SlideShare una empresa de Scribd logo
1 de 40
Descargar para leer sin conexión
The Width of a Complex Ideal Chain

Yanwei Wang, Ole Hassager

Danish Polymer Center
DTU Chemical Engineering
Technical University of Denmark
External advisers




Financial support
Danish Research Council for Technology and Production Sciences (FTP)
Outline
     1. Introduction
–What is a complex ideal chain?
  –What is the width of it?
        –Why bother?
         2. Method
           –Principle
       –Base functions
    –The rest are details
   3. Some examples
     4. Conclusions
(r, n)




 ∂P (r, n) b 2
            2
         =   ∇ P (r, n)
   ∂n      6
Ideal Chain Statistics
linear          star       pom-pom
                        (two-branch point)
                                                 Ringed


          comb                    ring           8-shaped    theta-shaped

   Branched
                                  tadpole    Double-headed   Double-tailed
                                                tadpole        tadpole


                                      manacles


Complex Architecture
What is the width of it?
What is the width of it?

    ri


               ˆ
               u
                           
=
X        max(ri ⋅ u ) − min(ri ⋅ u )
                  ˆˆ
           i              i

    ri


               ˆ
               u
                           
=
X        max(ri ⋅ u ) − min(ri ⋅ u )
                  ˆˆ
           i                i
         The Mean Span Dimension
WHY BOTHER?
Hydrodynamic volume       Hydrodynamic radius

                Radius of gyration
Size Exclusion
Chromatography
of Polymers
Linear PE

                                   3-arm star

                                   2-branch point

                                   comb




Sun et al. Macromolecules 37, 4304 (2004)
Wang et al. Macromolecules 43, 1651 (2010)
HOW TO CALCULATE IT?
  for an ideal chain but of complex architecture
The basic principles
                                        • Isotropy of a polymer chain in
                                          free space

                                       • Identity between one half of
ri
                                          the mean span dimension
                                          and the depletion layer
                                          thickness near a hard wall
     ˆ
     u                                    Wang et al. JCP, 129, 074904 (2008)
                            
=
X        max( ri ⋅ u ) − min(ri ⋅ u )
                   ˆˆ
           i              i
                                        • Multiplication rule for
                                          independent events.
ISOTROPY
              
=
X   max(ri ⋅ u ) − min(ri ⋅ u )
             ˆˆ
      i               i


    max( xi ) − min( xi )
      i           i




                                  min( xi )   max( xi )   x
                                    i           i
X   max( xi ) − min( xi )
      i           i


=   max( xi ) − xo + xo − min( xi )
      i                     i


=   max( xi ) − xo + xo − min( xi )
      i                         i




                                                o



                                    min( xi )   xo   max( xi )   x
                                      i                i
=
X     max( xi ) − xo + xo − min( xi )
        i                     i


= 2 xo − min( xi )
              i




                                              o



                                  min( xi )   xo   max( xi )   x
                                    i                i
=
X     max( xi ) − xo + xo − min( xi )
        i                     i


= 2 xo − min( xi )
              i


            αo


                                               o

                                          αo
                                  min( xi )    xo   max( xi )   x
                                    i                 i
DEPLETION
NEAR A HARD WALL
o




x=0   xo   x
o




x=0   xo   x
o




x=0   xo   x
o

           =
           P( xo )       H ( xo − α o )




x=0   xo             x
o

                    =
                    P( xo )       H ( xo − α o )
               ∞
           ∫
           0
                                    αo
                   [1 − P( xo )]dxo =




x=0   xo                      x
HOW TO CALCULATE P( xo ) ?
  for an ideal chain but of complex architecture
Three types of
fundamental subchains

              Arm 1

• Arm
                                  Loop
• Connector   Arm 2
                      Connector
• Loop
Arm 1


                                    Loop
                   o
  Arm 2
                   Connector




x=0               xo                         x


       Multiplication rule
        P( A  B) = P( A) P( B)
                       if events A and B are independent
Three base functions
                        Arm 1


