: 8448380779Delhi Call girls
 
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...SUHANI PANDEY
 
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...babafaisel
 
The_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdf
The_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdfThe_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdf
The_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdfAmirYakdi
 
Design Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptxDesign Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptxTusharBahuguna2
 
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...Pooja Nehwal
 
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...home
 
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...kumaririma588
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...Pooja Nehwal
 
Peaches App development presentation deck
Peaches App development presentation deckPeaches App development presentation deck
Peaches App development presentation decktbatkhuu1
 
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts ServiceVVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Servicearoranaina404
 
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️soniya singh
 
Government polytechnic college-1.pptxabcd
Government polytechnic college-1.pptxabcdGovernment polytechnic college-1.pptxabcd
Government polytechnic college-1.pptxabcdshivubhavv
 
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call GirlsCBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girlsmodelanjalisharma4
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdftbatkhuu1
 
Case Study of Hotel Taj Vivanta, Pune
Case Study of Hotel Taj Vivanta, PuneCase Study of Hotel Taj Vivanta, Pune
Case Study of Hotel Taj Vivanta, PuneLukeKholes
 

Último (20)

Best VIP Call Girls Noida Sector 47 Call Me: 8448380779
Best VIP Call Girls Noida Sector 47 Call Me: 8448380779Best VIP Call Girls Noida Sector 47 Call Me: 8448380779
Best VIP Call Girls Noida Sector 47 Call Me: 8448380779
 
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
 
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
 
The_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdf
The_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdfThe_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdf
The_Canvas_of_Creative_Mastery_Newsletter_April_2024_Version.pdf
 
Design Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptxDesign Inspiration for College by Slidesgo.pptx
Design Inspiration for College by Slidesgo.pptx
 
꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...
꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...
꧁❤ Hauz Khas Call Girls Service Hauz Khas Delhi ❤꧂ 9999965857 ☎️ Hard And Sex...
 
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...
 
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
 
B. Smith. (Architectural Portfolio.).pdf
B. Smith. (Architectural Portfolio.).pdfB. Smith. (Architectural Portfolio.).pdf
B. Smith. (Architectural Portfolio.).pdf
 
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
 
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...Verified Trusted Call Girls Adugodi💘 9352852248  Good Looking standard Profil...
Verified Trusted Call Girls Adugodi💘 9352852248 Good Looking standard Profil...
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Hy...
 
Peaches App development presentation deck
Peaches App development presentation deckPeaches App development presentation deck
Peaches App development presentation deck
 
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts ServiceVVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
VVIP CALL GIRLS Lucknow 💓 Lucknow < Renuka Sharma > 7877925207 Escorts Service
 
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
 
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
Call Girls in Kalkaji Delhi 8264348440 call girls ❤️
 
Government polytechnic college-1.pptxabcd
Government polytechnic college-1.pptxabcdGovernment polytechnic college-1.pptxabcd
Government polytechnic college-1.pptxabcd
 
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call GirlsCBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdf
 
Case Study of Hotel Taj Vivanta, Pune
Case Study of Hotel Taj Vivanta, PuneCase Study of Hotel Taj Vivanta, Pune
Case Study of Hotel Taj Vivanta, Pune
 

Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)

