1.3 Funciones o aplicaciones (mapeos) 13 
DEMOSTRACIOSNe. verifica una de ellas. Si r E T, entonces (fo f -')(I)= 
f( f -I...
14 CAPRULO 1 * TEMAS FUNDAMENTALES 
(a) Determinese si esto define una funcion de S en T. 
(b) Demuestrese que f (s, + s2)...
.? EL GRUPO 
" SIMETRICO 
Recordemos un teorema de grupos abstractos demostrado en el Capitulo 2. Di-cho 
resultado, conoc...
110 CANTULO 3 EL GRUPO SlMiTRlCO 
S. Si S es infinito, A (S) resulta ser un objeto muy "arisco" y complicado. Aun 
en el c...
3.1 Preliminares 111 
x y escribiendo i: 3, . En este simbolo el nlimero que se encuentra 3 1 
en el segundo renglon es la...
112 CAP~T~I3L O EL GRUPO SIM~TRICO 
PROBLEMAS 3.1 
1. Determinar 10s productos. 
2. Calculense todas las potencias de cada...
3.2 Descomposicion en ciclos 113 
(;;:;::7 7). Una permutacidn de la forma (i, i2 ik) 
se llama ciclo de orden k o k-ciclo...
114 CAP~TUL3O EL GRlIPO SIMETRICO 
r2(1) = ~(3)= 4, r3(l) = ~(4)= 1. Esto se puede obtener visualmente zigza-gueando 
entr...
3.2 Descomposicion en ciclos 115 
den 4, y para que (1 2)'" = e, se debe tener que 21m, porque (1 2) es 
de orden 2. Esto ...
146 CAP~ULO3 EL GRUPOS IM~RICO 
ahora realizar el nuevo acomodo para volver las cartas a su posici6n original? 
La primera...
3.2 Descomposici6n en ciclos 
3. ExprCsese como producto de ciclos ajenos y encuCntrese el orden. 
(a) (1 2 3 5 7)(2 4 7 6...
118 CAP~TUL3O EL GRUPO SIM h~lC0 
15. Demukstrese que si T es un k-ciclo, entonces arc-' es tambitn un k-ciclo, 
para cual...
3.3 Permutaciones impares y pares 119 
ConsidCrese a = (1 2); entonces a(1) = 2, a(2) = 1, y a(3) = 3, de tal 
manera que ...
120 CAP~TULO3 r EL GRUPO SIM~RICO 
Procuraremos ahora este resultado, sugiriendo a 10s lectores que lleven a 
cab0 el razo...
3.3 Permutaciones impares y pares 121 
Lo anterior sugiere la siguiente 
DEFINICI~NU. na permutaci6n a E S, es una p&mutac...
122 CAP~TUL3O EL GRUPO SIM~TRICO 
Si a es una permutaci6n par, sea 8(a) = 1, y si a es una permutaci6n impar, 
sea 8(a) = ...
3.3 Permutaciones impares y pares 
2 3 4 5 6 7 8 
:I.- 
(a)(: 4 5 1 3 7 8 9 (b) (1 2 3 4 5 6)(7 8 9). 
(c)(l 2 3 4 5 6)(1 ...
En el estudio del Algebra abstracta llevado a cab0 hasta ahora, se ha presentado 
una clase de sistema abstracto, el cual ...
(b) a + b = b + a para a, b E R. 
(c) (a + b) + c = a + (b + C) para a, b c.E R. 
(d) Existe un elemento.0 E R tal que a +...
4.1 Definiciones y ejemplos '1 27 
para muchos de 10s primeros resultados no se supondra la conmutatividad del 
anillo est...
el anillo de 10s enteros respecto a la adici6n y multiplicaci6n usuales entre ellos. 
Naturalmente, Z es un ejemplo de dom...
4.1 Definiciones y ejemplos 129 
En virtud de que Z, tiene solamente un numero finito de elementos, se le 
llama campo fin...
Para la mayoria de nosotros el concepto de anillo constituia un terreno desco-nocido; 
en cambio, el concepto de campo est...
176 CAP~'~UL5O CAMPOS 
- - 
Recuerdese que un campo F es un anitlo conmutativo con efemento unidad 1 
tal que para todo a ...
5.1 Ejemplos de campos 177 
6. Sean f cualquier campo y F [x] el anillo de polinomios en x sobre F. Como 
F [x] es un domi...
178 CAP~TUL5O CAMPOS 
TEOREMA 5.1. I. L--.-a ca-r a.c ..t.. .e... r ,i. s. t.-i ,c a d., e.. . .u . .n. . campo , .. - es....
5.2 Breve excursion hacia 10s espacios vectoriales 179 
5. Si F es un campo y D = F [x, y], el campo de cocientes de D se ...
180 CAPiTULO 5 CAMPOS 
(a) a(vl + v2) = avl + av2, para a E F, vl, v2 E V. 
(b) (a + P)v = av + pv, para a , /3 E F, v E V...
5.2 Breve excursion hacia 10s espacios vectoriales 181 
6. Sea F cualquier campo y F [x] el anillo de polinomios en x sobr...
182 CAP~TUL5O CAMPOS 
misma definicion de (v,, . . ., v,). La unicidad de esta representacion de-pende 
mucho de 10s eleme...
5.2 Breve excursion hacia 10s espacios vectoriales 
donde todos 10s a;, estan en F, si a1 sustituir xl = PI, . . . , xn = ...
184 CAP~TLIL5O CAMPOS 
donde flu = au- ai,/allp ara i = 2, 3, . . ., k + 1 y j = 2, 3, . . ., n. 
Puesto que (**) es un si...
5.2 Breve excursion hacia 10s espacios vectoriales 185 
Esto conduce a la muy importante 
DEFINICI~NU.n espacio vectorial ...
186 CAP~TUL5O 0 CAMPOS 
DEMOSCRAC16N. Sup6ngase que v E ( vl, . . . , v,) tiene las dos representa-ciones 
v = alvl + + a,...
5.2 Breve excursion hacia 10s espacios vectoriales 187 
DEFINICION. Sea V un espacio vectorial finito-dimensional sobre F;...
188 CAP~TUL5O CAMPOS 
que no todos 10s Pi son cero. Esto contradice la independencia lineal de w,, 
. . . , w, sobre F. Po...
5.2 Breve excursion hacia 10s espacios vectoriales 
PROBLEMAS 5.2 
1. Determinese si 10s siguientes elementos de V, el esp...
190 CAP~TUL5O 0 CAMPOS 
trar w,, . . ., w, en V, donde m + r = dimF(V), tales que v,, . . ., vrn, 
w,, . . . , w, forman u...
5.3 Extensiones de campos 191 
19. Sea D un dominio integral con unidad 1, que es un espacio vectorial finito-dimensional ...
192 CAP~TULO5 CAMPOS 
Por lo tanto, descifrando explicitamente esta suma, se obtiene que 
De esta manera 10s mn elementos ...
5.3 Exiensiones de campos 193 
contiene a F, L debe ser finito dimensional sobre K. De esta manera se satisfa-cen 
todas l...
194 CAP~TUL5O CAMPOS 
llando esto ultimo, se obtiene una expresion polin6mica no trivial en b con coe-ficientes 
racionale...
5.3 Extensiones de campos 195 
como D es un dominio integral o entero y a # 0, se eoncluye que Pear-' + 
Plar-2 + . . + Or...
196 CAP~TULO5 CAMPOS 
ya que p(a) = 0. En forma breve, cualquier expresion polinomica en a sobre 
F se puede expresar como...
5.3 Extensiones de campos 197 
el polinomio minimo de a sobre F, p(x) es del grado minimo posible entre 10s 
elementos de ...
198 CAP~TUL5O CAMPOS 
0 E F [x] ). Demuestrese que F(a) es un campo y que es el menor subcampo 
de K que contiene a ambos ...
5.4 Extensiones finitas 
Si examinamos la demostracion un poco mas cuidadosamente, vemos que 
en realidad se ha probado al...
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Algebra moderna herstein
Próxima SlideShare
Cargando en…5
×

Algebra moderna herstein

1.107 visualizaciones

Publicado el

matemática, abstracta, álgebra abstracta, demostraciones, metodos directo e indirecto, teoria de conjuntos, grupos.

Publicado en: Educación
0 comentarios
1 recomendación
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
1.107
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
92
Comentarios
0
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.

Algebra moderna herstein

  1. 1. 1.3 Funciones o aplicaciones (mapeos) 13 DEMOSTRACIOSNe. verifica una de ellas. Si r E T, entonces (fo f -')(I)= f( f -I([)). Pero ique es f -I(()? Por definicion, f -I(() es aquel elemento so E S tal que t = f(so). iCuil es el so E S tal iue f(so) = f(s)? Claramente resulta que so es el propio s. De esta manera f( f -'(t)) = f(so) = r. En otras palabras, (f 0 f -l)(t) = I para todo t E T; por lo tanto f 0 f -I = iT, la aplicacion iden-tidad en T. Se deja a1 lector la demostracion del ultimo resultado de esta seccion. LEMA 1.3.5. Si f: S + T e iT es la aplicacion identidad de T en si mismo e is es la deS sobre si mismo, entonces iT 0 f = f y f 0 is = f. PROBLEMAS 1.3 1. Para 10s S, T indicados, determinese sif: S + T define una aplicacion; si no, expliquese por que. (a) S = conjunto de las mujeres, T = conjunto de 10s hombres, f(s) = esposo de s. (b) S = conjunto de 10s enteros positivos, T = S, f(s) = s - 1. . (c) S = conjunto de 10s enteros positivos, T = conjunto de 10s enteros no negativos, f(s) = s - 1. (d) S = conjunto de 10s enteros no negativos, T = S, f(s) = s - 1. (e) S = conjunto de 10s enteros, T = S, f(s) = s - 1. (f) S = conjunto de 10s numeros reales, T = S, f(s) = &. (g) S = conjunto de 10s numeros reales positivos, T = S, f(s) = &. 2. En aquellas partes del Problema 1 en donde f define una funcion, deter-minese si ista es inyectiva, suprayectiva o ambas cosas. 3. Si f es una aplicacion inyectiva de S sobre T, pruebese que f -' es una apli-cacion inyectiva de T sobre S. 4. Si f es una aplicacion inyectiva de S sobre T, pruebese que f-I = is. 5. Dese una demostracion de la Observacion que sigue a1 Lema 1.3.2. 6.Sif:S- Tessuprayectivayg: T+ Uyh: T- Usontalesquegof = h 0 f, pruebese que g = h. 7. Si g: S + ~:h: S + T, y si f: T + U es inyectiva, demuistrese que si f 0 g = f 0 h, entonces g =' h. 8. Sean S el conjunto de 10s enteros y T = (1, -I}; definase f: S + T como f(s) = 1 si s es par, f(s) = -1 si s es impar.
  2. 2. 14 CAPRULO 1 * TEMAS FUNDAMENTALES (a) Determinese si esto define una funcion de S en T. (b) Demuestrese que f (s, + s2)= f(s, )f (s2). LQUd~ic e esto acerca de 10s enteros? (c) Determinese si tambien es cierto que f(s,s,) = f(s,) f (s2). 9. Sea S el conjunto de 10s numeros reales. Definansef: S + S por f(s) = s2, y g: S+ S por g(s) = s + 1. (a) Obtener f 0 g. . (b) Obtener g 0 f. (c) ~Esf0.g = go f? 10. Sea S el conjunto de 10s numeros reales y para a, b E S, donde a f 0; de-finase fu,b(~=) as +- b. (a) Demuestrese que faSb 0 fc,d = fu,,, para ciertos u, v reales. Dense valores explicitos para u, v en terminos de a, b, c y d. (b) iEs fo,b o fc,d = fc,d o forb siempre? (c) Hallar todas las forb tales que f,,* f,., = f,., o f,,b. (d) Demuestrese que f0>' existe y encuentrese su forma. 11. Sea S el conjunto de 10s enteros positivos. Definasef: S + S mediante f(1) = 2, f(2) = 3, f (3) = 1, y f (s) = s para cualquier otro s E S. Demuestrese que f 0 f 0 f = is. ;Cud es f-I en este caso? 12. Sea S el conjunto de 10s numeros racionales no negativos, esto es, S = {m/nlm, n enteros, n r" 0), y sea T el conjunto de 10s enteros. (a) Determinese si f: S T dada por f(m/n) = 2'"3" dcfine una funcion valida de S en T. (b) Si no es funcion, jc6m0 se podria modificar la definicion de f para obtener una funcion valida? 13. Sea S el conjunto de 10s enteros positivos de la forma 2"3", donde rn > 0, n > 0, y T el conjunto de 10s ntimeros racionales. Definase f: S + T por f(2"'3") = m/n. Pruebese que f define una funciCln de S en T. (;En que propiedades de 10s enteros se basa esto?) 14. Definasef: S -+ S, donde S es el conjunto de 10s enteros, mediantef(s) = as + b, donde a, b son enteros. Determinense condiciones necesarias y su-ficientes para a, b de tal manera que f 0 f = is. 15. Hallar todas las f de la forma dada en el Problema 14 tales que f 0 f 0 f = 1s. 16. Si f es una aplicacion inyectiva ds S sobre si mismo, demuestrese que (f -')-I = f.