                                                                   Loop

                       Arm 2
                                              Connector




PArm ( x; n, b) = erf ( px )                                                       3
                                                        x ∈ [0,∞), x' ∈ [0,∞), p = 2
                                                                                  2nb
PLoop ( x; n, b) =exp ( −4 p 2 x 2 )
                 1−

PConnector ( x, x '; n, b)=
                          dx '
                                   p
                                 π 1/ 2
                                          {exp[− p ( x − x ') ] − exp[− p ( x + x ') ]} dx '
                                                    2         2            2        2
Arm 1

                                                                             Loop
                                Arm 2
                                                    Connector




                   x=0                            xo               xp                               x

                                                       ∞
P( xo ) = PArm ( xo ; na1 , b) PArm ( xo ; na 2 , b) ∫ PConnector ( xo , x p ; nc , b)PLoop ( x p ; nl , b)d px
                                                     0

 1             ∞

 2
  =X       ∫ 0
                   [1 − P ( xo )]dxo
                                                             Wang et al. (2010) submitted
Examples
A linear chain



= PArm ( xo ; n, b) erf ( pxo )
P( xo ) =
          ∞                 2        8 Nb 2
      2∫
    X = [1 − P ( xo )]dxo =         =
          0                π
                           1/ 2
                                  p   3π
      X     2                        X  16
      = 1/ 2 ≈ 1.12838                =    ≈ 1.69765
     2 Rg π                        2 RH 3π
A ring



 P( xo ) = ( xo ; n, b) =exp ( −4 p 2 x 2 )
         PLoop          1−
        ∞                   π 1/ 2     π Nb 2
   2 ∫ [1
 X = − P ( xo )]dxo ==
      0             2p 6

  X         π                          X   π
  =             ≈ 1.25331                =   ≈ 1.5708
 2 Rg       2                        2 RH 2
A 3-arm star



               [=
                PArm ( xo ; n, b)]   erf ( pxo ) 
                                3                     3
 P( xo )                                         
           ∞           12 2
   2∫
 X = [1 − P ( xo )]dxo =2 arctan(2−1/ 2 )
     0                 π 3/ p
  X                                          X
      ≈ 1.22800                                 ≈ 1.72003
 2 Rg                                      2 RH
An f-arm (symmetric) star

= [ = erf ( pxo ) 
 P( xo ) PArm ( xo ; n, b)] 
                            f     f
                              
            ∞
    = 2∫ [1 − P( xo )]dxo
     X
            0
An f-arm (symmetric) star

= [ = erf ( pxo ) 
    P( xo ) PArm ( xo ; n, b)] 
                       f             f
2.0   X                          
     2R
1.8 = H2 ∞ [1 − P( x )]dx
     X ∫              o      o
           0
 1.6
                       X
 1.4                  2 Rg
 1.2
 1.0
       0       5     10       15         20
Linear PE

                                   3-arm star

                                   2-branch point

                                   comb




Sun et al. Macromolecules 37, 4304 (2004)
Conclusions
• A general method is developed for calculating the
  width (mean span dimension) of polymer chains
  assuming ideal chain statistics.
• The method comes from
  – Isotropy of a polymer chain in free space
  – Polymer depletion near a hard wall
  – Multiplication rule for independent events.
• The method can be routinely applied to any
  complicated chain architectures.

Más contenido relacionado

La actualidad más candente

Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motionJa-Keoung Koo
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Alex (Oleksiy) Varfolomiyev
 
Datamining 6th svm
Datamining 6th svmDatamining 6th svm
Datamining 6th svmsesejun
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定Kosei ABE
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Sean Meyn
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionGabriel Peyré
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svmsesejun
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningSungbin Lim
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsKohei Hayashi
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheorySEENET-MTP
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...dishii
 
Proceedings Different Quantum Spectra For The Same Classical System
Proceedings Different Quantum Spectra For The Same Classical SystemProceedings Different Quantum Spectra For The Same Classical System
Proceedings Different Quantum Spectra For The Same Classical Systemvcuesta
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusGabriel Peyré
 