  • 1. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date RETAINING WALL ANALYSIS (EN1997-1:2004) In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Retaining wall details Stem type; Cantilever with inclined front face Stem height; hstem = 4000 mm Stem thickness; tstem = 450 mm Slope length to front of stem; lslf = 100 mm Angle to rear face of stem; α = 90 deg Angle to front face of stem; αf = 88.6 deg Stem density; γstem = 25 kN/m 3 Toe length; ltoe = 1000 mm Heel length; lheel = 4000 mm Base thickness; tbase = 450 mm Base density; γbase = 25 kN/m 3 Height of retained soil; hret = 3000 mm Angle of soil surface; β = 15 deg Depth of cover; dcover = 500 mm Height of water; hwater = 300 mm Water density; γw = 9.8 kN/m 3 Retained soil properties Soil type; Medium dense well graded sand and gravel Moist density; γmr = 20 kN/m 3 Saturated density; γsr = 22.3 kN/m 3 Characteristic effective shear resistance angle; φ'r.k = 25 deg Characteristic wall friction angle; δr.k = 16 deg Base soil properties Moist density; γmb = 20 kN/m3 Characteristic cohesion; c'b.k = 5 kN/m 2 Characteristic adhesion; ab.k = 5 kN/m 2 Characteristic effective shear resistance angle; φ'b.k = 25 deg Characteristic wall friction angle; δb.k = 20 deg Characteristic base friction angle; δbb.k = 25 deg Loading details Variable surcharge load; SurchargeQ = 10 kN/m 2
  • 2. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Calculate retaining wall geometry Base length; lbase = ltoe + lslf + tstem + lheel = 5550 mm Saturated soil height; hsat = hwater + dcover = 800 mm Moist soil height; hmoist = hret - hwater = 2700 mm Length of surcharge load; lsur = lheel = 4000 mm
  • 3. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date - Distance to vertical component; xsur_v = lbase - lheel / 2 = 3550 mm Effective height of wall; heff = hbase + dcover + hret + lsur × tan(β) = 5022 mm - Distance to horizontal component; xsur_h = heff / 2 = 2511 mm Area of wall stem; Astem = hstem × (tstem + lslf / 2) = 2 m 2 - Distance to vertical component; xstem = (hstem × tstem × (ltoe + lslf + tstem / 2) + hstem × lslf / 2 × (ltoe + 2 × lslf / 3)) / Astem = 1299 mm Area of wall base; Abase = lbase × tbase = 2.498 m 2 - Distance to vertical component; xbase = lbase / 2 = 2775 mm Area of saturated soil; Asat = hsat × lheel = 3.2 m 2 - Distance to vertical component; xsat_v = lbase - (hsat × lheel 2 / 2) / Asat = 3550 mm - Distance to horizontal component; xsat_h = (hsat + hbase) / 3 = 417 mm Area of water; Awater = hsat × lheel = 3.2 m 2 - Distance to vertical component; xwater_v = lbase - (hsat × lheel 2 / 2) / Asat = 3550 mm - Distance to horizontal component; xwater_h = (hsat + hbase) / 3 = 417 mm Area of moist soil; Amoist = hmoist × lheel + tan(β) × lheel 2 / 2 = 12.944 m 2 - Distance to vertical component; xmoist_v = lbase - (hmoist × lheel 2 / 2 + tan(β) × lheel 3 / 6) / Amoist = 3660 mm - Distance to horizontal component; xmoist_h = ((heff - hsat - hbase) × (tbase + hsat + (heff - hsat - hbase) / 3) / 2 + (hsat + tbase) 2 /2) / (hsat + tbase + (heff - hsat - hbase) / 2) = 1757 mm Area of base soil; Apass = dcover × (ltoe + lslf × dcover / (2 × hstem)) = 0.503 m 2 - Distance to vertical component; xpass_v = lbase - (dcover × ltoe × (lbase - ltoe / 2) + lslf × dcover 2 / (2 × hstem) × (lbase - ltoe - lslf × dcover / (3 × hstem))) / Apass = 503 mm - Distance to horizontal component; xpass_h = (dcover + hbase) / 3 = 317 mm Area of excavated base soil; Aexc = hpass × (ltoe + lslf × hpass / (2 × hstem)) = 0.503 m 2 - Distance to vertical component; xexc_v = lbase - (hpass × ltoe × (lbase - ltoe / 2) + lslf × hpass 2 / (2 × hstem) × (lbase - ltoe - lslf × hpass / (3 × hstem))) / Aexc = 503 mm - Distance to horizontal component; xexc_h = (hpass + hbase) / 3 = 317 mm Partial factors on actions - Table A.3 - Combination 1 Permanent unfavourable action; γG = 1.35 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.50 Variable favourable action; γQf = 0.00 Partial factors for soil parameters – Table A.4 - Combination 1 Angle of shearing resistance; γφ' = 1.00
  • 4. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Effective cohesion; γc' = 1.00 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 25 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 16 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 25 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 20 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 25 deg Design effective cohesion; c'b.d = c'b.k / γc' = 5 kN/m 2 Design adhesion; ab.d = ab.k / γc' = 5 kN/m 2 Using Coulomb theory Active pressure coefficient; KA = sin(α + φ'r.d) 2 / (sin(α) 2 × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] 2 ) = 0.469 Passive pressure coefficient; KP = sin(αf - φ'b.d) 2 / (sin(αf) 2 × sin(αf + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(αf + δb.d) × sin(αf))]] 2 ) = 4.403 Sliding check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v + Fwater_v = 452.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = 33.9 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 2 / 2 = 5.9 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase) 2 / 2 = 10.3 kN/m