  3. 3. .? EL GRUPO " SIMETRICO Recordemos un teorema de grupos abstractos demostrado en el Capitulo 2. Di-cho resultado, conocido como teorema de Cayley (Teorema 2.5. I), afirma que todo grupo G es isomorfo a un subgrupo de A(S), el conjunto de las aplicacio-nes inyectivas del conjunto S sobre si mismo, para algun S apropiado. En reali-dad, en la demostraci6n que dimos se utiliz6 como S el mismo grupo G considerado simplemente como un conjunto. HistQicamente, 10s grupos se originaron primer0 de esta manera, mucho antes de que fuera definido el concepto de grupo abstracto. En 10s trabajos de Lagrange, Abel, Galois y otros, encontramos resultados sobre grupos de per-mutaciones que fueron demostrados a finales del siglo XVIIIy a principios del XIX. Sin embargo, no fue sino hasta mediados del siglo XIX que Cayley introdujo mAs o menos el concepto abstracto de grupo. Puesto que la estructura de grupos isomorfos es la misma, el teorema de Cayley seiiala un cierto cardcter universal de 10s grupos A(S). Si conocitramos la estructura de todos 10s subgrupos de A (S) para cualquier conjunto S, cono-ceriamos la estructura de todos 10s grupos. Esto seria demasiado pedir. No obs- % tante, se podria intentar explotar este empotramiento de tip0 isomorfo de un grupo arbitrario G dentro de algun A(S). Lo anterior tiene la ventaja de trans-formar G como un sistema abstracto en-algo mds concreto, a saber, un con-junto de aplicaciones precisas de algun conjunto sobre si mismo. No nos ocuparemos de 10s subgrupos de A(S) para un conjunto arbitrario
  4. 4. 110 CANTULO 3 EL GRUPO SlMiTRlCO S. Si S es infinito, A (S) resulta ser un objeto muy "arisco" y complicado. Aun en el caso de que S sea finito, la naturaleza completa de A(S) es virtualmente imposible de determinar. En este capitulo se considera solamente A (S) para un conjunto S finito. Re-cuirdese que si S tiene n elementos, entonces A(S) se llama grupo simktrico de grado n, y se denota con S,,. Los elementos de S,, se llaman permutaciones; se denotaran con letras griegas minusculas. Dado que dos elementos a, T E A(S) se multiplican por medio de la regla (uT)(s) = u(T(s)); Csta tendra el efecto de que cuando se introduzcan simbolos apropiados para representar 10s elementos de S,,, dichos simbolos, o permuta-ciones, se multiplicaran de derecha a izquierda. Si 10s lectores consultan algun otro libro de algebra, deben asegurarse de la manera en que se estkn multipli-cando las permutaciones: de derecha a izquierda o de izquierda a derecha. Con mucha frecuencia, 10s algebristas multiplican permutaciones de izquierda a de-recha. Para ser consistentes con nuestra definicion de composicion de elemen-tos de S,,, lo haremos de derecha a izquierda. Por el teorema de Cayley se sabe que si G es un grupo finito de orden n, entonces G es isomorfo a un subgrupo de S,, y S,, tiene n! elementos. Vagamen-te hablando, se dice normalmente que G es un subgrupo de S,,. Puesto que n es mucho mas pequeiio que n! aun cuando n sea modestamente grande, el gru-po ocupa tan solo un pequeiio rinconcito de S,,. Seria deseable meter a G en un S,, con el menor n posible. Esto es factible para ciertas clases de grupos finitos. Sea S un conjunto finito de n elementos; se puede suponer que S = {x,, x2, . . . , x,}. Dada la permutacion a E S,, = A (S), entonces a(xk) E S para k = 1, 2, . . . , n, de manera que a(xk) = xik para algun ik, 1 I ik I n. Como a es inyectiva, si j # k, entonces xi/ = a(x,) # a(xk) = xi*; por lo tanto, 10s numeros i,, i2, . . . , in son simplemente 10s numeros 1, 2, . . . , n acomodados en algun orden. Evidentemente, la acci6n de a en S se determina por lo que a hace a1 subin-dice j de xi, asi que el simbolo "x" sale sobrando y se puede descartar. En for-ma breve, se puede suponer que S = { 1, 2, . . . , n}. Recordemos lo que se entiende por producto de dos elementos de A (S). Si a, T E A (S), se defini6 UT por (ar)(s) = a(r(s)) para todo s E S. En la Seccion 1.4 del Capitulo 1 se demostro que A(S) satisface cuatro propiedades que se utilizaron posteriormente como modelo para definir el concept0 de grupo abs-tracto. Asi que S,,, en particular, es un grupo relativo a1 producto de apli-caciones. Lo primer0 que se necesita es una manera practica para denotar una per-mutation, es decir, un elemento a de S,,. Una manera clara es hacer una tabla que muestre lo que a hace a cada una de 10s elementos de S. ~stpao dria llamarse grafica de a. Ya se hizo esto anteriormente, a1 expresar a, diga-mos a E S3, en la forma: a: xl + x2, x2 + x3, x3 + xl; per0 resulta inc6modo y consume espacio. Desde luego se puede hacer mas compacta eliminando las
  5. 5. 3.1 Preliminares 111 x y escribiendo i: 3, . En este simbolo el nlimero que se encuentra 3 1 en el segundo renglon es la imagen con respecto a a del niimero que se encuentra en el primer renglon directamente sobre 61. En todo esto no hay nada en es-pecial acerca del 3; funciona igual de bien para cualquier n. Si a E Sn y a(1) = i,, a(2) = iz, . . . , a(n) = in, se emplea el simbolo Observese que no es necesario escribir el primer renglon, en el orden usual 1 2 n; de cualquier manera que se escriba el primer renglon, mientras 10s i, se lleven consigo como corresponde, se tiene todavia a. Por ejemplo, en el caso citado de S3, 2 . . . Si se sabe que a = ... n, , ja que es igual a-'? Es fhcil, i,, simplemente inviertase el simbolo de o y se obtiene o--' = (PruCbese.) En el ejemplo n El elemento identidad -que sera expresado como e- es simplemente e = (: 2 . . . 2 .a. n jC6m0 se traduce el producto de Sn en terminos de estos simbolos? Dado que UT significa: "apliquese primer0 T y a1 resultado apliquese a", a1 formar el producto de 10s simbolos de a y T se examina el numero k del primer ren-glon de T y se ve que numero ik esta directamente abajo de k en la segunda fila de T. 1,uego se observa el lugar de ik en el primer renglon de a y se ve que se encuentra directamente abajo de 61 en el segundo renglon de a. Esta es la imagen de k respecto a or. Luego se pasa por k = 1, 2, . . . , n y se obtiene el simbolo para UT. Esto se realiza a simple vista. Se ilustra lo anterior con dos permutaciones es S,. Entonces UT = 2 3 4 La economia lograda de esta manera no es suficiente a6n. DespuCs de todo, el primer renglon es siempre 1 2 . . n, asi que se podria omitir y escribir 1 2 -.. = (i, i2 ... como (i,, i2, . . . , in). En la siguiente seccion se encontrara una forma mejor y mas breve de representar permutaciones.
  6. 6. 112 CAP~T~I3L O EL GRUPO SIM~TRICO PROBLEMAS 3.1 1. Determinar 10s productos. 2. Calculense todas las potencias de cada permutacion (es decir, evaluar ak para todo k). 1 2 ... - 1 3. Prutbese que l2 "' ... 2 ... n 4. Encukntrese el orden de cada uno de 10s elementos del Problema 2. 5. Encutntrese el orden de 10s productos obtenidos en el Problema 1. Continuarnos el proceso de simplificaci6n de la notacion empleada para repre-sentar una permutacion dada. A1 hacerlo, se obtiene algo mhs que un mero sim-bolo nuevo; se obtiene un mecanismo para descomponer cualquier permutaci6n como un product0 de permutaciones particularmente c6modas. DEFINICI~NS. ean i,, i2, . . ., ik, k enteros dis'tintos en S = (1, 2, . . . , n). El simbolo (i, i2 - - . ik) representarh la permutacibn a E S,, donde a(il) = i2, u(i2) = -4, . . ., a(ij) = ij+l para j < k, a(ik) = i,, y a(s) = s para cualquier s E S si s # i,, i2, . . . , ik. Por consiguiente, en S, la permutacion (1 3 5 4) es la permutacion
  7. 7. 3.2 Descomposicion en ciclos 113 (;;:;::7 7). Una permutacidn de la forma (i, i2 ik) se llama ciclo de orden k o k-ciclo. Para el caso especial k = 2, la permutach (i, i2) se llama transposicidn. Obstrvese que si a = (i, i2 . . . ik), entonces a es igualmente (ik i, i2 - - . ik (i ik il i2 . . - ik-2), y asi su-cesivamente. (PruCbese.) Por ejemplo, Dados dos ciclos, digamos un k-ciclo y un m-ciclo, se dice que son ciclos disjuntos o ajenos si no tienen ningun entero en comun. De donde (1 3 5) y (4 2 6 7) son ciclos ajenos en S,. os ajenos en S,, afirmamos que conmutan. La demostraci6n de ello se deja a1 lector, con la sugerencia de que si a, 7 son ciclos ajenos, se debe verificai que (os)(i) = (sa)(i) para todo i E S = { 1,2, . . . , n}. Expresa-mos este resultado como LEMA 3.2.1. -S--i . a, 7 E S,, son ciclos ajenos, entonces a7 = 70. Consideremos un k-ciclo particular a = (1 2 - . k) en S,. Evidente-mente, a(1) = 2 por la definici6n dada anteriormente; jc6m0 se relaciona 3 con l? Puesto que a(2) = 3, se tiene a2(l) = a(2) = 3. Continuando, se ve que aJ(2) = j + 1 para j I k - 1, mientras que a k(l) = 1. En realidad, se ve que ak = e, donde e es el elemento identidad de S,. Hay dos cosas que se concluyen del parrafo anterior. 1. El orden de un k-ciclo, como elemento de S,, es k. (Prutbese.) 2. Si a = (il i2 - . ik) es un k-ciclo, entonces la drbita de i,, respecto a a (vCase el Problema 27 de la Secci6n 1.4 del Capitulo 1) es {i,, i2, . . . , ik}. De mod0 que es posible advertir que el k-ciclo a = (i, i2 . . - ik) es a = (i, a(i,) a2 ji,) . . . ak-'(i,)). Dada cualquier permutaci6n 7 en S, para i E (1, 2, . . ., n}, con-sidtrese la erbita de i respecto a 7; entonces tenemos que dicha drbita es {i, 7(i), r2(i), . . . 7'-'(i)}, donde rS(i) = i y s es el menor entero positivo con esta propiedad. ConsidCrese el s-ciclo (i 7(i) r2(i) . . 7'-'(i)); se le llama ciclo de 7 determinado por i. Se considera un ejemplo especifico y se encuentran todos sus ciclos. Sea jcual es el ciclo de 7 determinado por l? Afirmamos que es (1 3 4). jPor quC? 7 lleva a1 1 hacia 3, a1 3 hacia 4 y a1 4 hacia 1, y puesto que 7 (1) = 3,
  8. 8. 114 CAP~TUL3O EL GRlIPO SIMETRICO r2(1) = ~(3)= 4, r3(l) = ~(4)= 1. Esto se puede obtener visualmente zigza-gueando entre lineas por medio del trazo punteado. LCual es el ciclo de 7 determinado por 2? Zigza-gueando segun la linea punteada, se ve que el ciclo de 7 determinado por 2 es (2 9 8 7). Los ciclos de 7 determinados por 5 y 6 son (5) y (6), respectivamente, ya que ~dejafij os a 5 y 6. Asi que 10s ciclos de 7son (1 3 4), (2 9 8 7), (5) y (6). Por lo tanto se tiene que 7 = (1 3 4)(2 9 8 7)(5)(6), donde se consideraron estos ciclos -definidos anteriormente- como permutaciones en S9 porque todo entero en S = (1, 2, . . . , 9) aparece en uno, y solamente en un ciclo y la imagen de cualquier i respecto a 7 se lee en el ciclo en que aparece. La permutacion 7 anterior, con la cual se llevo a cab0 el razonamiento que se dio, no reviste nada en especial. El mismo razonamiento seria valido para cualquier permutacion en S, y para cualquier n. Se deja a1 lector la redaccion formal de la demostracion. TEOREMA 3.2.2. T--o da permutation en S, es el product~d e ciclos ajenos. A1 expresar una permutacion a como un producto de ciclos ajenos, se omi-ten todos 10s ciclos de orden 1; es decir, se ignoran 10s i tales que a(i) = i. De esta manera a = (1 2 3)(4 5) en S, es la forma en la que se escribiria a = (1 2 3)(4 5)(6)(7). En otras palabras, a1 escribir a como un producto de k-ciclos, con k > 1, se supone que o deja fijo a cualquier entero que no este presente en ninguno de 10s ciclos. Asi que en el grupo Sll la permutacion 7 = (1 5 6)(2 3 -9 8 7) deja fijos a1 4, 10 y 11. LCual es el orden de un k-ciclo como elemento de S,? Afirmamos que es k. Tambikn aqui se deja la demostracion a1 lector. LEMA 3.2.3. -S-i 7. es un k-ciclo en S,, entonces el orden de 7 es If; -e sto es, rk = e y 7j # e para 0 < j < k. -,- Considkrese la permutacion 7 = (1 2)(3 4 5 6)(7 8 9) en S9. ~Cual es su orden? Puesto que 10s ciclos ajenos (1 2), (3 4 5 6), (7 8 9) con-mutan, 7" = (1 2)"'(3 4 5 6)"(7 - 8 9)"; para que 7" = e se requie-re (12)" = e, (3 4 5 6)" = e, (7 8 9)" = e. (PruCbese.) Para que (7 8 9)" = e, se debe tener que 3 )m, ya que (7 8 9) es de orden 3; para que (3 4 5 6)" = e, se debe tener que 41 m, porque (3 4 5 6) es de or- ,
  9. 9. 3.2 Descomposicion en ciclos 115 den 4, y para que (1 2)'" = e, se debe tener que 21m, porque (1 2) es de orden 2. Esto dice que m debe ser divisible entre 12. Por otra parte, De manera que 7 es de orden 12. De nueva cuenta aqui no entran en escena las propiedades especiales de 7. Lo que se hizo para 7 funciona para cualquier permutacion. Se prueba TEOREMA 3.2.4. -Su p-b ngase que a E S,,t iene descomposici6n cicli-ca en ciclos ajenos de longitud ml, m2, . . . , m,. Entonces el orden .*d-- e zs" -e l'minimo comlin multiplo de m, , m2, . . . , mk, DEMOSTRAC16N. Sea a = 717~ . . 7k, donde 10s ri son ciclos ajenos de longi-tud mi. Puesto que 10s ri son ciclos ajenos, rirj = rjri; por lo tanto si M es el minimo comun multiplo de m,, m2, . . . , m,, entonces aM = . . - 7k)M = 7f"7P - - - 7p = e (ya que 7y = e debido a que 7, es de orden mi y mi(M). Por consiguiente, el orden de a es a lo sumo M. Por otra parte, si aN = e, entonces ry7F - . . 7: = e; esto obliga a que cada riN = e (pruebese) porque las ri son permutaciones ajenas, por lo tanto mil N, ya que ri es de orden mi. De manera que N es divisible por el minimo comun multiplo de m,, m,, . . . , m,, asi que MI N. Por consiguiente, se ve que a es de orden M como se afirma en el teorema. Notese que es imperativo que en el teorema los ciclos Sean ajenos. Por ejemplo, (1 2) y (1 3), que no son ajenos, son cada uno de orden 2, per0 su product0 (1 2)(1 3) = (1 3 2) es de orden 3. Consideremos el Teorema 3.2.4 en el context0 de un acomodo de naipes. Sup6ngase que un conjunto de 13 cartas se acomoda de tal manera que la carta de arriba se coloca en la posicidn de la tercera, la segunda en la de la cuarta, . . . , la i-esima en la posicion i + 2, trabajando en mod 13. Considerado como una permutacion, a, de 1, 2, . . . , 13; el acomodo se convierte en y a es simplemente el 13-ciclo (1 3 5 7 9 11 13 2 4 6 8 10 12), asi que a es de orden 13. ~Cuantavse ces se debe realizar el acomodo para vol-ver las cartas a su orden original? La respuesta es sencillamente el orden de a, es decir, 13. De manera que se requiere realizar 13 veces el acomodo para vol-ver las cartas a su posicion inicial. Modifiquemos el acomodo anterior. supongase que las cartas se acomodan como sigue. Se toma primer0 la carta superior y se coloca en el penultimo lugar y luego se aplica el acomodo descrito anteriormente. ~Cuantavse ces se requiere
  10. 10. 146 CAP~ULO3 EL GRUPOS IM~RICO ahora realizar el nuevo acomodo para volver las cartas a su posici6n original? La primera operaci6n es el acomodo expresado por la permutaci6n 7 = (1 12 11 10 9 8 7 6 5 4 3 2) seguida la a de antes. Asi que se debe calcular a7 y encontrar su orden. Pero por lo tanto es de orden 12. De manera que se requiere realizar 12 veces el aco-mod0 para que las cartas vuelvan a su orden inicial. iSe puede encontrar un acomodo de las 13 cartas que requiera de 42 reali-zaciones, o de 20? ~QuCac omodo requeriria el mayor numero de realizaciones y cud seria dicho numero? Regresamos a la discusi6n general. Considtrese la permutacion (1 2 3); se ve que (1 2 3) = (1 3)(1 2). TambiCn se puede ver que (1 2 3) = (2 3)(1 3). Asi que dos cosas son evidentes. Primero, se puede escribir (1 2 3) como el producto de dos transposiciones, y en a1 menos dos ma-neras distintas. Dado el k-ciclo (i,i2 . - . ik), entonces (il i2 - - . ik) = (i, ik)(il i) - ( i i2), asi que todo k-ciclo es el producto de k transpo-siciones (si k > 1) y se puede realizar de varias maneras, no de manera unica. Como toda permutaci6n es el producto de ciclos ajenos y todo ciclo es un pro-ducto de transposiciones, se tiene TEOREMA 3.2.5. T-"o. d- a permutaci6n en S, es el product0 de transpo-- sic ionnes. Realmente este teorema no es de sorprender ya que, desputs de todo, dice precisamente que cualquier permutaci6n se puede efectuar realizando una serie de intercambios de dos objetos en cada ocasi6n. Vimos que no hay unicidad en la representaci6n de una permutaci6n dada como producto de transposiciones. Sin embargo, como se verd en la Secci6n 3.3, algunos aspectos de dicha descomposici6n son en efecto unicos. PROBLEMAS 3.2 1. DemuCstrese que si a, 7 son dos ciclos ajenos, entonces a7 = 70. 2. Hallar la descomposicion en ciclos y el orden.
