SlideShare una empresa de Scribd logo
1 de 55
BIOCHEMISTRYBIOCHEMISTRY
CHEMISTRY OF LIFECHEMISTRY OF LIFE
• ElementsElements: simplest form of a: simplest form of a
substance - cannot be broken downsubstance - cannot be broken down
any further without changing what it isany further without changing what it is
• AtomAtom: the actual basic unit -: the actual basic unit -
composed of protons, neutrons, andcomposed of protons, neutrons, and
electronselectrons
THE ATOMTHE ATOM
• Just like cells are the basic unit of life, theJust like cells are the basic unit of life, the
ATOMATOM is the basic unit of matter.is the basic unit of matter.
• They are very small. If placed side by sideThey are very small. If placed side by side
one million would stretch a distance of 1cm.one million would stretch a distance of 1cm.
• The atom is made up ofThe atom is made up of 33 particles.particles.
ParticleParticle ChargeCharge
PROTONPROTON ++
NEUTRONNEUTRON NEUTRALNEUTRAL
ELECTRONELECTRON --
• Electrons are not present within the atom,Electrons are not present within the atom,
insteadinstead THEY REVOLVE AROUND THETHEY REVOLVE AROUND THE
NUCELUS OF THE ATOM & FORM THENUCELUS OF THE ATOM & FORM THE
ELECTRON CLOUDELECTRON CLOUD
• Draw a helium atom. Indicate where theDraw a helium atom. Indicate where the
protons, neutrons and electrons are.protons, neutrons and electrons are.
+ +
-
-
PROTONS
NEUTRONS
ELECTRONS
ATOMIC # = 2
(PROTONS)
ATOMIC MASS = 4
(PROTONS &
NEUTRONS)
ISOTOPESISOTOPES
• atoms of the same element thatatoms of the same element that HAVE AHAVE A
DIFFERENT NUMBER OF NEUTRONSDIFFERENT NUMBER OF NEUTRONS
• Some isotopes are radioactive. This meansSome isotopes are radioactive. This means
that their nuclei is unstable and will breakthat their nuclei is unstable and will break
down at adown at a CONSTANT RATECONSTANT RATE over time.over time.
• There are several practical uses forThere are several practical uses for
radioactive isotopes:radioactive isotopes:
1.1. CARBON DATINGCARBON DATING
2.2. TRACERSTRACERS
3.3. KILL BACTERIA / CANCER CELLSKILL BACTERIA / CANCER CELLS
COMPOUNDSCOMPOUNDS
• a substance formed by the chemicala substance formed by the chemical
combination ofcombination of 2 or more elements2 or more elements in definitein definite
proportionsproportions
– Ex: water, salt, glucose, carbon dioxideEx: water, salt, glucose, carbon dioxide
• The cell is aThe cell is a COMPLEX CHEMICALCOMPLEX CHEMICAL
FACTORYFACTORY containing some of the samecontaining some of the same
elements found in the nonlivingelements found in the nonliving
environment.environment.
• carbon (C), hydrogen (H), oxygen (O), andcarbon (C), hydrogen (H), oxygen (O), and
nitrogen (N) are present in the greatestnitrogen (N) are present in the greatest
percentagespercentages
TWO TYPES OFTWO TYPES OF
COMPOUNDSCOMPOUNDS
• Organic - Contain C, H, and O in someOrganic - Contain C, H, and O in some
ratio (usually referred to as chemicals ofratio (usually referred to as chemicals of
life)life)
– Carbohydrates, Proteins, Lipids, Nucleic AcidsCarbohydrates, Proteins, Lipids, Nucleic Acids
• Inorganic - usually "support" life - noInorganic - usually "support" life - no
specific ratio of C, H, and Ospecific ratio of C, H, and O
– Water (H2O), Carbon Dioxide (CO2)Water (H2O), Carbon Dioxide (CO2)
CHEMICAL BONDSCHEMICAL BONDS
• Chemical bonds hold the atoms in aChemical bonds hold the atoms in a
molecule together.molecule together.
• There are 2 types of chemical bondsThere are 2 types of chemical bonds
IONICIONIC andand COVALENTCOVALENT
IONIC BONDSIONIC BONDS
• Occur when 1 or more electrons areOccur when 1 or more electrons are
TRANSFERREDTRANSFERRED from one atom to another.from one atom to another.
• When an atom loses an electron it is aWhen an atom loses an electron it is a
POSITIVEPOSITIVE charge.charge.
• When an atom gains an electron it is aWhen an atom gains an electron it is a
NEGATIVENEGATIVE chargecharge
• These newly charged atoms are now calledThese newly charged atoms are now called
IONSIONS
– Example: NaCl (SALT)Example: NaCl (SALT)
COVALENT BONDSCOVALENT BONDS
• Occur when electrons areOccur when electrons are SHAREDSHARED by atoms.by atoms.
• These new structures that result from covalentThese new structures that result from covalent
bonds are calledbonds are called MOLECULESMOLECULES
• ** In general, the more chemical bonds a** In general, the more chemical bonds a
molecule has the more energy it containsmolecule has the more energy it contains
SHARING IS CARING!SHARING IS CARING!
MIXTURESMIXTURES
• Water is not always pure. It is often found asWater is not always pure. It is often found as
part of a mixture.part of a mixture.
• A mixture is a material composed ofA mixture is a material composed of TWO ORTWO OR
MORE ELEMENTS OR COMPOUNDS THATMORE ELEMENTS OR COMPOUNDS THAT
ARE PHYSICALLY MIXEDARE PHYSICALLY MIXED
– Ex: salt & pepper mixed, sugar and sand –Ex: salt & pepper mixed, sugar and sand – can becan be
easily separatedeasily separated
SOLUTIONSOLUTION
Two parts:Two parts:
• SOLUTE –SOLUTE – SUBSTANCE THAT IS BEINGSUBSTANCE THAT IS BEING
DISSOLVED (SUGAR / SALT)DISSOLVED (SUGAR / SALT)
• SOLVENTSOLVENT - the substance in which the solute- the substance in which the solute
dissolvesdissolves