  • 5. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat - hbase) 2 / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 143.9 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 194.1 kN/m Check stability against sliding Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = 37.3 kN/m Base friction; Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 216 kN/m Resistance to sliding; Frest = Fexc_h + Ffriction = 253.4 kN/m Factor of safety; FoSsl = Frest / Ftotal_h = 1.306 PASS - Resistance to sliding is greater than sliding force Overturning check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v + Fwater_v = 452.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = 33.9 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 2 / 2 = 5.9 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase)2 / 2 = 10.3 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat - hbase) 2 / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 143.9 kN/m Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = -37.3 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fexc_h + Fwater_h + Fsur_h = 156.7 kN/m Overturning moments on wall Surcharge load; Msur_OT = Fsur_h × xsur_h = 85.2 kNm/m
  • 6. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Saturated retained soil; Msat_OT = Fsat_h × xsat_h = 2.5 kNm/m Water; Mwater_OT = Fwater_h × xwater_h = 4.3 kNm/m Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 252.8 kNm/m Total; Mtotal_OT = Msat_OT + Mmoist_OT + Mwater_OT + Msur_OT = 344.8 kNm/m Restoring moments on wall Wall stem; Mstem_R = Fstem × xstem = 65 kNm/m Wall base; Mbase_R = Fbase × xbase = 173.3 kNm/m Saturated retained soil; Msat_R = Fsat_v × xsat_v = 141.3 kNm/m Water; Mwater_R = Fwater_v × xwater_v = 111.4 kNm/m Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 947.6 kNm/m Base soil; Mexc_R = Fexc_v × xexc_v - Fexc_h × xexc_h = 16.9 kNm/m Total; Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R + Mexc_R + Mwater_R = 1455.4 kNm/m Check stability against overturning Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 4.222 PASS - Maximum restoring moment is greater than overturning moment Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 67.5 kN/m Wall base; Fbase = γG × Abase × γbase = 84.3 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 60 kN/m Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 53.7 kN/m Water; Fwater_v = γG × Awater × γw = 42.4 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 349.5 kN/m Base soil; Fpass_v = γG × Apass × γmb = 13.6 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 671 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = 33.9 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 2 / 2 = 5.9 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase) 2 / 2 = 10.3 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat - hbase) 2 / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 143.9 kN/m
  • 7. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Base soil; Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase) 2 / 2 = -37.3 kN/m Total; Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h + Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 87.7 kNm/m Wall base; Mbase = Fbase × xbase = 233.9 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 127.8 kNm/m Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 188.3 kNm/m Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 146.1 kNm/m Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 1026.4 kNm/m Base soil; Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 18.7 kNm/m Total; Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 1829 kNm/m Check bearing pressure Distance to reaction; x = Mtotal / Ftotal_v = 2726 mm Eccentricity of reaction; e = x - lbase / 2 = -49 mm Loaded length of base; lload = 2 × x = 5452 mm Bearing pressure at toe; qtoe = Ftotal_v / lload = 123.1 kN/m 2 Bearing pressure at heel; qheel = 0 kN/m 2 Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 6.7 kN/m 2 Design effective overburden pressure; q' = q / γγ = 6.7 kN/m2 Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) 2 = 10.662 Nc = (Nq - 1) × cot(φ'b.d) = 20.721 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 9.011 Foundation shape factors; sq = 1 sγ = 1 sc = 1 Load inclination factors; H = Ftotal_h = 0 kN/m V = Ftotal_v = 671 kN/m m = 2 iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] m = 1 iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] (m + 1) = 1