  11. 11. 3.2 Descomposici6n en ciclos 3. ExprCsese como producto de ciclos ajenos y encuCntrese el orden. (a) (1 2 3 5 7)(2 4 7 6). (b) (12)(13)(14). (c) (1 2 3 4 5)(1 2 3 4 6)(1 2 3 4 7). (d)(l 2 3)(1 3 2). (e) (1 2 3)(3 5 7 9)(1 2 3)-l. (f) (1 2 3 4 5)3. 4. Formula una demostraci6n completa del Teorema 3.2.2. 5. Demutstrese que un k-ciclo tiene orden k. 6. Encutntrese un acomodo de un juego de 13 naipes que requiera 42 realiza-ciones para regresar las cartas a su orden original. 7. Resutlvase el problema anterior para un acomodo que requiera 20 realiza-ciones. 8. Exprtsense las permutaciones del Problema 3 como producto de transposi-ciones. 9. Dadas las dos transposiciones (1 2) y (1 3), encutntrese una permutacibn a tal que a(1 2)a-' = (1 3). 10. PruCbese que no existe ninguna permutacibn o tal que a(1 2)a-' = (1 2 3). 11. Demostrar que existe una permutaci6n a tal que a(1 2 3)a-' = (4 5 6). 12. Prutbese que no existe ninguna permutacion a tal que a(1 2 3)a-' = (1 2 4)(5 6 7). 13. Prutbese que (1 2) no se puede expresar como producto de 3-ciclos ajenos. 14. Prutbese que para cualquier permutaci6n a, a7a-' es una transposici6n si 7 lo es.
  12. 12. 118 CAP~TUL3O EL GRUPO SIM h~lC0 15. Demukstrese que si T es un k-ciclo, entonces arc-' es tambitn un k-ciclo, para cualquier permutacibn a. 16. Sea un automorfismo de S3. Demutstrese que existe un elemento a E S3 tal que @(T) = U-~TU para toda T E S3. 17. Considtrense (1 2) y (1 2 3 . - n) en S,. DemuCstrese que cualquier subgrupo de S, que contenga a estas dos permutaciones debe ser igual a to-do S, (asi que dichas permutaciones generan S,). 18. Si T, y 7, son dos transposiciones, demuestrese que 7172 se puede expresar como producto de 3-ciclos (no necesariamente ajenos). 19. PruCbese que si 71, 72 y T~ son transposiciones, entonces 717273 Z e, el elemento identidad de S,. 20. Si T,, 72 son transposiciones distintas, demutstrese que 7172 es de orden 2 0 3. 21. Si a, 7 son dos permutaciones que rio tienen simbolos en comun y UT = e, pruebese que a = T = e. 22. Determinar un algoritmo para obtener UTU-I para permutaciones cuales-quiera a, T de S,. 23. Sean a, T dos permutaciones tales que ambas tienen descomposiciones en ciclos ajenos de longitudes m,, m2, . . . , mk. (En tal caso se dice que tienen descomposiciones semejantes en ciclos ajenos.) Prutbese que para al-guna permutaci6n p, T = pap -I. 24. Encutntrese la clase de conjugaci6n en S, de (1 2 . . - n). ~Cuiels el orden del centralizador de (1 2 . . . n) en S,? 25. ResuClvase el problema anterior para a = (1 2)(3 4). 3.3 PERMUTACIONEISM PARES Y PARES En la Seccion 3.2 se observo que aunque toda permutaci6n es el producto de transposiciones, esta descomposici6n no es unica. Sin embargo, se co-mento que ciertos aspectos de esta clase de descomposici6n son unicos. Ahora se examina esto a fondo. Consideremos el caso especial de S3, ya que aqui se puede ver todo explici-tamente. Sea f (x) = (x, - x2)(xl - x3)(x2 - x3) una expresion en las tres va-riables xl, x2, x3. Hacemos que S3 actue sobre f(x) como sigue. Si a E S3, entonces Se examina lo que a* hace a f (x) para unas cuantas de las a en S3.
  13. 13. 3.3 Permutaciones impares y pares 119 ConsidCrese a = (1 2); entonces a(1) = 2, a(2) = 1, y a(3) = 3, de tal manera que Asique a*, queproviene de a = (1 2), cambia el signo de f (x). Examinemos la acci6n de otro elemento, T = (1 2 3), de S3 en f (x). De mod0 que y entonces T*, queproviene de T = (1 2 3), no altera el signo de f (x). ~QuC hay respecto a las otras permutaciones en S3?, ~COa~feOcta n a f (x)? Desde luego, el elemento identidad e induce una aplicacion e* en f (x) que no alte-ra a f (x) en absoluto. iC6m0 afecta T~d,ad a T como antes, a f (x)? Puesto que ~*(fx ) = f (x), se ve de inmediato que ConsidCrese ahora a7 = (1 2)(1 2 3) = (2 3); dado que T no altera a f (x) y a cambia el signo de f (x), a7 debe cambiar el signo de f (x). De manera seme-jante, (1 3) cambia el signo de f (x . Se ha explicado asi la acci6n de cada ele-mento de S3 sobre f (x). Sup6ngase que p E S3 es un pr jducto p = 7172 . rk de transposiciones TI, . . . , T~e;nt onces a1 actuar p sotlre f (x) el signo de f ( x ) cambiari k veces, ya que cada ri cambia dicho signo. Por lo tanto, p*(f (x)) = (-l)kf(x). Si p = u1u2 - . u,, donde al, . . . , a, son transposiciones, razonando del mismo mod0 entonces n* (f (x)) = (-1)'f (x). Por consiguiente, (-l)k f (x) = (-1)'f (x), de donde (-1)' = (-l)k. Esto dice que t y k tienen la mismaparidad; es decir, si t es impar, entonces k debe ser impar, y si t es par, entonces k debe ser par. Lo anterior sugiere que aunque la descomposici6n de una permutaci6n da-da a como un product0 de transposiciones no es unica, la paridad del nrimerg d- e transposic-i.o nes en una de tales~desco-m posicionesd e a podria ser rinica.
  14. 14. 120 CAP~TULO3 r EL GRUPO SIM~RICO Procuraremos ahora este resultado, sugiriendo a 10s lectores que lleven a cab0 el razonarniento que se hace para n arbitrario, para el caso especial n = 4. Como se hizo anteriormente, sea X .-. (x2 - x,) ... (x,-~ - X,) donde en este producto i asume todos 10s valores desde 1 hasta n - 1 inclusive, y j todos aqukllos desde 2 hasta n inclusive. Si a E S,, definase a* sobre f (x) mediante Si a, T E S,, entonces Asi que (or)* = a*r* cuando se aplica a f (x). ~QuCha ce una transposici6n T a f (x)? Afirmamos que T *( f (x)) = -f (x). Para probarlo, suponiendo que T = (i j) donde i < j, contamos el numero de (xu - x,), con u < v, que son transformados en un (x, - xb) con a > b. Esto sucede para (xu - xi) si i < u < j, para (xi - x,) si i < v < j, y final-mente, para (xi - x,). Cada uno de ellos conduce a un cambio de signo en f (x) y puesto que hay 2(j - i - 1 ) + 1 de tales, es decir, un numero impar de ellos, se obtiene un numero impar de cambios de signo en f(x) cuando sobre este valor actua T*. De manera que T*( f (x)) = -f (x). Por lo tanto nuestra afirmaci6n de que T *(f (x)) = -f (x) para toda transposici6n 7, queda justi-ficada. Si a es cualquier permutaci6n en S,, y a = 7172 rk, donde T,, 7, . . . , tk son transposiciones, entonces a * = (~~7. .2 - rk)* = T 1*T2* . . . T/: cuando actua sobre f (x), y puesto que cada r,*(f (x)) = -f (x), se Ve que a *(f (x)) = (-l)v(x). De manera semejante, si a = r1r2 . . . C,, donde r1, r2, . . . , ft son transposiciones, entonces a *( f (x)) = (-l)'f(x). Comparando estas dos evalua-ciones de a *( f (x) ) , se concluye que (- 1) = (- 1) '. De manera que estas dos descomposiciones de a como producto de transposiciones son de la misma pari-dad. &r-coekuieete, cualquier permutacidn e~elp~o~~-d_ec e-_ntu~moe ro im-par de transposiciones o b-i-e n el product0 de un ntimero par de transposiciones, y- ningti-n pr o-d -u _"ct o-deo n n t_i_ m_ e__r o_ par de tramposici~nespuedes er i&al a un pre -- -- -- - -- duct0 de gn -numero imparedeetransposicione_s.
  15. 15. 3.3 Permutaciones impares y pares 121 Lo anterior sugiere la siguiente DEFINICI~NU. na permutaci6n a E S, es una p&mutacidn impar si a es el producto de un numero impar de transposiciones, y es una per-mutacidn par si o es el producto de un numero par de transposiciones. Lo que hemos probado anteriormente es TEOREMA 3.3.1. -U--n a- permutaci6n en S, es bien sea una permuta-c- i.6...n impar o bien par, per0 no puede se-r ambas. Con el apoyo del Teorema 3.3.1 se pueden deducir varias de sus conse-cuencias. Sea A, el conjunto de todas las permutaciones pares; si a, 7 E A,, enton-ces se tiene de inmediato que a7 E A,. Puesto que de esta manera A, es un sub-conjunto cerrado finito del grupo (finito) s,, A, es un subgrupo de s,, por el Lema 2.3.2. A, se llama grupo alternante de grado n. Se puede demostrar que A, es un subgrupo de S, de otra manera. Ya vi-mos que A,, es cerrado respecto al producto de S,, asi que para saber que A, es un subgrupo de S, se requiere simplemente demostrar que a E S, implica que a-' E S,. Afirmamos que para cualquier permutaci6n a, a y a-I son de la mis-ma paridad. LPor qud? Bien, si a = 7172 s s - 7k, donde las ri son transposicio-nes, entonces ya que 7,~'= 7i; por lo tanto, se observa que la paridad de a y a-I es (-l)k, asi que son de igual paridad. Esto demuestra desde luego que a E A, implica que a-I E A,, de donde A, es un subgrupo de S,. Pero ello prueba un poco mAs, a saber, que A, es un subgrupo normal de S,. Porque sup6ngase que a E A, y p E S,. ~CUeAs la paridad de -p -'up? Por lo anterior, p y p -' son de la misma paridad y a es una permutaci6n par asi que p-laap es una permutaci6n par, por consiguiente estA en A,. De mane-ra que A, es un subgrupo normal de s,. Resumimos lo efectuado en el TEOREMA 3.3.2. -E-l grupo alternante A d-e grad-o n., A ,, es u-n sub~ru-po normal de S,. ---' ..- *- - -*-a Examinamos esto de otra manera todavia. De las propias definiciones invo-lucradas se tienen las siguientes reglas sencillas para el producto de permutaciones: 1. El producto de dos permutaciones pares es par. 2. El producto de dos permutaciones impares es par. 3. El producto de una permutaci6n par por una impar (o el de una impar por una par) es impar.
  16. 16. 122 CAP~TUL3O EL GRUPO SIM~TRICO Si a es una permutaci6n par, sea 8(a) = 1, y si a es una permutaci6n impar, sea 8(a) = -1. Las reglas precedentes relativas a productos se traducen en O(a7) = 8(a)0(7), de manera que 8 es un homomorfismo de S, sobre el grupo E = { 1, -1 ) de orden 2 respecto a la multiplication. ~Cuiiels el ndcleo, N, de 8? En virtud de la propia definici6n de A,, se ve que N = A,. Asi que por el primer teorema de homomorfismos, E = S,/A,. De esta manera 2 = (E1 = (S,/A,( = JS,I/(A,J, si n > 1. Esto da por resultado que (A,[ = %IS,J = %n!. Por lo tanto, TEOREMA 3.3.3. -P-a--r a n > 1, A, es un subgrupo normal de S, -'" - -* . . . - . -* . . &,.orden .5(2 n_!. COROLARIO. Si n > 1, en S, hay 1/2 n! permutaciones pares y %n! permutaciones &pares. Antes de concluir la presente seccidn, se hace un breve comentario final res-pecto a la demostraci6n del Teorema 3.3.1. Se conocen muchas demostraciones diferentes de este teorema. Sinceramente, no nos gusta particularmente ningu-na de ellas. Algunas involucran lo que se podria llamar un "proceso de colec-ci6n9', donde se trata de demostrar que e no se puede expresar como el producto de un nlimero impar de transposiciones, haciendo la suposici6n de que si es po-sible, y mediante una manipulaci6n apropiada de dicho producto se le reduce hasta que se obtiene una contradicci6n. Otras demostraciones utilizan diferen-tes artificios. La demostraci6n que se dio saca provecho del artefact0 que cons-tituye la funci6n f (x), la cual, en cierto sentido, es ajena a la cuesti6n tratada. Sin embargo, la demostraci6n dada es probablemente la miis clara de todas ellas, y por tal motivo se utiliz6. Finalmente, el grupo A,, para n r 5, es un grupo sumamente interesante. En el Capitulo 6 se demostrarii que 10s dnicos subgrupos normales de A,, pa-ra n r 5, son (e) y el mismo A,. Un grupo no abeliano que tenga esta propie-dad se llama grupo simple (no debe confundirse con grupo facil). De manera que 10s A, para n r 5 proporcionan una familia infinita de grupos simples. Existen otras familias infinitas de grupos simples finitos. En 10s liltimos 20 aiios aproximadamente 10s esfuerzos heroicos de un grupo de algebristas han deter-minado todos 10s grupos simples finitos. La determinacibn de dichos grupos simples comprende cerca de 10 000 piiginas impresas. Resulta muy interesante saber que cualquier grupo simple finito debe tener orden par. PROBLEMAS 3.3 1. Determinar la paridad de cada permutaci6n.