• Materials that do not dissolve are known asMaterials that do not dissolve are known as
SUSPENSIONSSUSPENSIONS..
– Blood is the most common example of aBlood is the most common example of a
suspension.suspension.
– Cells & other particles remain in suspension.Cells & other particles remain in suspension.
FORMULAFORMULA
• The chemical symbols and numbers thatThe chemical symbols and numbers that
compose a compound ("compose a compound ("reciperecipe")")
• Structural FormulaStructural Formula – Line drawings of the– Line drawings of the
compound that shows the elements incompound that shows the elements in
proportion and how they are bondedproportion and how they are bonded
• Molecular FormulaMolecular Formula – the ACTUAL– the ACTUAL
formula for a compoundformula for a compound
CC22HH66OO
ACIDS & BASESACIDS & BASES
• Acids: always (almost) begin with "H" becauseAcids: always (almost) begin with "H" because
of the excess of H+ ions (hydrogen)of the excess of H+ ions (hydrogen)
– Ex: lemon juice (6), stomach acid (1.5), acid rainEx: lemon juice (6), stomach acid (1.5), acid rain
(4.5), normal rain (6)(4.5), normal rain (6)
Facts about AcidsFacts about Acids
• Acids turn litmus paperAcids turn litmus paper BLUEBLUE and usuallyand usually
tastetaste SOURSOUR..
• You eat acids daily (coffee, vinegar, soda,You eat acids daily (coffee, vinegar, soda,
spicy foods, etc…)spicy foods, etc…)
ACIDS & BASESACIDS & BASES
• Bases: always (almost) end with -OH becauseBases: always (almost) end with -OH because
of the excess of hydroxide ions (Oxygen &of the excess of hydroxide ions (Oxygen &
Hydrogen)Hydrogen)
– EX: oven cleaner, bleach, ammonia, sea water,EX: oven cleaner, bleach, ammonia, sea water,
blood, pure waterblood, pure water
Facts about BasesFacts about Bases
• Bases turn litmusBases turn litmus BLUEBLUE..
• Bases usually feelBases usually feel SLIPPERYSLIPPERY to touch andto touch and
tastetaste BITTERBITTER..
Neutralization ReactionsNeutralization Reactions
• When an acid reacts with a base to produce aWhen an acid reacts with a base to produce a
salt and water.salt and water.
pH SCALEpH SCALE
• measures degree ofmeasures degree of
substance alkalinity orsubstance alkalinity or
acidityacidity
• Ranges fromRanges from 0 to 140 to 14
• 0 – 5 strong acid0 – 5 strong acid
• 6-7 neutral6-7 neutral
• 8-14 strong base8-14 strong base
• The goal of the body is to maintainThe goal of the body is to maintain
HOMEOSTASIS (neutrality)HOMEOSTASIS (neutrality) – to do this when– to do this when
pH is concerned, we add weak acids & bases topH is concerned, we add weak acids & bases to
prevent sharp changes in pH.prevent sharp changes in pH.
• These are calledThese are called BUFFERSBUFFERS
And now for theAnd now for the
Biochemistry portion ofBiochemistry portion of
things….things….
CARBOHYDRATESCARBOHYDRATES
• Living things use carbohydrates as a key sourceLiving things use carbohydrates as a key source
ofof ENERGYENERGY!!
• Plants use carbohydrates for structurePlants use carbohydrates for structure
((CELLULOSECELLULOSE))
– include sugars and complex carbohydratesinclude sugars and complex carbohydrates
(starches)(starches)
– contain the elements carbon, hydrogen, and oxygencontain the elements carbon, hydrogen, and oxygen
(the hydrogen is in a 2:1 ratio to oxygen)(the hydrogen is in a 2:1 ratio to oxygen)
Monosaccharides (simple sugars)Monosaccharides (simple sugars)
• all have the formula C6 H12 O6all have the formula C6 H12 O6
• all have a single ring structureall have a single ring structure
– (glucose is an example)(glucose is an example)
Disaccharides (double sugars)Disaccharides (double sugars)
• all have the formula C12 H22 O11all have the formula C12 H22 O11
• sucrose (table sugar) is an examplesucrose (table sugar) is an example
PolysaccharidesPolysaccharides
• Formed of three or more simple sugar unitsFormed of three or more simple sugar units
• Glycogen - animal starch stored in liver & musclesGlycogen - animal starch stored in liver & muscles
• Cellulose - indigestible in humans - forms cell wallsCellulose - indigestible in humans - forms cell walls
• Starches - used as energy storageStarches - used as energy storage
How are complexHow are complex
carbohydrates formedcarbohydrates formed
and broken down?and broken down?
Dehydration SynthesisDehydration Synthesis
• Combining simple molecules to form a moreCombining simple molecules to form a more
complex one with thecomplex one with the removal of waterremoval of water
– ex. monosaccharide + monosaccharide ---->ex. monosaccharide + monosaccharide ---->
disaccharide + waterdisaccharide + water
– (C6H12O6 + C6H12O6 ----> C12H22O11 + H2O(C6H12O6 + C6H12O6 ----> C12H22O11 + H2O
• Polysaccharides are formed from repeatedPolysaccharides are formed from repeated
dehydration syntheses of waterdehydration syntheses of water
– They are the stored extra sugars known as starchThey are the stored extra sugars known as starch
HydrolysisHydrolysis
• Addition ofAddition of WATERWATER to a compound toto a compound to
SPLITSPLIT it into smaller subunitsit into smaller subunits
– (also called chemical digestion)(also called chemical digestion)
– ex. disaccharide + H2O --->ex. disaccharide + H2O --->
monosaccharide + monosaccharidemonosaccharide + monosaccharide