  • 8. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb - γw) × lload × Nγ × sγ × iγ = 425.7 kN/m 2 Factor of safety; FoSbp = nf / max(qtoe, qheel) = 3.459 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure Partial factors on actions - Table A.3 - Combination 2 Permanent unfavourable action; γG = 1.00 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.30 Variable favourable action; γQf = 0.00 Partial factors for soil parameters – Table A.4 - Combination 2 Angle of shearing resistance; γφ' = 1.25 Effective cohesion; γc' = 1.25 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 20.5 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 12.9 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 20.5 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 16.2 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 20.5 deg Design effective cohesion; c'b.d = c'b.k / γc' = 4 kN/m 2 Design adhesion; ab.d = ab.k / γc' = 4 kN/m 2 Using Coulomb theory Active pressure coefficient; KA = sin(α + φ'r.d) 2 / (sin(α) 2 × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] 2 ) = 0.590 Passive pressure coefficient; KP = sin(αf - φ'b.d) 2 / (sin(αf) 2 × sin(αf + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(αf + δb.d) × sin(αf))]] 2 ) = 3.111 Sliding check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m
  • 9. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v + Fwater_v = 452.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = 37.5 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 2 / 2 = 5.6 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase) 2 / 2 = 7.7 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat - hbase) 2 / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 136 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 186.8 kN/m Check stability against sliding Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = 27 kN/m Base friction; Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 172.8 kN/m Resistance to sliding; Frest = Fexc_h + Ffriction = 199.8 kN/m Factor of safety; FoSsl = Frest / Ftotal_h = 1.07 PASS - Resistance to sliding is greater than sliding force Overturning check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 50 kN/m Wall base; Fbase = γGf × Abase × γbase = 62.4 kN/m Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 39.8 kN/m Water; Fwater_v = γGf × Awater × γw = 31.4 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 258.9 kN/m Base soil; Fexc_v = γGf × Aexc × γmb = 10.1 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fexc_v + Fwater_v = 452.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = 37.5 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 2 / 2 = 5.6 kN/m
  • 10. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Water; Fwater_h = γG × γw × (hwater + dcover + hbase) 2 / 2 = 7.7 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat - hbase) 2 / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 136 kN/m Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = -27 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fexc_h + Fwater_h + Fsur_h = 159.8 kN/m Overturning moments on wall Surcharge load; Msur_OT = Fsur_h × xsur_h = 94.2 kNm/m Saturated retained soil; Msat_OT = Fsat_h × xsat_h = 2.3 kNm/m Water; Mwater_OT = Fwater_h × xwater_h = 3.2 kNm/m Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 238.9 kNm/m Total; Mtotal_OT = Msat_OT + Mmoist_OT + Mwater_OT + Msur_OT = 338.7 kNm/m Restoring moments on wall Wall stem; Mstem_R = Fstem × xstem = 65 kNm/m Wall base; Mbase_R = Fbase × xbase = 173.3 kNm/m Saturated retained soil; Msat_R = Fsat_v × xsat_v = 141.3 kNm/m Water; Mwater_R = Fwater_v × xwater_v = 111.4 kNm/m Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 947.6 kNm/m Base soil; Mexc_R = Fexc_v × xexc_v - Fexc_h × xexc_h = 13.6 kNm/m Total; Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R + Mexc_R + Mwater_R = 1452.2 kNm/m Check stability against overturning Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 4.288 PASS - Maximum restoring moment is greater than overturning moment Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 50 kN/m Wall base; Fbase = γG × Abase × γbase = 62.4 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 52 kN/m Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 39.8 kN/m Water; Fwater_v = γG × Awater × γw = 31.4 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 258.9 kN/m Base soil; Fpass_v = γG × Apass × γmb = 10.1 kN/m