  17. 17. 3.3 Permutaciones impares y pares 2 3 4 5 6 7 8 :I.- (a)(: 4 5 1 3 7 8 9 (b) (1 2 3 4 5 6)(7 8 9). (c)(l 2 3 4 5 6)(1 2 3 4 5 7). (d) (1 2)(1 2 3)(4 5)(5 6 8)(1 7 9). 2. Si a es un k-ciclo, demukstrese que a es una permutaci6n impar si k es par, y es una permutaci6n par si k es impar. 3. PruCbese que a y 7-'a7, para a, 7 E S,,, cualesquiera, son de la misma paridad. 4. Si m < n, se puede decir que S,,, C S,, considerando que j E S,, actda sobre 1, 2, . . . , m, . . . , n como lo hizo sobre 1, 2, . . . , rn y que a deja a j > m fijo. PruCbese que la paridad de una permutacibn en S,, cuando se con-sidera de esta manera como elemento de s,,, no cambia. 5; Sup6ngase que se sabe que la permutation en S,, donde las imagenes de 5 y de 4 se han perdido, es una permutaci6n par. ~Cuhlesd eben ser dichas imagenes? 6. Si n r 3, demutstrese que todo elemento de A, es un producto de ci-clos de orden 3. 7. Demubtrese que todo elemento de A, es un producto de ciclos de orden n. 8. Hallar un subgrupo normal en A, de orden 4. PROBLEMAS DIF~cILES (EN REALIDAD, MUY DIFiCILES) I 9. Si n r 5 y (e) f N c A, es un subgrupo normal de A,, demutstrese que N debe contener un ciclo de orden 3. 10. Aplicando el resultado del Problema 9, demukstrese que si n r 5, 10s dni-cos subgrupos normales de A, son (e) y el mismo A,. (Asi que 10s grupos A, para n r 5 dan una familia infinita de grupos simples.)
  18. 18. En el estudio del Algebra abstracta llevado a cab0 hasta ahora, se ha presentado una clase de sistema abstracto, el cual desempefia un papel central en el dlgebra de hoy en dia: el concept0 de grupo. Debido a que un grupo es un sistema alge-braic~ q ue consta solamente de una operaci6n y que no es necesario que satisfaga la regla ab = ba, en cierto mod0 va en contra de nuestra experiencia anterior con el algebra. Trabajamos con sistemas en donde se podia tanto sumar como multiplicar elementos y se satisfacia la ley conmutativa de la multiplicaci6n ab = ba. Ademds, dichos sistemas conocidos procedieron normalmente de conjuntos de numeros -enteros, racionales, reales y en algunos casos, complejos. El siguiente objeto algebraic0 que consideraremos es un anillo. En muchos aspectos este sistema hara recordar mds lo conocido anteriormente que 10s grupos. Por una parte 10s anillos serdn dotados con adici6n y multiplicaci6n, y estas estaran sujetas a muchas de las reglas conocidas de la aritmetica. Por otra parte, no es necesario que 10s anillos provengan de 10s sistemas numdricos usuales. En efecto, normalmente tendrdn poco que ver con ellos. Aunque muchas de las reglas formales de la aritmetica son vdlidas, ocurrirdn muchos fendmenos extrafios -0 que pudieran parecer asi. A medida que se vaya avanzando y se consideren ejemplos de anillos, se verd que se presentan algunas de estas cosas. Luego de este predmbulo estamos preparados para empezar. Naturalmente lo primer0 que se debe hacer es definir aquello de lo que se va a tratar: DEFINICI~NSe. dice que un conjunto no vacio R es un anitlo si tiene dos operaciones + y . tales que: (a) a, b E R implica que a + b E R.
  19. 19. (b) a + b = b + a para a, b E R. (c) (a + b) + c = a + (b + C) para a, b c.E R. (d) Existe un elemento.0 E R tal que a + 0 = a para todo a E R. (e) Dado a E R, existe un b E R tal que a + b = 0. (b se:xpresara como -a). Notese que lo que se ha dicho hasta ahora es que R es un grspo abe-limo respecto a + . Ahora se explican las reglas de la multiplicacion en R. (f) a, b E R implica que a . b E R. (g) a . (b . C) = (a . b) . c para a, b, c E R. Esto es todo lo que se exige por lo que se refiere a la multiplicacion sola. Mas no se dejan las operaciones + y aisladas entre si, sino que se entre-lazan mediante las dos leyes distributivas: (h) a-(b+c)=a.b+a.c Y (b+c).a=b.a+c-a, para a, b, c E R. Estos axiomas que definen un anillo parecen conocidos. Asi debe ser, ya que el concept0 de anillo se introdujo como una generalizaci6n de lo que sucede en el conjunto de 10s enteros. Debido a1 axioma (g), la ley asociativa de la mul-tiplicacion, 10s anillos que se han definido se llaman normalmente anillos aso-ciativos. Los anillos no asociativos existen y algunos de ellos desempefian un papel importante en las matemtiticas. Pero no nos ocuparemos aqui de ellos. De manera que cuando se utilice la palabra "anillo" siempre significara "ani- 110 asociativo" . Aunque 10s axiomas del (a) a1 (h) son conocidos, existen ciertas cosas que ellos no dicen. Consideramos algunas de las reglas conocidas que no se exigen para un anillo general. En primer lugar, no se postulo la existencia de un elemento 1 E R tal que a . 1 = 1 . a = a para todo a E R. Muchos de 10s ejemplos que se encontraran tendrtin tal elemento y en ese caso se dice que R es un anillo con unidad. Con toda franqueza debemos sefialar que muchos algebristas exigen que un anillo tenga elemento unidad. Nosotros exigiremos que 1 # 0; o sea que el anillo con-sistente solamente del 0 no es un anillo con unidad. En segundo lugar, por nuestra experiencia anterior con cosas de esta clase, siempre que a - b = 0 se concluia que a = 0 o bien b = 0. No es necesario que esto sea cierto en un anillo, en general. Cuando es vtilido, el anillo es en cierto mod0 miis grato y se le da un nombre especial: se le llama dominio. En tercer lugar, en 10s axiomas que definen un anillo no se dice nada que implique la ley conmutativa de la multiplicaci6n a . b = b a. Existen anillos no conmutativos en donde no es vtilida esta ley; pronto se veran algunos. En este capitulo nos ocuparemos principalmente de 10s anillos conmutativos, per0
  20. 20. 4.1 Definiciones y ejemplos '1 27 para muchos de 10s primeros resultados no se supondra la conmutatividad del anillo estudiado. Como se menciono anteriormente, algunos aspectos hacen a ciertos anillos mas agradables que otros, y por lo tanto merecen tener un nombre especial. De inmediato se da una lista de definiciones para algunos de ellos. I i DEFINICC~UNn. anillo conmutativo R es un dominio integral si a . b = 0 en R implica que a = 0 o bien b = 0. Se debe sefialar que algunos libros de algebra exigen que un dominio integral contenga un elemento unidad. A1 leer otro libro, el lector debe verificar si tal es el caso. Los enteros, Z, proporcionan un ejemplo obvio de un dominio integral. Se consideraran otros un poco menos obvios. I DEFINICI~NSe. dice que un anillo con unidad, R, es un aniIIo con divisidn si para a f 0 en R existe un elemento b E R (que normalmente se expresa como a-') tal que a a-' = a-' . a = 1. La razon de llamar a un anillo de esta clase un anillo con division es bas-tante evidente: porque se puede dividir (a1 menos teniendo presentes 10s lados izquierdos y derechos). Aunque 10s anillos con division no conmutativos existen con mucha frecuencia y desempeiian un papel importante en el algebra no con-mutativa, son bastante complicados y solo se dara un ejemplo de ellos. Dicho anillo con division es el gran clasico presentado por Hamilton en 1843 que se conoce como el anillo de 10s cuaternios. (Vease el Ejemplo 12 que sigue.) Finalmente, pasamos a1 ejemplo tal vez mas interesante de una clase de anillos: el campo. I DEFINICI~NSe. dice que un anillo R es un campo si R es un anillo con divisidn conmutativo. En otras palabras, un campo es un anillo conmutativo en el cual se puede dividir libremente entre elementos distintos de cero. Dicho de otra manera, R es un campo si sus elementos distintos de cero forman un grupo abeliano respecto a1 producto . en R. Se tienen a la mano muchos ejemplos de campos: 10s numeros racionales, 10s numeros reales, 10s numeros complejos. Pero se veran muchos mas ejemplos, tal vez menos conocidos. El Capitulo 5 se dedicara al estudio de 10s campos. El resto de la presente seccion se empleara en considerar algunos ejemplos de anillos. Se omitira el para el producto y a . b se expresarii simplemenje como ab. 1. Es obvio que el anillo que se debe escoger como primer ejemplo es 2,
  21. 21. el anillo de 10s enteros respecto a la adici6n y multiplicaci6n usuales entre ellos. Naturalmente, Z es un ejemplo de dominio integral. . 2. El segundo ejemplo es una eleccion igualmente obvia. Sea Q el conjunto de 10s numeros racionales. Como ya se sabe, Q satisface todas las reglas nece-sarias para un campo, asi que Q es un campo. 3. Los numeros reales, R, tambitn proporcionan un ejemplo de campo. 4. Los numeros complejos, C, forman un campo. Obstrvese que Q C R C C; lo anterior se describe diciendo que Q es un subcampo de R (y de C ) y R es un subcampo de C. 5. Sea R = Z6, 10s enteros mod 6, con la adici6n y la multiplication defi-nidas por [a] + [b] = [a + b] y [a:l[b] = [ab]. N6tese que [O] es el 0 requerido por 10s axiomas de anillo y [l] es el ele-mento unidad de R. Observese, no obstante, que Z6 no es un dominio integral, ya que [2] 131 = [6] = [0], aunque [2] # [0] y [3] # [O]. R es un anillo con-mutativo con unidad. El ejemplo anterior sugiere la DEFINICI~NU.n elemento a # 0 de un anillo R es un divisor de cero en R si ab = 0 para algun b # 0 de R. En realidad lo que se acaba de definir se deberia llamar divisor de cero por la izquierda; sin embargo, dado que se tratarh principalmente de anillos con-mutativos, no se necesitara ninguna distinci6n izquierda-derecha para 10s divi-sores de cero. Obstrvese que tanto [2] como [3] son divisores de cero en Z6. Un dominio integral es, desde luego, un anillo conmutativo sin divisores de cero. 6. Sea R = Z,, el anillo de 10s enteros mod 5. Por supuesto, R es un anillo conmutativo con unidad; per0 es algo mas; en realidad, es un campo. Sus elementos distintos de cero son [ 1 1,121, [3], [4] y se observa que [2] [3] = [6] = [I], y [l ] y [4] son sus propios inversos. Asi que todo elemento distinto de cero de Z, tiene inverso en Z,. Generalizamos el Ejemplo 6 para cualquier primo p. 7. Sea Z, el anillo de 10s enteros modp, donde p es primo. Es evidente de nuevo que Z, es un anillo conmutativo con unidad. Afirmamos que Z, es un campo. Para tal fin, obsbvese que si [a] # [0], entonces p 4 a. Por lo tanto, por el teorema de Fermat (corolario del Teorema 2.4.8), a,-' r 1 (p). Para las clases [.I, lo anterior dice que [a*'] = [ 1 1. Pero [a*'] = [alp-', asi que = [I]; por consiguiente, [alp2 es el inverso requerido para {a] en Z,, por lo tanto Z, es un campo.
  22. 22. 4.1 Definiciones y ejemplos 129 En virtud de que Z, tiene solamente un numero finito de elementos, se le llama campo finito. Posteriormente construiremos campos finitos diferentes a 10s z,. 8. Sea Q el conjunto de 10s numeros racionales; si a E Q, se puede escribir a = (n/n, donde m y n no tienen factores comunes (son ielativamente primos). LlAmese a tsta la forma reducida de a. Sea R el conjunto de todos 10s a E Q en cuya forma reducida el denominador sea impar. Respecto a la adicidn y mul-tiplicacidn usuales en Q el conjunto R forma un anillo, que es un dominio integral con unidad per0 no es un campo, ya que i, el inverso necesario de 2, no esd en R. ~Exactamente cuAles elementos de R tienen sus inversos en R? 9. Sea R el conjunto de todos 10s a E Q en cuya forma reducida el denomi-nador no sea divisible por un primo fijop. Como en el Ejemplo 7, R es un anillo respecto a la adicidn y la multiplicacidn usuales en Q, es un dominio integral per0 no es un campo. iCuAles elementos de R tienen sus inversos en R? Los Ejemplos 8 y 9 son, desde luego, subanillos de Q. Damos otro ejemplo conmutativo mb. ~stpero viene del CAlculo. 10. Sea R el conjunto de todas las funciones continuas reales definidas en el interval0 unitario cerrado [0, 11. Para f, g E R y x E [0, 1 ] definase (f + g)(x) = f (x) + g(x) y (f . g)(x) = f (x)g(x). De 10s resultados del chlcu-lo, se tiene que f + g y f . g son tambitn funciones continuas en [0, 11. Con estas operaciones R es un anillo conmutativo. R no es un dominio integral. Por ejemplo, si f(x) = -x + + para 0 I x I $ y f(x) = 0 para + < x I 1, y si g(x) = 0 para 0 I x r 4 y g(x) = 2x - 1 para i < x I 1, entonces f, g E R y, como es fAcil verificar, f . g = 0. R tiene un elemento unidad, a saber la funcidn e definida por e(x) = 1 para todo x E [0, 11. ~Cualese le-mentos de R tienen sus inversos en R? Seria deseable considerar algunos ejemplos de anillos no conmutativos. ~stos no son tan fAciles de conseguir, a pesar de que 10s anillos no conrnutativos existen en abundancia, debido a que estamos suponiendo que el lector no tiene cono-cimientos de Algebra lineal. La primera fuente, la mk facil y natural, de tales ejemplos es el conjunto de matrices sobre un campo. De manera que en nuestro primer ejemplo no conmutativo crearemos en realidad las matrices 2 x 2 con componentes reales. 11. Sean F el campo de 10s numeros reales y R el conjunto de todas las formaciones cuadradas donde a, b, c, d son numeros reales cualesquiera. Para tales formaciones cua-dradas se define la adicidn de una manera natural por medio de
  23. 23. Para la mayoria de nosotros el concepto de anillo constituia un terreno desco-nocido; en cambio, el concepto de campo esta mas relacionado con nuestra ex-periencia. Mientras que el unico anillo, aparte de un campo, que podria haberse considerado en la ensefianza elemental era el anillo de 10s enteros, se tenia un poco mas de experiencia trabajando con 10s numeros racionales, 10s reales y, en algunos casos, 10s numeros complejos, a1 resolver ecuaciones linea-les y cuadraticas. La capacidad de dividir entre elementos distintos de cero proporciono cierta libertad de accion para resolver una amplia variedad de problemas, la cual podria no haberse tenido con 10s enteros. De mod0 que a primera vista, cuando se empieza a trabajar con campos se siente uno como en su casa. A medida que se penetra mAs a fondo en la ma-teria, se empiezan a encontrar nuevas ideas y nuevas Areas de resultados. Se en-cuentra uno otra vez en terreno desconocido, per0 siendo optimista, despuCs de cierta exposicion del tema tratado, 10s conceptos se volveran naturales. Los campos desempeilan un papel importante en la geometria, la teoria de las ecuaciones y en ciertas areas muy importantes de la teoria de 10s numeros. Se hara referencia a cada uno de estos aspectos a medida que se avance. Desa-fortunadamente, debido a la maquinaria tCcnica que se necesitaria desarrollar, no se considera la teoria de Galois, que es una parte muy bella de la materia. Se espera que muchos de 10s lectores entren en contact0 con la teoria de Galois, y mas alla de Csta, en su instruccion matematica posterior. 175
  24. 24. 176 CAP~'~UL5O CAMPOS - - Recuerdese que un campo F es un anitlo conmutativo con efemento unidad 1 tal que para todo a E F distinto de cero existe un elemento a-' E F de tal mo-do que aa-' = 1. En otras palabras, 10s campos son "algo parecido" a 10s racionales Q. Pero jes asi en realidad? Los enteros m6dp,,Zp, donde p es pri-mo, forman un campo; en Zp se tiene la relacion - (p veces) Nada semejante a esto sucede en Q. Existen diferencias aun mas notables entre 10s campos: como se factorizan 10s polinomios en ellos, propiedades especiales de las que se veran algunos ejemplos, etcttera. Se empieza con varios ejemplos conocidos. 1. Q, el campo de 10s numeros racionales. 2. R, el campo de 10s numeros reales. 3. C, el campo de 10s numeros complejos. 4. Sea F = {a + bila, b E Q) C C. Es relativamente sencillo ver que F es un campo. Se verifica solamente que si a + bi # 0 esta en F, entonces (a + bi)-' tambitn esta en F. Pero ja qut es igual (a + bi)-'? Simplemente es a - ib (Verifiquese) (a2 + b2) (a2 + b2) y puesto que a2 + b2 # 0 y es racional, entonces a/(a2 + b2) y b/(a2 + b2) son tambiCn racionales, por consiguiente (a + bi)-' esta efectivamente en F. 5. Sea F = (a + ~1 a, b E Q) C W. Nuevamente la verification de que F es un campo no es muy dificil. Tambitn en este caso solamente se demuestra la existencia en F de 10s elementos distintos de cero de F. Supdngase que a + bJZ # 0 esta en F; entonces, dado que JTes irracional, a' - 2b2 # 0. Como se obtiene que (a + bv'B(a/c - ab/c) = 1, donde c = a2 - 2b2. El inverso requerido para a + bfi es a/c - Ab/c, el cual desde luego es un elemento de F, ya que a/c y b/c son racionales.