C12 H22 O11 + H2 O ---> C6 H12 O6 + C6 H12 O6C12 H22 O11 + H2 O ---> C6 H12 O6 + C6 H12 O6
Lipids (Fats)Lipids (Fats)
• Fats, oils, waxes, steroidsFats, oils, waxes, steroids
• Chiefly function inChiefly function in energy storage, protection,energy storage, protection,
and insulationand insulation
• Contain carbon, hydrogen, and oxygen but theContain carbon, hydrogen, and oxygen but the
H:O is not in a 2:1 ratioH:O is not in a 2:1 ratio
• Tend to beTend to be largelarge molecules -- an example of amolecules -- an example of a
neutral lipid is belowneutral lipid is below
• Neutral lipids are formed from the union ofNeutral lipids are formed from the union of oneone
glycerol molecule and 3 fatty acidsglycerol molecule and 3 fatty acids
• 3 fatty acids + glycerol ----> neutral fat (lipid)3 fatty acids + glycerol ----> neutral fat (lipid)
• Fats -- found chiefly inFats -- found chiefly in animalsanimals
• Oils and waxes -- found chiefly inOils and waxes -- found chiefly in plantsplants
• Oils are liquid at room temperature, waxes areOils are liquid at room temperature, waxes are
solidssolids
• Lipids along with proteins are key components ofLipids along with proteins are key components of
cell membranescell membranes
• Steroids are special lipids used to build manySteroids are special lipids used to build many
reproductive hormones and cholesterolreproductive hormones and cholesterol
PROTEINSPROTEINS
• contain the elements carbon, hydrogen, oxygen,contain the elements carbon, hydrogen, oxygen,
and nitrogenand nitrogen
• composed of MANY amino acid subunitscomposed of MANY amino acid subunits
• It is the arrangement of the amino acid thatIt is the arrangement of the amino acid that
forms the primary structure of proteins.forms the primary structure of proteins.
• The basic amino acid form has aThe basic amino acid form has a carboxylcarboxyl
groupgroup on one end, aon one end, a methyl groupmethyl group that onlythat only
has one hydrogen in the middle, and ahas one hydrogen in the middle, and a aminoamino
groupgroup on the other end.on the other end.
• Attached to the methyl group is aAttached to the methyl group is a RR groupgroup..
AN R GROUP IS ANY GROUPAN R GROUP IS ANY GROUP
OF ATOMS – THIS CHANGESOF ATOMS – THIS CHANGES
THE PROPERTIES OF THETHE PROPERTIES OF THE
PROTEIN!PROTEIN!
FUNCTIONAL GROUPSFUNCTIONAL GROUPS
• There are certain groups of atoms that areThere are certain groups of atoms that are
frequently attached to the organic molecules wefrequently attached to the organic molecules we
will be studying, and these are calledwill be studying, and these are called functionalfunctional
groupsgroups..
• These are things likeThese are things like hydroxyl groupshydroxyl groups whichwhich
formform alcoholsalcohols,, carbonyl groupscarbonyl groups which formwhich form
aldehydesaldehydes oror ketonesketones,, carboxyl groupscarboxyl groups whichwhich
formform carboxylic acidscarboxylic acids, and, and amino groupsamino groups
which formwhich form aminesamines..
Major Protein FunctionsMajor Protein Functions
• Growth and repairGrowth and repair
• EnergyEnergy
• Buffer -- helps keep body pH constantBuffer -- helps keep body pH constant
DipeptideDipeptide
• formed from two amino acid subunitsformed from two amino acid subunits
• Formed by the process ofFormed by the process of Dehydration SynthesisDehydration Synthesis
• amino acid + amino acid ----- dipeptide + wateramino acid + amino acid ----- dipeptide + water
Hydrolysis of a dipeptideHydrolysis of a dipeptide
• Breaking down of a dipeptide into amino acidsBreaking down of a dipeptide into amino acids
• dipeptide + H2O ---> aminoacid + amino aciddipeptide + H2O ---> aminoacid + amino acid
Polypeptide (protein)Polypeptide (protein)
• composed ofcomposed of three or morethree or more amino acids linkedamino acids linked
by synthesis reactionsby synthesis reactions
• Examples of proteins includeExamples of proteins include insulin,insulin,
hemoglobin, and enzymes.hemoglobin, and enzymes.
• ** There are an extremely large number of** There are an extremely large number of
different proteins.different proteins.
• The bases for variability include differences inThe bases for variability include differences in
the number, kinds and sequences of aminothe number, kinds and sequences of amino
acids in the proteinsacids in the proteins
NUCLEIC ACIDSNUCLEIC ACIDS
• in all cellsin all cells
• composed ofcomposed of NUCLEOTIDESNUCLEOTIDES
• store & transmitstore & transmit heredity/geneticheredity/genetic informationinformation
• Nucleotides consist of 3 parts:Nucleotides consist of 3 parts:
• 1.1. 5-Carbon Sugar5-Carbon Sugar
• 2.2. Phosphate GroupPhosphate Group
• 3.3. Nitrogenous BaseNitrogenous Base
DNA (deoxyribonucleic acid)DNA (deoxyribonucleic acid)
• contains the genetic code of instructions that direct acontains the genetic code of instructions that direct a
cell's behavior through the synthesis of proteinscell's behavior through the synthesis of proteins
• found in the chromosomes of the nucleus (and a fewfound in the chromosomes of the nucleus (and a few
other organelles)other organelles)
RNA (ribonucleic acid)RNA (ribonucleic acid)
• directs cellular protein synthesisdirects cellular protein synthesis
• found in ribosomes & nucleolifound in ribosomes & nucleoli