  • 11. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 504.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = 37.5 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 2 / 2 = 5.6 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase) 2 / 2 = 7.7 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat - hbase) 2 / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 136 kN/m Base soil; Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase) 2 / 2 = -27 kN/m Total; Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h + Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 65 kNm/m Wall base; Mbase = Fbase × xbase = 173.3 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 90.4 kNm/m Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 139 kNm/m Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 108.2 kNm/m Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 708.7 kNm/m Base soil; Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 13.6 kNm/m Total; Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 1298.1 kNm/m Check bearing pressure Distance to reaction; x = Mtotal / Ftotal_v = 2573 mm Eccentricity of reaction; e = x - lbase / 2 = -202 mm Loaded length of base; lload = 2 × x = 5145 mm Bearing pressure at toe; qtoe = Ftotal_v / lload = 98.1 kN/m 2 Bearing pressure at heel; qheel = 0 kN/m 2 Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 6.7 kN/m 2 Design effective overburden pressure; q' = q / γγ = 6.7 kN/m 2
  • 12. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) 2 = 6.698 Nc = (Nq - 1) × cot(φ'b.d) = 15.273 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 4.251 Foundation shape factors; sq = 1 sγ = 1 sc = 1 Load inclination factors; H = Ftotal_h = 0 kN/m V = Ftotal_v = 504.6 kN/m m = 2 iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] m = 1 iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] (m + 1) = 1 ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb - γw) × lload × Nγ × sγ × iγ = 217.7 kN/m 2 Factor of safety; FoSbp = nf / max(qtoe, qheel) = 2.22 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure RETAINING WALL DESIGN In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the recommended values Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class; C20/25 Characteristic compressive cylinder strength; fck = 20 N/mm 2 Characteristic compressive cube strength; fck,cube = 25 N/mm 2 Mean value of compressive cylinder strength; fcm = fck + 8 N/mm 2 = 28 N/mm 2 Mean value of axial tensile strength; fctm = 0.3 N/mm 2 × (fck / 1 N/mm 2 ) 2/3 = 2.2 N/mm 2 5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 1.5 N/mm 2 Secant modulus of elasticity of concrete; Ecm = 22 kN/mm 2 × (fcm / 10 N/mm 2 ) 0.3 = 29962 N/mm 2 Partial factor for concrete - Table 2.1N; γC = 1.50 Compressive strength coefficient - cl.3.1.6(1); αcc = 1.00 Design compressive concrete strength - exp.3.15; fcd = αcc × fck / γC = 13.3 N/mm 2 Maximum aggregate size; hagg = 20 mm Reinforcement details Characteristic yield strength of reinforcement; fyk = 500 N/mm 2 Modulus of elasticity of reinforcement; Es = 200000 N/mm 2
  • 13. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Partial factor for reinforcing steel - Table 2.1N; γS = 1.15 Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm 2 Cover to reinforcement Front face of stem; csf = 40 mm Rear face of stem; csr = 50 mm Top face of base; cbt = 50 mm Bottom face of base; cbb = 75 mm Check stem design at base of stem Depth of section; h = 550 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1; M = 235.8 kNm/m Depth to tension reinforcement; d = h - csr - φsr / 2 = 488 mm K = M / (d 2 × fck) = 0.050 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K) 0.5 , 0.95) × d = 463 mm Depth of neutral axis; x = 2.5 × (d – z) = 61 mm Area of tension reinforcement required; Asr.req = M / (fyd × z) = 1171 mm 2 /m Tension reinforcement provided; 25 dia.bars @ 200 c/c Area of tension reinforcement provided; Asr.prov = π × φsr 2 / (4 × ssr) = 2454 mm 2 /m Minimum area of reinforcement - exp.9.1N; Asr.min = max(0.26 × fctm / fyk, 0.0013) × d = 634 mm 2 /m Maximum area of reinforcement - cl.9.2.1.1(3); Asr.max = 0.04 × h = 22000 mm 2 /m max(Asr.req, Asr.min) / Asr.prov = 0.477 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 152.3 kNm/m Tensile stress in reinforcement; σs = Msls / (Asr.prov × z) = 134 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 156250 mm 2 /m Mean value of concrete tensile strength; fct.eff = fctm = 2.2 N/mm 2 Reinforcement ratio; ρp.eff = Asr.prov / Ac.eff = 0.016 Modular ratio; αe = Es / Ecm = 6.675 Bond property coefficient; k1 = 0.8