  25. 25. 5.1 Ejemplos de campos 177 6. Sean f cualquier campo y F [x] el anillo de polinomios en x sobre F. Como F [x] es un dominio integral o entero, tiene un campo de cocientes por el Teore-ma 4.7.1, el cual consta de todos 10s cocientes f (x)/g(x), donde f (x) y g(x) estan en F [x] y g(x) # 0. Este campo de cocientes de F [x] se denota por F(x) y se llama c.- ampo de 1as funciones rationales en x sobre F. 7. Z,, 10s enteros m6dulo el primo p, es un campo (finito). > 8. En el Ejemplo 2 de la Seccion 4.4 del Capitulo 4 se vio como construir un campo que tenga nueve elementos. Estos ocho ejemplos son especificos. Utilizando 10s teoremas que se han de-mostrado anteriormente, se tienen algunas construcciones generales de cam-pos. 9. Si D es cualquier dominio entero, entonces tiene campo de cocientes, por el Teorema 4.7.1, el cual consiste de todas las fracciones a/b, donde a y b estan en.D y b # 0. 10. Si R es un anillo conmutativo con elemento unidad 1 y M es un ideal mhimo de R, entonces el Teorema 4.4.2 indica que R/M es un campo. Este ultimo ejemplo, para R's particulares, desempefiara un papel impor-tante en lo que sigue en este capitulo. Se podria continuar viendo mas ejemplos, particularmente con casos espe-ciales de 10s Ejemplos 9 y 10, per0 10s diez considerados anteriormente mues-tran una cierta variedad de campos y se observa que no es muy dificil encontrarse con ellos. En 10s Ejemplos 7 y 8 10s campos son finitos. Si F es un campo finito con q elementos, considerando a F simplemente como un grupo abeliano respecto a su adicion " + ", se tiene, por el Teorema 2.4.5, que qx = 0 para todo x E F. Este es un comportamiento muy distinto a1 que ocurre en 10s campos usuales, como el de 10s racionales y el de 10s reales. Esta clase de comportamiento se seiiala en la DEFINICI~NSe. dice que un campo F tiene (o es de) caracterktica p # 0 si para cierto entero positivop, px = 0 para todo x E F, y ningun entero positivo menor que p goza de esta propiedad. Si un campo F no es de caracteristica p # 0 para ningun entero positivo p, se le llama campo de caracterktica 0. De esta manera Q, R, C son campos de caracteristica 0, mientras que Z3 es de caracteristica 3. En la definicion anterior el uso de la letra p para denotar la caracteristica es altamente sugestivo, ya que siempre se ha utilizadop para representar un nu-mero primo. En realidad, como se observa en el teorema siguiente, este empleo de p resulta consistente.
  26. 26. 178 CAP~TUL5O CAMPOS TEOREMA 5.1. I. L--.-a ca-r a.c ..t.. .e... r ,i. s. t.-i ,c a d., e.. . .u . .n. . campo , .. - es. ..-c ero , . , . . .. o - b. .i- e .. n, . un . nu.- -m ero primo. -. -...- - DEMOSTRACI~NS.i un campo F tiene caracteristica 0, no hay nada mhs que decir. Supdngase entonces que mx = 0 para todo x E F, donde m es un entero positivo. Sea p el menor entero positivo tal que px = 0 para todo x E F. Afir-mamos quep es primo. Sip = uv, donde u > 1 y v > 1 son enteros, entonces se tiene que en F, (ul )(vl ) = (uv)l = 0, donde 1 es el elemento unidad de F. Pero por ser Fun campo, es un dominio integral (Problema 1); por lo tanto, ul = 0 o bien vl = 0. En cualquier caso se obtiene que 0 = (ul)(x) = ux [o, de manera semejante, 0 = (v1)x = vx] para cualquier x en F. Pero esto contradice la elecci6n de p como el menor entero con esta propiedad. Por consiguiente, p es primo. ObsCrvese que no se emple6 toda la fuerza de la hip6tesis de que F era un campo. Solamente se ocupo que F era un dominio integral (con unidad 1). De manera que si se define la caracteristica de un dominio integral como cero o el menor entero positivo p tal quepx = 0 para toda x E F, se obtiene el mismo resultado. Por consiguiente, se tiene el COROLARSIOi D. es un dominio integral (o entero), entonces su caracteristica es cero o bien un numero primo. PROBLEMAS 5.1 1. DemuCstrese que un campo es un dominio integral. 2. PruCbese el corolario aun en el caso en que D no tenga elemento unidad. 3. Dado un anillo R, sean S = R [x] el anillo de polinomios en x sobre R y T = S [y] el anillo de polinomios en y sobre S. DemuCstrese que: (a) Cualquier elemento f (x, y) de T tiene la forma CCaUx'yj, donde 10s aij estan en R. (b) En tirminos de la forma de f (x, y) en Tdada en la parte (a), proporcio-nese la condicion para la igualdad de dos elementos f (x, y) y g(x, y) de T. (c) En terminos de la forma de f (x, y) dada en (a), proporcionese la formula de f (x, Y) + g(x, Y 1, para f (x, Y 1, g(x, Y) en T. (d) Proporcionese la forma del product0 def (x, y) y g(x, y) si ambos es-tan en T. (T se llama anillo de polinomios en dos variables sobre R y se denota por R [x, y].) 4. Si D es un dominio integral o entero, demukstrese que D [x, y] es tambiCn un dominio integral o entero.
  27. 27. 5.2 Breve excursion hacia 10s espacios vectoriales 179 5. Si F es un campo y D = F [x, y], el campo de cocientes de D se llama cam-po de funciones racionales en dos variables sobre F y se denota usualmente por F(x, y). Proporcionese la forma del elemento ~ipicod e F(x, y). 6. PruCbese que F(x, y) es isomorfo a F(y, x). 7. Si F es un campo de caracteristica p # 0, demuestrese que (a + b)P = aP + bP para todo a, b E F. (Sugerencia: Utilice el teorema del bino-mio y el hecho de que p es primo.) I 8. Si F es un campo de caracteristica p # 0, demuestrese que (a + b)m = am + bm, donde m = pn, para todo a, b en F y cualquier entero posi-tivo n. 9. Sea Fun campo de caracteristicap # 0 y sea cp: F + F definida por cp(a) = aP para todo a E F. (a) DemuCstrese que cp define un monomorfismo de F en 61 mismo. (b) Proporcionese un ejemplo de un campo F donde cp no sea suprayectiva. (Muy dificil.) 10. Si F es un campo finito de caracteristica p, demuestrese que la aplicacion cp definida anteriormente es suprayectiva, por consiguiente es un automor-fismo de F. - - - Para abordar las cosas deseables de realizar en la teoria de 10s campos, se re-quieren ciertos instrumentos tecnicos que todavia no se tienen. Esto implica la relacion de dos campos K > F y lo que seria bueno considerar como cierta me-dida de la magnitud de K comparada con la de F. Dicha magnitud es lo que se llamara dimension o grado de K sobre F. Sin embargo, para tales consideraciones, se requiere de K mucho menos que ser un campo. Seria una negligencia si se probaran estos resultados sola-mente para el context0 especial de dos campos K > F, en virtud de que las mis-mas ideas, demostraciones y espiritu son validos en una situacion mucho mb amplia. Se necesita el concept0 de espacio vectorial sobre un campo F. Ademas del hecho de que lo que se realice en 10s espacios vectoriales sera importante en relacion a 10s campos, las ideas desarrolladas aparecen en todas las partes de las matematicas. Los estudiantes de algebra deben ver estos temas en alguna etapa de su instruccion. Un lugar apropiado es aqui precisamente. DEFINICIONU. n espacio vectorial V sobre un carnpo F es un grupo abeliano respecto a la adicion " + " tal que para todo a! E F y todo v E V existe un elemento a!v E V de tal mod0 que:
  28. 28. 180 CAPiTULO 5 CAMPOS (a) a(vl + v2) = avl + av2, para a E F, vl, v2 E V. (b) (a + P)v = av + pv, para a , /3 E F, v E V. (c) ~(Pv=) (aP)v, para a , E F, v E V. (d) lv = v para todo v E V, donde 1 es el elemento unidad de F. Cuando se trate de espacios vectoriales (lo cual se hara muy brevemente) se emplearan letras latinas minusculas para 10s elementps de V y letras minusculas griegas para 10s elementos de F. El asunto basico que se tratara aqui radica solamente en un aspect0 de la teoria de 10s espacios vectoriales: el concepto de la dimension de V sobre F. Se desarrollara este concepto de la manera mas expedita posible, no necesaria-mente la mejor o la mas elegante. Se aconseja firmemente a 10s lectores que estudien 10s demas aspectos de lo que se realiza en 10s espacios vectoriales en otros libros de algebra o de algebra lineal (por ejemplo, Algebra Moderna del autor de este libro). Antes de abordar algunos resultados, se examinan varios ejemplos. En ca-da caso, se dejan a1 lector 10s detalles de verificacion de que el ejemplo real-mente es de un espacio vectorial. 1. Sean F cualquier campo y V = {(al, a2, . . . , a,) 110s a; E F) el conjunto de n-adas sobre F, con igualdad y adicion definidas por componentes. Para v = (a1, a2, . . . , a,) y /3 E F, definase pv = (Pal, pa2, . . . , Pa,). V es un espacio vectorial sobre F. 2. Sean F cualquier campo y V = F [x] el anillo de polinomios en x sobre F. Haciendo a un lado el producto de elementos arbitrarios de F [x] y utilizan-do solamente el producto de un polinomio por una constante, por ejemplo, se encuentra que V se convierte en un espacio vectorial sobre F. 3. Sean V como en el Ejemplo 2 y W = { f (x) E VJ grd (f (x)) I n). En-tonces W es un espacio vectorial sobre F y W C V es un subespacio de V. 4. Sea V el conjunto de todas las funciones reales diferenciables en [0, I.], el interval0 unitario cerrado, con la adicion y multiplicacidn de una funcion por un numero real usuales. Entonces V es un espacio vectorial sobre R. 5. Sea W el conjunto de todas las funciones reales continuas en [0, 1 1, de nuevo con la adici6n y multiplicacion de ;na funci6n por un ndmero real usua-les. Tambikn W es un espacio vectorial sobre R y el V del Ejemplo 4 es un su-bespacio de W.