CHEMICAL REACTIONSCHEMICAL REACTIONS
• a process thata process that changeschanges one set of chemicals intoone set of chemicals into
another set of chemicalsanother set of chemicals
• REACTANTSREACTANTS – elements or compounds that– elements or compounds that
enter into a chemical reactionenter into a chemical reaction
• PRODUCTSPRODUCTS – elements or compounds that are– elements or compounds that are
produced in a chemical reactionproduced in a chemical reaction
• Chemical reactions always involve theChemical reactions always involve the breaking ofbreaking of
bonds in reactantsbonds in reactants and theand the formation of newformation of new
bonds in products.bonds in products.
• In a reaction, energy is either TAKEN INIn a reaction, energy is either TAKEN IN
((ENDOTHERMICENDOTHERMIC) or GIVEN OFF) or GIVEN OFF
((EXOTHERMICEXOTHERMIC))
• Can you think of an everyday example ofCan you think of an everyday example of
each type of reaction?each type of reaction?
Enzymes and Enzyme ActionEnzymes and Enzyme Action
• catalystcatalyst: inorganic or organic substance which: inorganic or organic substance which
speeds up the ratespeeds up the rate of a chemical reaction withoutof a chemical reaction without
entering the reaction itselfentering the reaction itself
• enzymesenzymes: organic catalysts made of protein: organic catalysts made of protein
• most enzyme names end in -asemost enzyme names end in -ase
• enzymes lower the energy needed to start aenzymes lower the energy needed to start a
chemical reaction. (chemical reaction. (activation energyactivation energy))
• begin to be destroyed above 45øC. (above thisbegin to be destroyed above 45øC. (above this
temperature all proteins begin to be destroyed)temperature all proteins begin to be destroyed)
It is thought that, in order for an enzyme to affect the rate of aIt is thought that, in order for an enzyme to affect the rate of a
reaction, the following events must take place.reaction, the following events must take place.
1.1. The enzyme must form aThe enzyme must form a temporary associationtemporary association with thewith the
substance or substances whose reaction rate it affects.substance or substances whose reaction rate it affects.
These substances are known asThese substances are known as substratessubstrates..
2.2. The association between enzyme and substrate is thought toThe association between enzyme and substrate is thought to
form aform a close physical associationclose physical association between the molecules andbetween the molecules and
is called theis called the enzyme-substrate complexenzyme-substrate complex..
3.3. While the enzyme-substrate complex is formed, enzymeWhile the enzyme-substrate complex is formed, enzyme
action takes place.action takes place.
4.4. Upon completion of the reaction, the enzyme and product(s)Upon completion of the reaction, the enzyme and product(s)
separateseparate. The enzyme molecule is now available to form. The enzyme molecule is now available to form
additional complexes.additional complexes.
How do enzymes work?How do enzymes work?
• substratesubstrate: molecules upon which an enzyme acts: molecules upon which an enzyme acts
• the enzyme is shaped so that it can only lock upthe enzyme is shaped so that it can only lock up
with awith a specific substratespecific substrate moleculemolecule
enzymeenzyme
substrate -------------> productsubstrate -------------> product
"Lock and Key Theory"
• each enzyme is specific foreach enzyme is specific for one and ONLY oneone and ONLY one
substratesubstrate (one lock - one key)(one lock - one key)
• this theory has many weaknesses, but itthis theory has many weaknesses, but it
explains some basic things about enzymeexplains some basic things about enzyme
functionfunction
Factors Influencing Rate ofFactors Influencing Rate of
Enzyme ActionEnzyme Action
1.1. pHpH - the optimum (best) in most living things is- the optimum (best) in most living things is
close to 7 (neutral)close to 7 (neutral)
• high or low pH levels usually slow enzyme activityhigh or low pH levels usually slow enzyme activity
• A few enzymes (such as gastric protease) workA few enzymes (such as gastric protease) work
best at a pH of about 2.0best at a pH of about 2.0
2.2. TemperatureTemperature - strongly influences enzyme- strongly influences enzyme
activityactivity
• optimum temperature for maximum enzymeoptimum temperature for maximum enzyme
function is usually about 35-40 C.function is usually about 35-40 C.
• reactions proceed slowly below optimalreactions proceed slowly below optimal
temperaturestemperatures
• above 45 C most enzymes are denaturedabove 45 C most enzymes are denatured
(change in their shape so the enzyme active site(change in their shape so the enzyme active site
no longer fits with the substrate and the enzymeno longer fits with the substrate and the enzyme
can't function)can't function)
3.3. ConcentrationsConcentrations of Enzyme and Substrateof Enzyme and Substrate
• ** When there is a fixed amount of enzyme and** When there is a fixed amount of enzyme and
an excess of substrate molecules -- the rate ofan excess of substrate molecules -- the rate of
reaction will increase to a point and then levelreaction will increase to a point and then level
off.off.