  • 14. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × csr + k1 × k2 × k4 × φsr / ρp.eff = 441 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.177 mm wk / wmax = 0.59 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 153.5 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.641 Longitudinal reinforcement ratio; ρl = min(Asr.prov / d, 0.02) = 0.005 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.329 N/mm 2 Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) × d VRd.c = 207.2 kN/m V / VRd.c = 0.741 PASS - Design shear resistance exceeds design shear force Horizontal reinforcement parallel to face of stem - Section 9.6 Minimum area of reinforcement – cl.9.6.3(1); Asx.req = max(0.25 × Asr.prov, 0.001 × (tstem + lslf)) = 614 mm 2 /m Maximum spacing of reinforcement – cl.9.6.3(2); ssx_max = 400 mm Transverse reinforcement provided; 16 dia.bars @ 200 c/c Area of transverse reinforcement provided; Asx.prov = π × φsx 2 / (4 × ssx) = 1005 mm 2 /m PASS - Area of reinforcement provided is greater than area of reinforcement required Check base design at toe Depth of section; h = 450 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1; M = 48.9 kNm/m Depth to tension reinforcement; d = h - cbb - φbb / 2 = 367 mm K = M / (d 2 × fck) = 0.018 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K) 0.5 , 0.95) × d = 349 mm Depth of neutral axis; x = 2.5 × (d – z) = 46 mm Area of tension reinforcement required; Abb.req = M / (fyd × z) = 323 mm 2 /m
  • 15. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Tension reinforcement provided; 16 dia.bars @ 200 c/c Area of tension reinforcement provided; Abb.prov = π × φbb 2 / (4 × sbb) = 1005 mm 2 /m Minimum area of reinforcement - exp.9.1N; Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 477 mm 2 /m Maximum area of reinforcement - cl.9.2.1.1(3); Abb.max = 0.04 × h = 18000 mm 2 /m max(Abb.req, Abb.min) / Abb.prov = 0.475 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 35.3 kNm/m Tensile stress in reinforcement; σs = Msls / (Abb.prov × z) = 100.8 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 134708 mm 2 /m Mean value of concrete tensile strength; fct.eff = fctm = 2.2 N/mm 2 Reinforcement ratio; ρp.eff = Abb.prov / Ac.eff = 0.007 Modular ratio; αe = Es / Ecm = 6.675 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 619 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.187 mm wk / wmax = 0.625 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 97.4 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.738 Longitudinal reinforcement ratio; ρl = min(Abb.prov / d, 0.02) = 0.003 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.359 N/mm 2 Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) × d VRd.c = 134.9 kN/m V / VRd.c = 0.722 PASS - Design shear resistance exceeds design shear force
  • 16. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date Check base design at heel Depth of section; h = 450 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 2; M = 238.1 kNm/m Depth to tension reinforcement; d = h - cbt - φbt / 2 = 388 mm K = M / (d 2 × fck) = 0.079 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K) 0.5 , 0.95) × d = 358 mm Depth of neutral axis; x = 2.5 × (d – z) = 73 mm Area of tension reinforcement required; Abt.req = M / (fyd × z) = 1529 mm 2 /m Tension reinforcement provided; 25 dia.bars @ 200 c/c Area of tension reinforcement provided; Abt.prov = π × φbt 2 / (4 × sbt) = 2454 mm 2 /m Minimum area of reinforcement - exp.9.1N; Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 504 mm 2 /m Maximum area of reinforcement - cl.9.2.1.1(3); Abt.max = 0.04 × h = 18000 mm 2 /m max(Abt.req, Abt.min) / Abt.prov = 0.623 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 107.7 kNm/m Tensile stress in reinforcement; σs = Msls / (Abt.prov × z) = 122.5 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 125559 mm 2 /m Mean value of concrete tensile strength; fct.eff = fctm = 2.2 N/mm 2 Reinforcement ratio; ρp.eff = Abt.prov / Ac.eff = 0.020 Modular ratio; αe = Es / Ecm = 6.675 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 387 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.142 mm
  • 17. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date wk / wmax = 0.475 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 89.9 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.718 Longitudinal reinforcement ratio; ρl = min(Abt.prov / d, 0.02) = 0.006 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.353 N/mm 2 Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) × d VRd.c = 186.3 kN/m V / VRd.c = 0.483 PASS - Design shear resistance exceeds design shear force Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); Abx.req = 0.2 × Abt.prov = 491 mm 2 /m Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm Transverse reinforcement provided; 16 dia.bars @ 300 c/c Area of transverse reinforcement provided; Abx.prov = π × φbx 2 / (4 × sbx) = 670 mm 2 /m PASS - Area of reinforcement provided is greater than area of reinforcement required
  • 18. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 04/04/2014 Chk'd by Date App'd by Date