  29. 29. 5.2 Breve excursion hacia 10s espacios vectoriales 181 6. Sea F cualquier campo y F [x] el anillo de polinomios en x sobre F. Sea f (x) un elemento de F [x] y J = (f (x)) el ideal de F [x] generado por f (x). Sea V = F [x]/J, donde se define a(g(x) + J ) = ag(x) + J. Entonces V es un espacio vectorial sobre F. 7. Sean R el campo real y Vel conjunto de todas las soluciones de la ecuacibn diferencial d2y/dx2 + y = 0. V es un espacio vectorial sobre R. I 8. Sea V cualquier espacio vectorial sobre un campo F y sean tambiCn v,, v2, . . . , U, elementos del espacio vectorial V. Sea (v,, v2, . . . , v, ) = {alul + a2v2 + - - + a,v, la1, a2, . . . , a, E F). Entonces ( v,, v2, . . . , V, ) es un espacio vectorial sobre F y es un subespacio de V. Este subespacio (vl, v2, . . . , v, ) se llama subespacio de V generado o abarcado por v,, . . . , v, sobre F; sus elementos se llaman combinaciones lineales de vl, . . . , v,. Pronto se tendra mucho que decir con respecto a (vl, v2, . . . , u,). 9. Sean V y W espacios vectoriales sobre un campo F y V e W = {(v, w) 1 v E V, w E W), con igualdad y adicion definidas por componentes y donde a(v, w) = (av, aw). Entonces se ve facilmente que V e W es un espacio vectorial sobre F; se le llama suma directa de V y W. 10. Sea K > F dos campos, con la adici6n " + " de K y donde av, para a E F y v E K, es el producto como elementos del campo K. Entonces las con-diciones 1 y 2 que definen un espacio vectorial son simplemente casos especiales de las leyes distributivas que son validas en K, y la condition 3 es simplemente una consecuencia de la asociatividad del producto en K. Finalmente, la condi-cion 4 es exactamente la reformulacion del hecho de que 1 es el elemento uni-dad de K. Por lo tanto, K es un espacio vectorial sobre F. Entre estos ejemplos existe una marcada diferencia en un aspecto, la cual se especifica analizandolos cada uno a su vez. 1. En el Ejemplo 1, si v, = (1, 0, . . ., O), v2 = (0, 1, 0, .. ., O), . . ., vn = (0, 0, ..., I), entonces todo elemento v de V tiene una representacibn unica de la forma u = a1v1 + . . . + a,~,, donde a,, . . . , a, estan en F. 2. En el Ejemplo 3, si vl = 1, v2 = x, . . . , V, = xi-', . . . , u,+] = xn, enton-ces donde v E V tiene una representacion unica como v = alvl + - . - + a,~,, con 10s a; en F. 3. En el Ejemplo 7, toda solucidn de d2y/dx2 + y = 0 es de la forma unica y = acosx + psenx, con a y p reales. 4. En el Ejemplo 8, todo v E (vl, . . . , v,) tiene una re~resentacion -aunque no necesariamente unica- como v = alvl + . . . + anvn en virtud de la
  30. 30. 182 CAP~TUL5O CAMPOS misma definicion de (v,, . . ., v,). La unicidad de esta representacion de-pende mucho de 10s elementos v,, . . . , vn. 5. En el caso especial del Ejemplo 10, donde K = C , el campo de 10s numeros complejos, y F = R el de 10s numeros reales, se tiene que todo v E C es de la forma unica v = a, + pi, (Y, ,O E R. 6. ConsidCrese K = F(x) > F, el campo de las funciones racionales en x so-bre F. Se afirma -y se deja a1 lector- que no se puede encontrar ningun conjunto finito de elementos de K que genere K sobre F. Este fenomeno tambikn fue cierto en algunos de 10s otros ejemplos de espacios vectoriales que se dieron. El unico centro de atencion aqui radicara en este concept0 de espacio vecto-rial que contenga algun subconjunto finito que lo genere sobre el campo de ba-se. Antes de iniciar la discusion del tema, se debe disponer primero de una lista de propiedades formales que sean validas en un espacio vectorial. El lector ya esta tan perfeccionado en el trato con estas cosas abstractas formales, que se le deja la demostracion del siguiente lema. LEMA 5.2.1. Si V es un espacio vector.i-a l sobre un campo a F. ,. e nt-on-- -c--e s, pa-r-a- todo (YFE y todo v E-y: (a) (YO = 0, donde 0 es el elemento cero de V. (b) Ov = 0, donde 0 es el cero de F. (c) (YV = 0 implica que a, = 0 o bien v = 0. (d) -(-( Y- )V= -(. (Y" V- ) . En vista de este lema, no se incurrira en ninguna confusion si se utiliza el simbolo 0 tanto para el cero de F como para el de V. Nos olvidamos de 10s espacios vectoriales por un momento y analizamos las soluciones de ciertos sistemas de ecuaciones lineales en campos. ConsidC-rense, por ejemplo, las dos ecuaciones lineales homogeneas con coeficientes re-ales, x, + x2 + x3 = 0 y 3x1 - x2 + x3 = 0. Se ve facilmente que para cualesquier x,, x3 tales que 4x, + 2x3 = 0 y x2 = -(x, + x3), se obtiene una solucion del sistema. En realidad, existe una infinidad de soluciones de este sis-tema aparte de la trivial x, = 0, x2 = 0, x3 = 0. Si examinamos este ejemplo y nos preguntamos: iPor quC hay infinidad de soluciones de este sistema de ecuaciones lineales?, llegamos rapidamente a la conclusion de que, debido a que hay mas variables que ecuaciones, se tiene espacio para maniobrar y pro-ducir soluciones. Esta es exactamente la situacion que prevalece en el caso mas general, como se ve en seguida. DEFINICIONS. ea F un campo; entonces la n-ada (PI, . . . , on), donde 10s 0, estan en F y no todos son 0, se dice que 13 una solucion no trivial en F del sistema de ecuaciones lineales homogeneas
  31. 31. 5.2 Breve excursion hacia 10s espacios vectoriales donde todos 10s a;, estan en F, si a1 sustituir xl = PI, . . . , xn = Pn se satisfacen todas las ecuaciones de (*). Para el sistema (*) se tiene el siguiente TEOREMA 5.2.2. -.S. i n - >- r, es decir, si el nlimero de variables (incog-- nit .a. s)- -e--x -c ede el numero de ecuaciones en (*), entokes (*) trene un-a - so-- lu-c idn no trivial en F. DEMOSTRACI~NE.l mktodo, que de ordinario se estudia en bachillerato, es el de la soluci6n de ecuaciones simultaneas que consiste en eliminar una de las incognitas y a la vez reducir en uno el numero de ecuaciones. Se procede por induccidn en r, el nlimero de ecuaciones. Si r = 1, el siste-ma (*) se reduce a allxl + . - . + aInxn= 0, y n > 1. Si todos 10s ali= 0, entonces x, = x2 = . a = xn = 1 es una solucion no trivial de (*). De mane-ra que, renumerando, se puede suponer que a,, # 0; entonces se tiene la solu-cion no trivial de (*): x2 = . - - = xn = 1 y xI = -(l/all)(a12 + . . - + a,,). Supongase que el resultado es correct0 para r = k, para cierto k, y que (*) es un sistema de k + 1 ecuaciones homogkneas lineales en n > k + 1 va-riables. Se puede suponer como antes que algun aii # 0, y que a,, # 0, sin que se pierda generalidad. Se construye un sistema relacionado (**) de k ecuaciones homogkneas line-ales en n - 1 variables; puesto que n > k + 1, se tiene que n - 1 > k, por lo tanto se puede aplicar induction a este nuevo sistema (**). iC6m0 obtener-lo? Se desea eliminar x, de las ecuaciones. Para tal fin se resta la primera ecuacion multiplicada por a,,/all de la i-ksima ecuacion para cada i = 2, 3, . . . , k.+ 1. Luego de realizar lo anterior, se llega a1 nuevo sistema de k ecua-ciones homogeneas lineales en n - 1 variables:
  32. 32. 184 CAP~TLIL5O CAMPOS donde flu = au- ai,/allp ara i = 2, 3, . . ., k + 1 y j = 2, 3, . . ., n. Puesto que (**) es un sistema de k ecuaciones homogkneas lineales en n - 1 variables y n - 1 > k, por la hipotesis de inducci6n (**) tiene una soluci6n no trivial (y,, . . . , 7,) en F. Sea yl = -(alzyz + - - - + alnyn)/alls;e deja a1 lector verificar que la n-ada (y,, y,, . . . , y,) asi obtenida es una soluci6n no trivial requerida de (*). Esto completa la inducci6n y de esta manera se prueba el teorema. Una vez establecido este resultado, se puede utilizar libremente en el estu-dio de espacios vectoriales. Para hacer hincapik, se repite algo que se definio anteriormente en el Ejemplo 8. DEFINICI~NSe.a n V un espacio vectorial sobre F y u,, u,, . . . , u, elementos de V. Se dice que un elemento u E V es .una combinacion li-neal de u,, u,, . . . , u, si u = alu, + - e e + a,u, para algunos a,, e - a, a, en F. Como se sefial6 en el Ejemplo.8, el conjunto (u,, u,, . . . ,. u,) de todas las combinaciones lineales de u,, u,, . . . , U, es un espacio vectorial sobre F y co-mo esta contenido en V, es un subespacio de V. iPor que es un espaci'o vecto-rial? Si a, v, + . . . + a,u, y Plvl + . . . + Pnvn son dos combinaciones lineales de u,, . . . , u,, entonces por 10s axiomas que definen un espacio vectorial, y por lo tanto esta en (ul, . . ., u,). Si y E F y a1u1 + --a + a,~,E (ul, . . ., u,), entonces asi que tambikn esta en (u,, . . . , u,). Por consiguiente, (u,, . . . , u,) es un espacio vectorial. Como se le llamo anteriormente, es el subespacio de Vgenerado sobre F por ul, . . ., Un.
  33. 33. 5.2 Breve excursion hacia 10s espacios vectoriales 185 Esto conduce a la muy importante DEFINICI~NU.n espacio vectorial V sobre F es finito-dimensional sobre F si V = ( v,, . . . , v,) para ciertos v,, . . . , v, en V, es decir, si V es generado sobre F por un conjunto finito de elementos. En caso contrario, se dice que V es infinite-dimensional sobre F si no es finito-dimensional sobre F. Obstrvese que aunque se ha definido lo que signifi-ca espacio vectorial finito-dimensional, aun no se ha definido lo que significa su dimensi6n. Esto vendra a su debido tiempo. Supongase que V es un espacio vectorial sobre F y que v,, . . . , v, en V son tales que todo elemento v de (v,, . . . , v,) tiene una representacion unica de la forma v = alvl + . . . + a,v,, donde a,, . . . , a, E F. Puesto que 0 E (~1,. . -9 ~n) Y 0 = OV, + ... + OV,, por la unicidad supuesta se obtiene que si a,v, + -.- + a,v, = 0, entonces a, = a2 = - - = a, = 0. Esto sugiere una segunda definicion muy impor-tante, la cual se da a continuacion. DEFINICI~NS.e a V un espacio vectorial sobre F; entonces se dice que 10s elementos v,, . . . , v, en V son linealmente independientes sobre Fsi a,v, + + a,v, = 0, donde a,, . . ., a, estan en F, im-plica que a, = a2 = . . = a, = 0. Si 10s elementos v,, . . . , v, en V no son linealmente independientes sobre F, entonces se dice que son linealmente dependientes sobre F. Por ejemplo, si W es el campo de 10s numeros reales y V es el conjunto de las triadas sobre W como se defini6 en el Ejemplo 1, entonces (0, 0, I), (0, 1, 0) y (1, 0, 0) son linealmente independientes sobre R (prutbese), mientras que (1, -2, 7), (0, 1, 0) y (1, -3, 7) son linealmente dependientes sobre R , ya que l(1, -2, 7) + (-1)(0, 1, 0) + (-1)(1, -3, 7) = (0, 0, 0)-es una combinacion lineal no trivial de dichos elementos sobre R, que es igual a1 vector cero. Obstrvese que la independencia lineal depende del campo F. Si C > R son 10s campos complejo y real, respectivamente, entonces C es un espacio vecto-rial sobre W, per0 tambitn es un espacio vectorial sobre C mismo. Los elemen-tos 1, i en C son linealmente independientes sobre W per0 no lo son sobre C, ya que il + (-l)i = 0 es una combinaci6n lineal no trivial de 1, i sobre C. Se prueba el siguiente LEMA 5.2.3. -S.-i v es" un espacio vectorial sobre F y v,, . . . , v, en V son linealmente independientes sobre F, entonces todo elemento v € "" . ( v,, . . . , vn ) tiene una representacion unica como con a,, . . . , a, en F. -". ,.., , -
  34. 34. 186 CAP~TUL5O 0 CAMPOS DEMOSCRAC16N. Sup6ngase que v E ( vl, . . . , v,) tiene las dos representa-ciones v = alvl + + a,v, = Plvl + ... + P,v, con 10s a y 10s 0 en F. Esto implica que (a, - Pl)vl + + (a, - &)v, = 0; puesto que v,, . . . , v, son linealmente independientes sobre F, se concluye que a, - PI = 0, . a, - @,, = 0, lo cual da por resultado la unicidad de la representacibn. ' a ~QuCta n finito es un espacio vectorial finito-dimensional? Para medir esto, llamese a un subconjunto vl, . . . , v, de V un conjunto generador minimo de V sobre F si V = (v,, . . . , v,) y ningun conjunto con menos de n elementos genera a V sobre F. Se llega ahora a la tercera definici6n muy importante. DEFINICI~NSi. Ves un espacio vectorial finito-dimensional sobre F, entonces la dimension de V sobre F, que se expresa como dimF( V), es n, el numero de elementos de un conjunto generador minimo de V sobre F. En 10s ejemplos dados, dim,(C) = 2, puesto que 1, i es un conjunto gene-rador minimo de C sobre R. En cambio, dim, (C) = 1. En el Ejemplo 1, dimF (V) = n y en el Ejemplo 3, dimF (V) = n + 1 . En el Ejemplo 7 la dimensi6n de V sobre F es 2. Finalmente, si ( v,, . . . , vn ) C V, entonces dimF (v,, . . . , v,) es a lo sumo n. Se prueba ahora el LEMA 5.2.4. &V es finito-dimensional sobre F de dimensi6n n y si 10s elementos v,, . . . , v, de V generan a V sobre F, entonces v,, . . .; -.. v,_son linealmente independientes sobre F. DEMOSTRACI~NS. up6ngase que u,, . . . , v, son linealmente dependientes so-bre F; por consiguiente existe una combinaci6n lineal a,vl + . . - + a,v, = 0, donde no todos 10s ai son cero. Se puede suponer que a, f 0; sin que se pierda generalidad; entonces u, = (-~/o!~)(cY+~ v.~ . . + a,~,). Dado v E V, en virtud de que v,, . . . , u, es un conjunto generador de V sobre F, asi que LIZ., . . , V, generan V sobre F, lo cual contradice que el subconjunto v,, v2, . . . , V, sea un conjunto generador minimo de V sobre F. Se llega ahora a otra definici6n importante.