La actualidad más candente (20)

Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motion
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
 
Datamining 6th svm
Datamining 6th svmDatamining 6th svm
Datamining 6th svm
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
1574 multiple integral
1574 multiple integral1574 multiple integral
1574 multiple integral
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svm
 
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep Learning
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and Applications
 
HMM, MEMM, CRF メモ
HMM, MEMM, CRF メモHMM, MEMM, CRF メモ
HMM, MEMM, CRF メモ
 
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
 
1
11
1
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
 
Proceedings Different Quantum Spectra For The Same Classical System
Proceedings Different Quantum Spectra For The Same Classical SystemProceedings Different Quantum Spectra For The Same Classical System
Proceedings Different Quantum Spectra For The Same Classical System
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 

Similar a The width of an ideal chain

Social Network Analysis
Social Network AnalysisSocial Network Analysis
Social Network Analysisrik0
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm 2012
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyanGrigor Alaverdyan
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2zukun
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
Why are stochastic networks so hard to simulate?
Why are stochastic networks so hard to simulate?Why are stochastic networks so hard to simulate?
Why are stochastic networks so hard to simulate?Sean Meyn
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Matthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Mel Anthony Pepito
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningzukun
 

Similar a The width of an ideal chain (20)

1010n3a
1010n3a1010n3a
1010n3a
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 
Social Network Analysis
Social Network AnalysisSocial Network Analysis
Social Network Analysis
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier Hudry
 
YSC 2013
YSC 2013YSC 2013
YSC 2013
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Pr1
Pr1Pr1
Pr1
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Why are stochastic networks so hard to simulate?
Why are stochastic networks so hard to simulate?Why are stochastic networks so hard to simulate?
Why are stochastic networks so hard to simulate?
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 