Más contenido relacionado

La actualidad más candente

Matter and change
Matter and changeMatter and change
Matter and change
phspsquires
 
Chemistry - Chp 20 - Oxidation Reduction - Notes
Chemistry - Chp 20 - Oxidation Reduction - NotesChemistry - Chp 20 - Oxidation Reduction - Notes
Chemistry - Chp 20 - Oxidation Reduction - Notes
Mr. Walajtys
 
C04 elements and compounds
C04 elements and compoundsC04 elements and compounds
C04 elements and compounds
Chemrcwss
 
The structure of_matter
The structure of_matterThe structure of_matter
The structure of_matter
Personal
 

La actualidad más candente (20)

Introduction to Foundation of Chemistry 1
Introduction to Foundation of Chemistry 1Introduction to Foundation of Chemistry 1
Introduction to Foundation of Chemistry 1
 
Chemistry Revision Notes - IGCSE
Chemistry Revision Notes - IGCSEChemistry Revision Notes - IGCSE
Chemistry Revision Notes - IGCSE
 
Physical chemistry
Physical chemistryPhysical chemistry
Physical chemistry
 
Science assignment- Form 4 Chapter 4
Science assignment- Form 4 Chapter 4Science assignment- Form 4 Chapter 4
Science assignment- Form 4 Chapter 4
 
Chapter 3 The Organic Molecules of Life
Chapter 3 The Organic Molecules of LifeChapter 3 The Organic Molecules of Life
Chapter 3 The Organic Molecules of Life
 
Matter and change
Matter and changeMatter and change
Matter and change
 
Chemistry - Chp 20 - Oxidation Reduction - Notes
Chemistry - Chp 20 - Oxidation Reduction - NotesChemistry - Chp 20 - Oxidation Reduction - Notes
Chemistry - Chp 20 - Oxidation Reduction - Notes
 
C04 elements and compounds
C04 elements and compoundsC04 elements and compounds
C04 elements and compounds
 
Chapter Three Lecture- Stoichiometry
Chapter Three Lecture- StoichiometryChapter Three Lecture- Stoichiometry
Chapter Three Lecture- Stoichiometry
 
Stereoisomerism
StereoisomerismStereoisomerism
Stereoisomerism
 
Biochemlab postlab discussion act. 1 4
Biochemlab postlab discussion act. 1 4Biochemlab postlab discussion act. 1 4
Biochemlab postlab discussion act. 1 4
 
Chem matters ch6_ionic_bond
Chem matters ch6_ionic_bondChem matters ch6_ionic_bond
Chem matters ch6_ionic_bond
 
Chapter 2 power point
Chapter 2 power pointChapter 2 power point
Chapter 2 power point
 
Ch23 coordination(a)
Ch23 coordination(a)Ch23 coordination(a)
Ch23 coordination(a)
 
Optical isomerism
Optical isomerismOptical isomerism
Optical isomerism
 
Redox reactions
Redox reactionsRedox reactions
Redox reactions
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
The structure of_matter
The structure of_matterThe structure of_matter
The structure of_matter
 
Colour of metal complexes
Colour of metal complexesColour of metal complexes
Colour of metal complexes
 
Mec chapter 8
Mec chapter 8Mec chapter 8
Mec chapter 8
 

Destacado

BNI Social Media Class Sept 19 2013
BNI Social Media Class Sept 19 2013BNI Social Media Class Sept 19 2013
BNI Social Media Class Sept 19 2013
David Marciniak
 
Court white paper
Court white paperCourt white paper
Court white paper
Havas PR
 
The sisterhood
The sisterhoodThe sisterhood
The sisterhood
Havas PR
 
So.wom_Social Word Of Mouth
So.wom_Social Word Of MouthSo.wom_Social Word Of Mouth
So.wom_Social Word Of Mouth
Bar Solutions
 
บัญชีแยกประเภทเจ้าหนี้รายตัว
บัญชีแยกประเภทเจ้าหนี้รายตัวบัญชีแยกประเภทเจ้าหนี้รายตัว
บัญชีแยกประเภทเจ้าหนี้รายตัว
sirawannongyui
 
132945752 pro-forma-bcn3110
132945752 pro-forma-bcn3110132945752 pro-forma-bcn3110
132945752 pro-forma-bcn3110
Siok Yee Wong
 

Destacado (18)

Laura Abrardi, Onefive, CH (Appolo)
Laura Abrardi, Onefive, CH (Appolo)Laura Abrardi, Onefive, CH (Appolo)
Laura Abrardi, Onefive, CH (Appolo)
 