  35. 35. 5.2 Breve excursion hacia 10s espacios vectoriales 187 DEFINICION. Sea V un espacio vectorial finito-dimensional sobre F; entonces v,, . . . , v, es una base de V sobre F, si 10s elementos v,, . . . , v, generan V sobre F y son linealmente independientes sobre F. Por el Lema 5.2.4 cualquier conjunto generador minimo de V sobre F es una base de V sobre F. Por consiguiente 10s espacios vectoriales finito-dimensionales poseen bases. Se continua con el TEOREMA 5.2.5. 26ngase que V cs finito-dimensional sobre F; en- -ton ces dos bases cualesquiera de V sobre F deben tener el mismo numi-- ro. de elementos, y este numero es exactarnente dim,(V). DEMOSTRACI~NS.e an v,, . . ., v, y w,, . . . , w, dos bases de V sobre F. Se requiere demostrar que rn = n. Sup6ngase que rn > n. En virtud de que v,, . . . , v, es una base de V sobre F, se sabe que todo elernento de V es una com-binacion lineal de 10s vi sobre F. En particular, w,, . . . , w, son cada uno una combinacion lineal de v,, . . . , v, sobre F. De esta manera se tiene donde 10s aii estan en F. Considerese El sistema de ecuaciones homogeneas lineales tiene una solucion no trivial en Fen virtud del Teorema 5.2.2, ya que el numero de variables rn supera a1 numero de ecuaciones n. Si PI, . . . , 6, es una tal so-luci6n en F, entonces, por lo anterior, P,w, + . . . + b,~, = 0, no obstante
  36. 36. 188 CAP~TUL5O CAMPOS que no todos 10s Pi son cero. Esto contradice la independencia lineal de w,, . . . , w, sobre F. Por lo tanto, m I n. De manera semejante, n 5 m; por consiguiente m = n. El teorema resulta luego probado, puesto que un conjun-to generador minimo de V sobre F es una base de V sobre F y el numero de elementos en tal conjunto es por definicion dimF( V). Por lo tanto, en vista de lo obtenido anteriormente, n = dimF(V) y se completa la demostracibn. Otro resultado, que se utilizara en la teoria de campos, de naturaleza semejante a 10s que se han obtenido, es TEOREMA 5.2.6. Sea V un espacio vectorial sobre F tal que -d- imf( V) = n. Si m 7-n, entonces m elementos cualesquiera de V son l-i nealnkte dependien-te.s sobre F. DEMOSTRAC16N. Sean w,, . . . , w, E V y vl, . . . , vn una base de V sobre F; o sea que n = dimF(V) por el Teorema 5.2.5. Por consiguiente, La demostracion dada en el Teorema 5.2.5, de que si m > n se pueden encontrar PI, . . . , Pm en F, donde no todos son cero, de tal mod0 que PI w, + . . - + P,w, = 0, se aplica a1 pie de la letra. Pero esto establece que w,, . . . , w, son linealmente dependientes sobre F. Se concluye esta secci6n con un teorema final del mismo tipo de 10s anterio-res. TEOREMA 5.2.7. Sea V un espacio vectorial sobre F con dimF( V) = n-. . E-nt onces n elemezos cualesquiera de V linealmente ;ndependientes forman una base de V sobre F. -. - DEMOSTRACI~NSe. requiere demostrar que si v,, . . . , un E V son lineal-mente independientes sobre F, entonces generan V sobre F. Sea v E en-tonces v, vl, . . . , vn son n + 1 elementos, por lo tanto, por el Teorema 5.2.6, son linealmente dependientes sobre F. De esta manera existen elemen-tos a, al, . . . , an en F, no todos cero, tales que a v + alvl + . . + anun = 0. El elemento a no puede ser cero, de lo contrario a,v, + . . . + anun = 0, y no todos 10s ai son cero, por lo cual se contradiria la independencia lineal de 10s elementos v,, . . . , un sobre F. Asi que a # 0, y entonces v = (-l/a)(aI vI + - + anun) = Plul + - . - + Pnvn, donde Pi = -ai/al. Por lo tanto, v,, . . . , vn generan V sobre F y por consiguiente deben formar una base de V sobre F.
  37. 37. 5.2 Breve excursion hacia 10s espacios vectoriales PROBLEMAS 5.2 1. Determinese si 10s siguientes elementos de V, el espacio vectorial de las ter-nas sobre W , son linealmente independientes sobre W . (a) (1, 2, 31, (4, 5, 61, (7, 8, 9). (b) (1, 0, 11, (0, 1, 21, (0, 0, 1). (c) (1, 2, 31, (0, 4, 5). (i, 3,3. 2. Encuentrese una solucion no trivial en ZS del sistema de ecuaciones homo-geneas lineales: 3. Si V es un espacio vectorial de dimension n sobre Z,, p primo, demubtre-se que V tiene pn elementos. 4. Pruebese todo el Lema 5.2.1. 5. Sea Fun campo y V = F [XI, el anillo de polinomios en x sobre F. Conside-rando a V como un espacio vectorial sobre F, pruebese que V no es finito-dimensional sobre F. 6. Si V es un espacio vectorial finito-dimensional sobre F y si W es un subes-pacio de V, pruebese que: (a) W es finito-dimensional sobre F y dim, ( W ) I dimF ( V ) . (b) si dim, ( W ) = dim,( V ) , entonces V = W. 7. Defina el lector lo que crea que debe ser un homomorfismo # de espacios vectoriales de V en W, donde V y W son espacios vectoriales sobre F. ~QuC se puede decir respecto a1 nucleo K, de #, donde K = {v E Vl #(v) = O)? 8. Si V es un espacio vectorial sobre F y W es un subespacio de V, definanse las operaciones requeridas en V/ W para que se convierta en un espacio vectorial sobre F. 9. Demuestrese que si dim,(V) = n y W es un subespacio de V con dim, ( W ) = m, entonces dim, ( V/ W ) = n - m. 10. Si #: V + V' es un homomorfismo de V sobre V' con nucleo K, demuestre-se que V' 2: V/K (como espacios vectoriales sobre F). 11. Si V es un espacio vectorial finito-dimensional sobre F y v,, . . . , v, en V son linealmente independientes sobre F, demuestrese que se pueden encon-
  38. 38. 190 CAP~TUL5O 0 CAMPOS trar w,, . . ., w, en V, donde m + r = dimF(V), tales que v,, . . ., vrn, w,, . . . , w, forman una base de V sobre F. 12. Si V es un espacio vectorial sobre F de dimension n, pruCbese que V es iso-morfo a1 espacio vectorial de n-adas sobre F (Ejemplo 1). 13. Sean K > F dos campos; supongase que K, como espacio vectorial sobre F, tiene dimension finita n. DemuCstrese que si a E K, entonces existen ao, a,, . . . , a, en F, no todos cero, tales que 14. Sea Fun campo, F [x] el anillo de polinomios en x sobre F y f (x) # 0 en F [x]. ConsidCrese V = F [x]/J como un espacio vectorial sobre F, donde J es el ideal de F [x] generado por f (x). PruCbese que dim, ( V) = deg f (x). 15. Si V y Wson dos espacios vectoriales finito-dimensionales sobre F, pruCbe-se que V e W es finito-dimensional sobre F y que dim, ( V e W) = dim, ( V) + dim, ( W). 16. Sea V un espacio vectorial sobre F y supongase que U y W son subespacios de V. Definase U + W = {u + wlu E U, w E W). PruCbese que: (a) U + W es un subespacio de V. (b) U + W es finito-dimensional sobre F si tanto U como W lo son. (c) U n W es un subespacio de V. (d) U + W es una imagen homomorfa de U e W. (e) Si U y W son finito-dimensionales sobre F, entonces dimF([/ + W) = dim, ( U) + dim, ( W) - dim, ( U n W). 17. Sean K > F dos campos tales que dimF(K) = m. Supongase que V es un espacio vectorial sobre K. PruCbese que: (a) V es un espacio vectorial sobre F. (b) Si V es finito dimensional sobre K, entonces es finito dimensional sobre F. (c) Si dim,( V) = n, entonces dimF(V) = mn [es decir, dimF( V) = dim, ( V) dim, (K)] . 18. Sean K > F campos y supongase que V es un espacio vectorial sobre K tal que dim, ( V) es finito. Si dimF(K) es finito, demuCstrese que dim, ( V) es finita y determinese su valor en tirminos de dim,(V) y dim,(K).
  39. 39. 5.3 Extensiones de campos 191 19. Sea D un dominio integral con unidad 1, que es un espacio vectorial finito-dimensional sobre un campo F. PruCbese que D es un campo. (Nofa: Dado que F 1, que se puede identificar con F, esta en D, la estructura de anillo de D y la estructura de espacio vectorial de D sobre F estan en armonia en-tre si.) 20. Sea V un espacio vectorial sobre un campo infinito F. DemuCstrese que V no puede ser la union (corno en la teoria de conjuntos) de un numero finito de subespacios propios de V. (Muy dijicil.) Nuestra atencion se vuelve ahora hacia una relaci6n entre dos campos K y F, donde K > F. Se le llama a K una extension (o campo extension) de F, y a F un subcampo de K. En todo lo que sigue en esta seccion se sobreentendera que K 3 F. Se dice que K es una extension finita de F si, considerado como espacio vec-torial sobre F, dim,(K) es finita. Se expresara dim,(K) como [K : F] y se le llamara grado de K sobre F. Se inicia la discusion con el resultado que normalmente es el primer0 que se prueba a1 hablar de extensiones finitas. TEOREMA 5.3.1. -.S- ean- L > K > F tres campos tales que ambas -[-L- : K] y [K : F ] son finitas. ~ntoncesL es una extension finita d .e. F-y[ L:F] = [L:K][K:F]. DEMOSTRACI~SNe. p robara que L es una extension finita de F mostrando ex-plicitamente una base finita de L sobre F. A1 hacerlo se obtendra el resultado mas fuerte afirmado en el teorema, a saber que [L : F ] = [L : K] [K : F]. Supongase que [L : K] = m y [K : F] = n; entonces L tiene una base v,, v2, . . . , U, sobre K y K tiene una base w,, w2, . . . , w, sobre F. Se probara que 10s mn elementos viwj, donde i = 1, 2, . . . , m y j = 1, 2, . . . , n, constituyen una base de L sobre F. Se empieza por demostrar que, por lo menos, estos elementos generan L sobre F; esto demostrara, por supuesto, que L es una extension finita de F. Sea a E L; dado que 10s elementos v,, . . . , v, forman una base de L sobre K, se tiene a = k,vl + . . + k,v,, donde k,, k2, . . . , k,,, estan en K. Puesto que w,, . . . , w, es una base de K sobre F, se puede expresar cada ki como donde 10s f,, estan en F. Sustituyendo estas expresiones de 10s ki en la expre-sion anterior de a, se obtiene
  40. 40. 192 CAP~TULO5 CAMPOS Por lo tanto, descifrando explicitamente esta suma, se obtiene que De esta manera 10s mn elementos uiwj de L generan L sobre F; por lo tanto, [L : F] es finita y, en efecto, [L : F] I mn. Para demostrar que [L : F ] = mn, se necesita solamente probar que 10s mn elementos uiwj anteriores son linealmente independientes sobre F, ya que entonces -junto con el hecho de que generan L sobre F- se tendria que for-man una base de L sobre F. Por el Teorema 5.2.5 se llegaria a1 resultado desea-do [L : F] = mn = [L : K] [K: F]. Supongase entonces que para algun bU en F se tiene la relacion Reuniendo tCrminos en esta suma, se obtiene que c,ul + c2u2 + -. . + cmum = 0, donde c, = bllwl + . -. + blnwn, . . . , C, = bmlwl + . . . + b,,w,. Puesto que 10s ci son elementos de K y 10s elementos u,, . . . , v, de L son linealmente independientes sobre K, se tiene que c, = c2 = = c, = 0. Recordando que ci = bi,wl + . . . + b,w,, donde 10s bU estan en F y w,, . . . , w, de K son linealmente independientes sobre F, se deduce que todos 10s bU = 0 a partir del hecho de que c, = c2 = . . - = c, = 0. Por consiguiente, solo la combinacion lineal trivial, con todos 10s coeficientes cero, de 10s elementos viwj sobre F puede ser cero. Por lo tanto, 10s uiwj son linealmente independien-tes sobre F. Anteriormente se vio que esto era suficiente para probar el teore-ma. El lector debe comparar el Teorema 5.3.1 con el resultado un poco mas ge-neral del Problema 17 de la Seccion 5.2, el cual ya debe poder resolver. Como consecuencia del teorema se tiene el COROLARISOi L. 2 K 2 F son tres campos tales que [L : F~S finito, entonces [K : F] es finito y divide a [L : F1. DEMOSTRACI~NP.u esto que L > K, K no puede tener mas elementos lineal-mente independientes sobre F que L. En virtud de que, por el Teorema 5.2.6, [L : F ] es el tamaiio del mayor conjunto de elementos linealmente indepen-dientes en L sobre F, se obtiene en consecuencia que [K : F ] I [L : F], asi que debe ser finito. Dado que L es finito dimensional sobre F y puesto que K
  41. 41. 5.3 Exiensiones de campos 193 contiene a F, L debe ser finito dimensional sobre K. De esta manera se satisfa-cen todas las condiciones del Teorema 5.3.1, de. lo cual [L : F] = [L : K] [K : F]. Por consiguiente, [K : F] divide a [L : F], como se afirma en el corolario. Si K es una extension finita de F, se puede decir bastante con respecto a1 comportamiento de 10s elementos de K con relacion a F. Esto es TEOREMA 5.3.2. -S-u-p ongase que K es una extension finita de F de g-r ado n. Entonces, dado cualquier elemento u en K existen elementos a-, ,- al, . . . , a, en F, no todos cero, tales que DEMOSTRACI~DNa.d o que [K : F ] = dim,(K) = n y 10s elementos 1, u, u2, . . . , un son en total n + 1, por el Teorema 5.2.6 deben ser linealmente depen-dientes sobre F. De esta manera se pueden encontrar a,, al, . . . , a, en F, no todos cero, tales que a, + alu + a2u2 + . - + a,un = 0, con lo cual se prueba el teorema. La conclusion de este teorema sugiere seiialar aquellos elementos de una ex-tension de campo que satisfagan un polinomio no trivial. DEFINICI~NS.i K > F son campos, entonces se dice que a E K es algebraico sobre F si existe un polinomio p(x) # 0 en F[x] tal que p(a) = 0. Por p(a) se entiende el elemento a,,an + alan-' + . . . + a, de K, donde p(x) = a&' + alxn-l + . . . + a,. Si K es una extension de F tal que todo elemento de K es algebraico sobre F, se dice que K es una extension algebraica de F. En estos tCrminos el Teorema 5.3.2 se puede reformular como sigue: Si K es una extension finita de F, enton-ces K es una extension algebraica de F. El reciproco de esto no es cierto; una extension algebraica de F no necesariamente es de grado finito sobre F. iPuede el lector proporcionar un ejemplo de tal situacion? Un elemento de K que no es algebraico sobre F se dice que es trascendente sobre F. Veamos algunos ejemplos de elementos algebraicos en un context0 concre-to. ConsidCrese Q= > Q, el campo complejo como una extension del campo de 10s racionales. El numero complejo a = 1 + i es algebraico sobre Q, ya que satisface a2 - 2a + 2 = 0 sobre Q. De manera semejante, el numero real 3 3 b = 1 + /- es algebraico sobre Q, puesto que b2 = 1 + dl,de mod0 que (b2 - = 1 + 6,y po r lo tanto ((b2 - 1)3- = 2. Desarro-