The width of an ideal chain

  • 1. The Width of a Complex Ideal Chain Yanwei Wang, Ole Hassager Danish Polymer Center DTU Chemical Engineering Technical University of Denmark
  • 2. External advisers Financial support Danish Research Council for Technology and Production Sciences (FTP)
  • 3. Outline 1. Introduction –What is a complex ideal chain? –What is the width of it? –Why bother? 2. Method –Principle –Base functions –The rest are details 3. Some examples 4. Conclusions
  • 4. (r, n) ∂P (r, n) b 2 2 = ∇ P (r, n) ∂n 6 Ideal Chain Statistics
  • 5. linear star pom-pom (two-branch point) Ringed comb ring 8-shaped theta-shaped Branched tadpole Double-headed Double-tailed tadpole tadpole manacles Complex Architecture
  • 6. What is the width of it?
  • 7. What is the width of it?
  • 8. ri ˆ u   = X max(ri ⋅ u ) − min(ri ⋅ u ) ˆˆ i i
  • 9. ri ˆ u   = X max(ri ⋅ u ) − min(ri ⋅ u ) ˆˆ i i The Mean Span Dimension
  • 11. Hydrodynamic volume Hydrodynamic radius Radius of gyration
  • 13. Linear PE 3-arm star 2-branch point comb Sun et al. Macromolecules 37, 4304 (2004)
  • 14. Wang et al. Macromolecules 43, 1651 (2010)
  • 15. HOW TO CALCULATE IT? for an ideal chain but of complex architecture
  • 16. The basic principles • Isotropy of a polymer chain in free space  • Identity between one half of ri the mean span dimension and the depletion layer thickness near a hard wall ˆ u Wang et al. JCP, 129, 074904 (2008)   = X max( ri ⋅ u ) − min(ri ⋅ u ) ˆˆ i i • Multiplication rule for independent events.
  • 18.  = X max(ri ⋅ u ) − min(ri ⋅ u ) ˆˆ i i max( xi ) − min( xi ) i i min( xi ) max( xi ) x i i
  • 19. X max( xi ) − min( xi ) i i = max( xi ) − xo + xo − min( xi ) i i = max( xi ) − xo + xo − min( xi ) i i o min( xi ) xo max( xi ) x i i
  • 20. = X max( xi ) − xo + xo − min( xi ) i i = 2 xo − min( xi ) i o min( xi ) xo max( xi ) x i i
  • 21. = X max( xi ) − xo + xo − min( xi ) i i = 2 xo − min( xi ) i αo o αo min( xi ) xo max( xi ) x i i
  • 23. o x=0 xo x
  • 24. o x=0 xo x
  • 25. o x=0 xo x
  • 26. o = P( xo ) H ( xo − α o ) x=0 xo x
  • 27. o = P( xo ) H ( xo − α o ) ∞ ∫ 0 αo [1 − P( xo )]dxo = x=0 xo x
  • 28. HOW TO CALCULATE P( xo ) ? for an ideal chain but of complex architecture
  • 29. Three types of fundamental subchains Arm 1 • Arm Loop • Connector Arm 2 Connector • Loop
  • 30. Arm 1 Loop o Arm 2 Connector x=0 xo x Multiplication rule P( A  B) = P( A) P( B) if events A and B are independent
  • 31. Three base functions Arm 1 Loop Arm 2 Connector PArm ( x; n, b) = erf ( px ) 3 x ∈ [0,∞), x' ∈ [0,∞), p = 2 2nb PLoop ( x; n, b) =exp ( −4 p 2 x 2 ) 1− PConnector ( x, x '; n, b)= dx ' p π 1/ 2 {exp[− p ( x − x ') ] − exp[− p ( x + x ') ]} dx ' 2 2 2 2
  • 32. Arm 1 Loop Arm 2 Connector x=0 xo xp x ∞ P( xo ) = PArm ( xo ; na1 , b) PArm ( xo ; na 2 , b) ∫ PConnector ( xo , x p ; nc , b)PLoop ( x p ; nl , b)d px 0 1 ∞ 2 =X ∫ 0 [1 − P ( xo )]dxo Wang et al. (2010) submitted
  • 34. A linear chain = PArm ( xo ; n, b) erf ( pxo ) P( xo ) = ∞ 2 8 Nb 2 2∫ X = [1 − P ( xo )]dxo = = 0 π 1/ 2 p 3π X 2 X 16 = 1/ 2 ≈ 1.12838 = ≈ 1.69765 2 Rg π 2 RH 3π
  • 35. A ring P( xo ) = ( xo ; n, b) =exp ( −4 p 2 x 2 ) PLoop 1− ∞ π 1/ 2 π Nb 2 2 ∫ [1 X = − P ( xo )]dxo == 0 2p 6 X π X π = ≈ 1.25331 = ≈ 1.5708 2 Rg 2 2 RH 2
  • 36. A 3-arm star [= PArm ( xo ; n, b)] erf ( pxo )  3 3 P( xo )   ∞ 12 2 2∫ X = [1 − P ( xo )]dxo =2 arctan(2−1/ 2 ) 0 π 3/ p X X ≈ 1.22800 ≈ 1.72003 2 Rg 2 RH
  • 37. An f-arm (symmetric) star = [ = erf ( pxo )  P( xo ) PArm ( xo ; n, b)]  f f  ∞ = 2∫ [1 − P( xo )]dxo X 0
  • 38. An f-arm (symmetric) star = [ = erf ( pxo )  P( xo ) PArm ( xo ; n, b)]  f f 2.0 X  2R 1.8 = H2 ∞ [1 − P( x )]dx X ∫ o o 0 1.6 X 1.4 2 Rg 1.2 1.0 0 5 10 15 20
  • 39. Linear PE 3-arm star 2-branch point comb Sun et al. Macromolecules 37, 4304 (2004)
  • 40. Conclusions • A general method is developed for calculating the width (mean span dimension) of polymer chains assuming ideal chain statistics. • The method comes from – Isotropy of a polymer chain in free space – Polymer depletion near a hard wall – Multiplication rule for independent events. • The method can be routinely applied to any complicated chain architectures.