BNI Social Media Class Sept 19 2013
BNI Social Media Class Sept 19 2013BNI Social Media Class Sept 19 2013
BNI Social Media Class Sept 19 2013
 
Bs presentation new
Bs presentation newBs presentation new
Bs presentation new
 
Court white paper
Court white paperCourt white paper
Court white paper
 
Sound Sound - Parent info night presentation
Sound Sound - Parent info night presentationSound Sound - Parent info night presentation
Sound Sound - Parent info night presentation
 
Medellin primaveral
Medellin primaveralMedellin primaveral
Medellin primaveral
 
Easy automation choices for landscape businesses
Easy automation choices for landscape businessesEasy automation choices for landscape businesses
Easy automation choices for landscape businesses
 
The sisterhood
The sisterhoodThe sisterhood
The sisterhood
 
So.wom_Social Word Of Mouth
So.wom_Social Word Of MouthSo.wom_Social Word Of Mouth
So.wom_Social Word Of Mouth
 
Taxonomy
TaxonomyTaxonomy
Taxonomy
 
Luis carlos martinez massa y luisa y fernanda
Luis carlos martinez massa y luisa y fernandaLuis carlos martinez massa y luisa y fernanda
Luis carlos martinez massa y luisa y fernanda
 
ALL ABOUT ME PROJECT
ALL ABOUT ME PROJECTALL ABOUT ME PROJECT
ALL ABOUT ME PROJECT
 
8389 work 1
8389 work 18389 work 1
8389 work 1
 
บัญชีแยกประเภทเจ้าหนี้รายตัว
บัญชีแยกประเภทเจ้าหนี้รายตัวบัญชีแยกประเภทเจ้าหนี้รายตัว
บัญชีแยกประเภทเจ้าหนี้รายตัว
 
Health care
Health careHealth care
Health care
 
Prelesson
PrelessonPrelesson
Prelesson
 
33333
3333333333
33333
 
132945752 pro-forma-bcn3110
132945752 pro-forma-bcn3110132945752 pro-forma-bcn3110
132945752 pro-forma-bcn3110
 

Similar a Biochemistry

Biochemistry
BiochemistryBiochemistry
Biochemistry
Gaurav Kr
 
biochemistry.ppt.Definitions of the biochem
biochemistry.ppt.Definitions of the biochembiochemistry.ppt.Definitions of the biochem
biochemistry.ppt.Definitions of the biochem
nirmalaperiasamy1
 
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
Biology - Chp 2 - The Chemistry Of Life - PowerPointBiology - Chp 2 - The Chemistry Of Life - PowerPoint
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
Mel Anthony Pepito
 
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
cavalierem
 
02 matter, change and energy
02 matter, change and energy02 matter, change and energy
02 matter, change and energy
Dr Ahmad Fahmi
 

Similar a Biochemistry (20)

Biochemistry
BiochemistryBiochemistry
Biochemistry
 
Biochemistry
BiochemistryBiochemistry
Biochemistry
 
2. chemical foundation of life, bio 101 fall 2014
2. chemical foundation of life, bio 101 fall 20142. chemical foundation of life, bio 101 fall 2014
2. chemical foundation of life, bio 101 fall 2014
 
Biochemistry
BiochemistryBiochemistry
Biochemistry
 
biochemistry.ppt.Definitions of the biochem
biochemistry.ppt.Definitions of the biochembiochemistry.ppt.Definitions of the biochem
biochemistry.ppt.Definitions of the biochem
 
Basic Conceptsof Biochemistry, Atom,.ppt
Basic Conceptsof Biochemistry, Atom,.pptBasic Conceptsof Biochemistry, Atom,.ppt
Basic Conceptsof Biochemistry, Atom,.ppt
 
The chemistry of life chapter 2
The chemistry of life chapter 2The chemistry of life chapter 2
The chemistry of life chapter 2
 
Chapter-2-The-Chemical-Basis-of-Life.pptx
Chapter-2-The-Chemical-Basis-of-Life.pptxChapter-2-The-Chemical-Basis-of-Life.pptx
Chapter-2-The-Chemical-Basis-of-Life.pptx
 
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
Biology - Chp 2 - The Chemistry Of Life - PowerPointBiology - Chp 2 - The Chemistry Of Life - PowerPoint
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
 
Basic Chemistry for Biologists
Basic Chemistry for BiologistsBasic Chemistry for Biologists
Basic Chemistry for Biologists
 
02 basic chemistry in biology
02 basic chemistry in biology02 basic chemistry in biology
02 basic chemistry in biology
 
Chem115 unit1
Chem115 unit1Chem115 unit1
Chem115 unit1
 
Chemistry of atoms and molecules of our body
Chemistry of atoms and molecules of our bodyChemistry of atoms and molecules of our body
Chemistry of atoms and molecules of our body
 
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
 
11 chp16 lect2
11 chp16 lect211 chp16 lect2
11 chp16 lect2
 
Biochemistry Notes
Biochemistry NotesBiochemistry Notes
Biochemistry Notes
 
02 matter, change and energy
02 matter, change and energy02 matter, change and energy
02 matter, change and energy
 
Chapter13chemicalreactions 150301133632-conversion-gate02
Chapter13chemicalreactions 150301133632-conversion-gate02Chapter13chemicalreactions 150301133632-conversion-gate02
Chapter13chemicalreactions 150301133632-conversion-gate02
 