  42. 42. 194 CAP~TUL5O CAMPOS llando esto ultimo, se obtiene una expresion polin6mica no trivial en b con coe-ficientes racionales, que es cero. Por consiguiente, b es algebraico sobre Q. Es posible obtener numeros reales que Sean trascendentes sobre Q muy fa-cilmente (vtase la Section 6.6 del Capitulo 6). Sin embargo, el establecer la tras-cendencia de ciertos numeros conocidos requiere un esfuerzo real. Se puede demostrar que 10s numeros familiares e y a son trascendentes sobre Q. El caso de e fue probado por Hermite en 1873; la demostracion de que a es trascenden-te sobre Q es mucho mas dificil y fue llevada a cab0 primer0 por Lindemann en 1882. Aqui no se examinara a fondo la demostracion de que cualquier nu-mero particular sea trascendente sobre Q. No obstante, en la Seccion 6.7 del Capitulo 6 se demostrara por lo menos que a es irracional. Esto lo hace ser un candidato posible a numero trascendente sobre Q, ya que evidentemente cual-quier numero racional b es algebraico sobre Q dado que satisface el polinomio p(x) = x - b, que tiene coeficientes racionales. DEFINICI~NSe. dice que un nlimero complejo es un numero alge-b r a i c ~si es algebraico sobre Q. Como se vera pronto, 10s numeros algebraicos forman un campo, el cual es un subcampo de C . Regresamos a1 desarrollo general de la teoria de 10s campos. En el Teorema 5.3.2 se ha visto que si K es una extension finita de F, entonces todo elemento de K es algebraico sobre F. Damos la vuelta a esta cuestion preguntando: Si K es una extension de F y a E K es algebraico sobre F, jse puede producir de algun mod0 una extension finita de F usando a? La respuesta es si. Esto resul-tara como consecuencia del siguiente teorema, el cual se demuestra en un con-texto un poco mas general de lo que en realidad se requiere. TEOREMA 5.3.3. -S-.e a D u-n- dominio integral con unidad 1 que es un espacio --+ vectorial finito-dimensional sobre un cam-p o- F. ~ntonceDs & -u.n- c-a mp-o-. DEMOSTRACIOPNa.r a demostrar el teorema, para a f 0 en D se debe produ-cir un inverso a-' en D tal que aa-' = 1. Como en la demostracion del Teorema 5.3.2, si dimF(D) = n, entonces 1, a, a 2 , . . . , a ne n D son linealmente dependientes sobre F. De manera que para ciertos a,, a,, . . . , an en F apropiados, no todos ellos cero, Sea p(x) = Poxr + Plxr-I + . . . + Pr P 0 un polinomio en F [x] de grado minimo tal que p(a) = 0. Afirmamos que Or f 0. Si 0, = 0, entonces
  43. 43. 5.3 Extensiones de campos 195 como D es un dominio integral o entero y a # 0, se eoncluye que Pear-' + Plar-2 + . . + Or-, = 0, por consiguiente q(a) = 0, donde q(x) = Poxr-' + /31~r-2 + . + Pr-, en F[x] es de grado menor que p(x), lo cual es una contradiccion. De esta manera 0, # 0, por lo tanto P,' esta en F y lo cual da lugar a que -(boar-' + . . . + Pr-,)/Pr, que esta en D, es el a-' requerido en D. Esto prueba el teorema. Teniendo a la mano el Teorema 5.3.3, es deseable hacer uso de el. Asi que jcomo producir subanillos de un campo K que contenga a F y Sean finito-di-mensionales sobre F? Tales subanillos, por ser subanillos de un campo, son automaticamente dominios integrales y cumplirian la hipotesis del Teore-ma 5.3.3. Los medios para este fin seran 10s elementos de K que Sean algebrai-cos sobre F. Pero primer0 una definicion. DEFINICION. Se dice que un elemento a en la extension K de F es algebraico de grado n si existe un polinomio p(x) en F [x] de grado n tal quep(a) = 0 y ningun polinomio no cero de grado menor en F [x] tiene esta propiedad. Se puede suponer que el polinomio p(x) en esta definicion es monico, ya que se podria dividir dicho polinomio entre su coeficiente de la potencia mayor para obtener un polinomio monico q(x) en F [x], de igual grado que p(x), y tal que q(a) = 0. De ahora en adelante se supone que el polinomiop(x) es mo-nico; se le llama polinomio minimo de a sobre F. LEMA 5.3.4. -Sea a E K algebraico sobre F con polinomio minimo -- . -- -"* " - .- .--. -p- (x- ) en F [x]. Entonces p(x) es irreducible en FIX]. * .-. DEMOSTRACI~NSu. pongase que p(x) no es irreducible en F[x]; entonces p(x) = f (x)g(x), donde f (x) y g(x) estan en F [x] y cada uno tiene grado positivo. Puesto que 0 = p(a) = f (a)g(a) y dado que f (a) y g(a) estan en el campo K, se concluye que f (a) = 0 o bien g(a) = 0, lo cual es imposible, ya que ambos f (x) y g(x) son de grado menor que f (x). Por lo tanto, p(x) es irreducible en F Ix]. Sean a E K algebraico de grado n sobre F y p(x) E F [x] su polinomio mi-nimo sobre F. Dado f (x) E F [XI, entonces f (x) = q(x)p(x) + r(x), donde q(x) y r(x) estan en F [x] y r(x) = 0 o bien grd r(x) < grdp(x), en virtud del algoritmo de la division. Por lo tanto, f(a) = q(a)p(a) + r(a) = r(a),
  44. 44. 196 CAP~TULO5 CAMPOS ya que p(a) = 0. En forma breve, cualquier expresion polinomica en a sobre F se puede expresar como un polinomio en a de grado n - 1 a lo sumo. Sea F [a] = { f (a) If (x) E F [x] ). Afirmamos que F [a] es un subcampo de K que contiene a ambos F y a, y que [F [a] : F] = n. Por la observacion hecha anteriormente, F[a] es generado sobre F por 1, a, a2, ..., , por lo tanto es finito-dimensional sobre F. Ademas, como es posible verificar facil-mente, F [a] es un subanillo de K y como tal, F [a] es un dominio integral. Por consiguiente, por el Teorema 5.3.3, F [a] es un campo. Puesto que es generado sobre F por 1, a, a2, ..., an-', se tiene que [F[a] : F] I n. Para demostrar que [F[a] : F ] = n se debe probar simplemente que 1, a, a2, .... son linealmente independientes sobre F. Si a. + a,a + ... + an-,an-' = 0, con 10s a, en F, entonces q(a) = 0, donde q(x) = a. + a,x + + an-,xn-' esth en F[x]. Puesto que q(x) es de grado menor que p(x), el cual es el polinomio minimo de a en F [XI, se concluye necesariamente que q(x) = 0. Esto implica que a. = a, = ... = an-, = 0. Por lo tanto, 1, a , a2, . . . . an-' son linealmente independientes sobre F y forman una base de F [a] sobre F. De esta manera [F[a] : F] = n. Dado que F[a] es un campo, y no sim-plemente un conjunto de expresiones polinomicas en a, F [a] se denotara por F(a). ObsCrvese ademas que si M es cualquier campo que contiene a ambos F y a, entonces M contiene todas las expresiones polinomicas en a sobre F, por consiguiente M > F (a). Por lo tanto, F (a) es el menor subcampo de K que contiene a ambos F y a. DEFINICIONF. (a) se llama campo o extension obtenida a1 agregar a a1 campo F. Ahora se resumen. TEOREMA 5.3.5. -S. up,. o- ng ..ase que K > F y que a en K es algebraic0 . . . . . . . . . . . . . . . . . . . . . . -so. -b - re F.... de grado n. Entonces F(a), el campo obt.e ni.d o ag..r...e...g. ando a. .a. 5-ec~a. = xtension finit.a. d..e. F.. y. Antes de dejar el Teorema 5.3.5, considerCmoslo de una manera un poco diferente. Sean F[x] el anillo de poliriomios en x sobre F, y M = (p(x)) el ideal de F [x] generado por p(x), el polinomio minimo de a en K sobre F. Por el Lema 5.3.4, p(x) es irreducible en F [x]; por consiguiente, por el Teore-ma 4.5.1 1, M es un ideal miximo de F [XI. Por lo tanto, F [x]/(p(x)) es un campo por el Teorema 4.4.2. Definase la aplicacion $ : F [x] + K mediante $( f (x)) = f (a). Esta apli-cacion $ es un homomorfismo de F [x] en K y la imagen de F [x] en K es sim-plemente F(a) por la definicion de ~(a).iC ual es el nucleo de rl/? Por definicion es J = { f (x) E F [x] I rl/( f (x)) = 0), y puesto que se sabe que $ (f (x)) = f (a), J = { f (x) E K [x:l If (a) = 0). Dado que p(x) esta en J y es
  45. 45. 5.3 Extensiones de campos 197 el polinomio minimo de a sobre F, p(x) es del grado minimo posible entre 10s elementos de J. De esta manera J = (p(x)) por la demostracion del Teorema 4.5.6, y asi J = M. Por el primer teorema de homomorfismos para anillos F [x]/M 2: imagen de F [x] respecto a $ = F(a), y puesto que F [x]/M es un campo, se tiene que F(a) es un campo. Se deja a1 lector la demostracion, desde este punto de vista, de que [F(a) : F] = degp(x). PROBLEMAS 5.3 1. Demuestrese que 10s siguientes numeros en 02 son algebraicos. (a) fi + ?/j. (b) d7 + m. (c) 2 + i&. (d) cos (2a/k) + isen (2a/k), k entero positivo. 2. Determinense 10s grados sobre Q de 10s numeros dados en las partes (a) y (c) del Problema 1. 3. es el grado de cos (2n/3) + isen (2a/3) sobre Q? 4. ~Cuaels el grado de cos (2a/8) + isen (2a/8) sobre Q? 5. Sip es un numero primo, prukbese que el grado de cos (2a/p) + i sen (2a/p) sobre Q es p - 1 y que es su polinomio minimo sobre Q. 6. (Para 10s lectores que hayan cursado Calculo.) Demuestrese que es irracional. 7. Si a en K es tal que a2 es algebraico sobre el subcampo F de K, demostrar que a es algebraico sobre F. 8. Si F c K y f (a) es algebraico sobre F, donde f (x) es de grado positivo en F [x] y a E K, prukbese que a es algebraico sobre F. 9. En relacion con la discusion que sigue a1 Teorema 5.3.5, demostrar que F [x]/M es de grado n = grdp(x) sobre F y por consiguiente [F(a) : F] = n = grdp(x). 10. Pruebese que cos 1 es algebraico sobre Q. (1 " = un grado, medida angular.) 11. Si a E K es trascendente sobre F, sea F(a) = { f (a)/g(a) 1 f (x), g(x) #
  46. 46. 198 CAP~TUL5O CAMPOS 0 E F [x] ). Demuestrese que F(a) es un campo y que es el menor subcampo de K que contiene a ambos F y a. 12. Si a es como en el Problema 11, demuestrese que F(a) = F(x), donde F(x) es el campo de las funciones racionales en x sobre F. 13. Sea K un campo finito y F u n subcampo de K. Si [K : F] = n y F consta de q elementos, demuestrese que K consta de qn elementos. 14. Aplicando el resultado del Problema 13, demuestrese que un campo finito consta de pn elementos para cierto primo p y cierto entero positivo n. 15. Construyanse dos campos K y F de tal mod0 que K sea una extension alge-braica de F per0 que no sea una extension finita de F. Continuamos en el estilo de la seccion precedente. Nuevamente K > F siempre denotara dos campos y se emplearan letras latinas para 10s elementos de K y letras griegas para 10s de F. Sea E(K) el conjunto de 10s elementos de K que son algebraicos sobre F. Desde luego, F C E(K). Nuestro objetivo es probar que E(K) es un campo. Una vez probado, se vera un poco acerca de como esta situado E(K) en K. Sin mh consideraciones procedemos a1 TEOREMA 5.4.1. -.E (-K ) es un. .s.u bcampo , d. .e. -K- . DEMOSTRACI~LNo. que se debe probar es que si a, b E K son a l g e b r a i c~so~- bre F, entonces a & b, ab y a/b (si b # 0) son algebraicos sobre F. Esto garanti-zara que E(K) es un subcampo de K. Se hara todo para a & b, ab y a/b "de un solo golpe". Sea KO = F(a) el subcampo de K que se obtiene agregando a a F. Puesto que a es algebraico sobre F, digamos de grado m, entonces, por el Teorema 5.3.5, [KO : F] = m. Dado que b es algebraico sobre F y como KO contiene a F, se tiene desde luego que b es algebraico sobre KO. Si b es algebraico sobre F de grado n, entonces es algebraico sobre KO de grado n a lo sumo. De esta manera K, = Ko(b), el subcampo de K obtenido agregando b a KO, es una ex-tension finita de KO y [Kl : KO] I n. Por consiguiente, por el Teorema 5.3.1, [K1 : F] = [K, : KO] [KO : F] I mn; es decir, K, es una extension finita de F. Como tal, por el Teorema 5.3.2, K, es una extension algebraica de F, asi que todos sus elementos son algebrai-cos sobre F. Puesto que a E KO C Kl y b E K,, entonces todos 10s elementos a & b, ab, a/b estan en K,, por consiguiente son algebraicos sobre F. Esto es exactamente lo que se requeria y el teorema queda demostrado.
  47. 47. 5.4 Extensiones finitas Si examinamos la demostracion un poco mas cuidadosamente, vemos que en realidad se ha probado algo mas, a saber el COROLARSIOi a .Y b en K son algebraicos sobre F de grados m y n, respectivamente, entonces a & b, ab y a/b (si b # 0) son algebraicos sobre F de grado mn a lo sumo. Un caso especial, que merece seiialarse y registrarse, es K = C y F = Q. En dicho caso 10s elementos algebraicos de C sobre Q fueron denominados nu-meros algebraicos; por lo tanto el Teorema 5.4.1 se convierte para este caso en el TEOREMA 5.4.2. -L.o s numeros algebraicos forman un sub- cam- po -de C. Por lo visto hasta ahora, el conjunto de 10s numeros algebraicos podria ser muy bien todo C. Pero no es asi, ya que si existen numeros trascendentes; se demostrara que esto es cierto en la Seccidn 6.6 del Capitulo 6. Volvemos a un campo general K. El subcampo E(K) tiene una cualidad muy particular, la cual se probara en seguida. Dicha propiedad consiste en que cualquier elemento de K que sea algebraico sobre E(K) debe estar tambien en E(K). Para no hacer una digresidn en el curso de la demostracion que se va a dar, se introduce la siguiente notacidn. Si a,, a2, . . . , a,, estan en K, entonces F(al, . . . , a,,) sera el campo que se obtiene como sigue: Kl = F(a,), K2 = Kl(a2) = F(a17 021, K3 = K2(a3) = F(al, 02, 0317 . . Kn = Kn-,(an) = F(al, a2, . . . , a,,). Ahora se prueba el TEOREMA 5.4.3. -Si u- en , K es algebraic0 sobre E(K), entonces u .e st-a.. e-"n.- E..-( K).- DEMOSlRAC16N. Para probar el teorema, todo lo que se debe hacer es demos-trar que u es algebraico sobre F; esto colocara a u en E(K) y se habra concluido la demostracidn. Puesto que u es algebraico sobre E(K), existe un polinomio no trivial f (x) = xn + alxn-I + a2xn-2 + . . + a,, donde a,, a2, . . . , a, estan en E(K), tal que f (u) = 0. Dado que a,, a2, . . . , a, estan en E(K), son algebrai-cos sobre F de grados, digamos, m,, m2, . . . , m,, respectivamente. Afirma-mos que [F(a,, . . . , a,) : F] es a lo sumo m,m2 . . m,. Para tal fin, simple-mente se llevan a cab0 n aplicaciones sucesivas del Teorema 5.3.1 a la sucesion K,, K2, . . . , K,, de 10s campos definidos anteriormente. Su demostracidn se deja a1 lector. De esta manera, dado que u es algebraico sobre el campo K,, = F(al7 a2, . . . , a,) [despues de todo, el polinomio que u satisface es p(x) = xn + a,xn-' + . -. + a,, el cual tiene todos sus coeficientes en F(a,, a,, . . . , a,)], el campo K,(u) es una extension finita de K, y puesto que

×