Chapter 13 chemical reactions
Chapter 13 chemical reactionsChapter 13 chemical reactions
Chapter 13 chemical reactions
 
Chapter13chemicalreactions 150301133632-conversion-gate02
Chapter13chemicalreactions 150301133632-conversion-gate02Chapter13chemicalreactions 150301133632-conversion-gate02
Chapter13chemicalreactions 150301133632-conversion-gate02
 

Más de Espirituanna (20)

Ethical principles law_and_cultural_diversity
Ethical principles law_and_cultural_diversityEthical principles law_and_cultural_diversity
Ethical principles law_and_cultural_diversity
 
Dse control prevention_in_dental_1_
Dse control prevention_in_dental_1_Dse control prevention_in_dental_1_
Dse control prevention_in_dental_1_
 
Dental care journal
Dental care journalDental care journal
Dental care journal
 
Bioethics defined
Bioethics definedBioethics defined
Bioethics defined
 
Anatomy 1
Anatomy 1 Anatomy 1
Anatomy 1
 
Ana phyev oandanatomist_1_
Ana phyev oandanatomist_1_Ana phyev oandanatomist_1_
Ana phyev oandanatomist_1_
 
8389 ch06
8389 ch068389 ch06
8389 ch06
 
genetics
geneticsgenetics
genetics
 
skeletal system
skeletal systemskeletal system
skeletal system
 
Introduction to cytology
Introduction to cytologyIntroduction to cytology
Introduction to cytology
 
Principles organization and_operation_of_a_dna_bank
Principles organization and_operation_of_a_dna_bankPrinciples organization and_operation_of_a_dna_bank
Principles organization and_operation_of_a_dna_bank
 
Disease
DiseaseDisease
Disease
 
the urinary system
the urinary systemthe urinary system
the urinary system
 
respiratory system
respiratory systemrespiratory system
respiratory system
 
Human acts
Human actsHuman acts
Human acts
 
Histology
HistologyHistology
Histology
 
Hierarchy of beings_emotions
Hierarchy of beings_emotionsHierarchy of beings_emotions
Hierarchy of beings_emotions
 
Forensic dentistry
Forensic dentistryForensic dentistry
Forensic dentistry
 
Dental ethics
Dental ethicsDental ethics
Dental ethics
 
Dental care journal
Dental care journalDental care journal
Dental care journal
 

Último

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Último (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

Biochemistry

  • 2. CHEMISTRY OF LIFECHEMISTRY OF LIFE • ElementsElements: simplest form of a: simplest form of a substance - cannot be broken downsubstance - cannot be broken down any further without changing what it isany further without changing what it is • AtomAtom: the actual basic unit -: the actual basic unit - composed of protons, neutrons, andcomposed of protons, neutrons, and electronselectrons
  • 3. THE ATOMTHE ATOM • Just like cells are the basic unit of life, theJust like cells are the basic unit of life, the ATOMATOM is the basic unit of matter.is the basic unit of matter. • They are very small. If placed side by sideThey are very small. If placed side by side one million would stretch a distance of 1cm.one million would stretch a distance of 1cm. • The atom is made up ofThe atom is made up of 33 particles.particles. ParticleParticle ChargeCharge PROTONPROTON ++ NEUTRONNEUTRON NEUTRALNEUTRAL ELECTRONELECTRON --
  • 4. • Electrons are not present within the atom,Electrons are not present within the atom, insteadinstead THEY REVOLVE AROUND THETHEY REVOLVE AROUND THE NUCELUS OF THE ATOM & FORM THENUCELUS OF THE ATOM & FORM THE ELECTRON CLOUDELECTRON CLOUD • Draw a helium atom. Indicate where theDraw a helium atom. Indicate where the protons, neutrons and electrons are.protons, neutrons and electrons are. + + - - PROTONS NEUTRONS ELECTRONS ATOMIC # = 2 (PROTONS) ATOMIC MASS = 4 (PROTONS & NEUTRONS)
  • 5. ISOTOPESISOTOPES • atoms of the same element thatatoms of the same element that HAVE AHAVE A DIFFERENT NUMBER OF NEUTRONSDIFFERENT NUMBER OF NEUTRONS • Some isotopes are radioactive. This meansSome isotopes are radioactive. This means that their nuclei is unstable and will breakthat their nuclei is unstable and will break down at adown at a CONSTANT RATECONSTANT RATE over time.over time. • There are several practical uses forThere are several practical uses for radioactive isotopes:radioactive isotopes: 1.1. CARBON DATINGCARBON DATING 2.2. TRACERSTRACERS 3.3. KILL BACTERIA / CANCER CELLSKILL BACTERIA / CANCER CELLS
  • 6. COMPOUNDSCOMPOUNDS • a substance formed by the chemicala substance formed by the chemical combination ofcombination of 2 or more elements2 or more elements in definitein definite proportionsproportions – Ex: water, salt, glucose, carbon dioxideEx: water, salt, glucose, carbon dioxide
  • 7. • The cell is aThe cell is a COMPLEX CHEMICALCOMPLEX CHEMICAL FACTORYFACTORY containing some of the samecontaining some of the same elements found in the nonlivingelements found in the nonliving environment.environment. • carbon (C), hydrogen (H), oxygen (O), andcarbon (C), hydrogen (H), oxygen (O), and nitrogen (N) are present in the greatestnitrogen (N) are present in the greatest percentagespercentages
  • 8. TWO TYPES OFTWO TYPES OF COMPOUNDSCOMPOUNDS • Organic - Contain C, H, and O in someOrganic - Contain C, H, and O in some ratio (usually referred to as chemicals ofratio (usually referred to as chemicals of life)life) – Carbohydrates, Proteins, Lipids, Nucleic AcidsCarbohydrates, Proteins, Lipids, Nucleic Acids • Inorganic - usually "support" life - noInorganic - usually "support" life - no specific ratio of C, H, and Ospecific ratio of C, H, and O – Water (H2O), Carbon Dioxide (CO2)Water (H2O), Carbon Dioxide (CO2)
  • 9. CHEMICAL BONDSCHEMICAL BONDS • Chemical bonds hold the atoms in aChemical bonds hold the atoms in a molecule together.molecule together. • There are 2 types of chemical bondsThere are 2 types of chemical bonds IONICIONIC andand COVALENTCOVALENT
  • 10. IONIC BONDSIONIC BONDS • Occur when 1 or more electrons areOccur when 1 or more electrons are TRANSFERREDTRANSFERRED from one atom to another.from one atom to another. • When an atom loses an electron it is aWhen an atom loses an electron it is a POSITIVEPOSITIVE charge.charge. • When an atom gains an electron it is aWhen an atom gains an electron it is a NEGATIVENEGATIVE chargecharge • These newly charged atoms are now calledThese newly charged atoms are now called IONSIONS – Example: NaCl (SALT)Example: NaCl (SALT)
  • 11.
  • 12. COVALENT BONDSCOVALENT BONDS • Occur when electrons areOccur when electrons are SHAREDSHARED by atoms.by atoms. • These new structures that result from covalentThese new structures that result from covalent bonds are calledbonds are called MOLECULESMOLECULES • ** In general, the more chemical bonds a** In general, the more chemical bonds a molecule has the more energy it containsmolecule has the more energy it contains SHARING IS CARING!SHARING IS CARING!
  • 13. MIXTURESMIXTURES • Water is not always pure. It is often found asWater is not always pure. It is often found as part of a mixture.part of a mixture. • A mixture is a material composed ofA mixture is a material composed of TWO ORTWO OR MORE ELEMENTS OR COMPOUNDS THATMORE ELEMENTS OR COMPOUNDS THAT ARE PHYSICALLY MIXEDARE PHYSICALLY MIXED – Ex: salt & pepper mixed, sugar and sand –Ex: salt & pepper mixed, sugar and sand – can becan be easily separatedeasily separated
  • 14. SOLUTIONSOLUTION Two parts:Two parts: • SOLUTE –SOLUTE – SUBSTANCE THAT IS BEINGSUBSTANCE THAT IS BEING DISSOLVED (SUGAR / SALT)DISSOLVED (SUGAR / SALT) • SOLVENTSOLVENT - the substance in which the solute- the substance in which the solute dissolvesdissolves • Materials that do not dissolve are known asMaterials that do not dissolve are known as SUSPENSIONSSUSPENSIONS.. – Blood is the most common example of aBlood is the most common example of a suspension.suspension. – Cells & other particles remain in suspension.Cells & other particles remain in suspension.
  • 15. FORMULAFORMULA • The chemical symbols and numbers thatThe chemical symbols and numbers that compose a compound ("compose a compound ("reciperecipe")") • Structural FormulaStructural Formula – Line drawings of the– Line drawings of the compound that shows the elements incompound that shows the elements in proportion and how they are bondedproportion and how they are bonded • Molecular FormulaMolecular Formula – the ACTUAL– the ACTUAL formula for a compoundformula for a compound CC22HH66OO
  • 16. ACIDS & BASESACIDS & BASES • Acids: always (almost) begin with "H" becauseAcids: always (almost) begin with "H" because of the excess of H+ ions (hydrogen)of the excess of H+ ions (hydrogen) – Ex: lemon juice (6), stomach acid (1.5), acid rainEx: lemon juice (6), stomach acid (1.5), acid rain (4.5), normal rain (6)(4.5), normal rain (6) Facts about AcidsFacts about Acids • Acids turn litmus paperAcids turn litmus paper BLUEBLUE and usuallyand usually tastetaste SOURSOUR.. • You eat acids daily (coffee, vinegar, soda,You eat acids daily (coffee, vinegar, soda, spicy foods, etc…)spicy foods, etc…)
  • 17. ACIDS & BASESACIDS & BASES • Bases: always (almost) end with -OH becauseBases: always (almost) end with -OH because of the excess of hydroxide ions (Oxygen &of the excess of hydroxide ions (Oxygen & Hydrogen)Hydrogen) – EX: oven cleaner, bleach, ammonia, sea water,EX: oven cleaner, bleach, ammonia, sea water, blood, pure waterblood, pure water Facts about BasesFacts about Bases • Bases turn litmusBases turn litmus BLUEBLUE.. • Bases usually feelBases usually feel SLIPPERYSLIPPERY to touch andto touch and tastetaste BITTERBITTER..
  • 18. Neutralization ReactionsNeutralization Reactions • When an acid reacts with a base to produce aWhen an acid reacts with a base to produce a salt and water.salt and water.
  • 19. pH SCALEpH SCALE • measures degree ofmeasures degree of substance alkalinity orsubstance alkalinity or acidityacidity • Ranges fromRanges from 0 to 140 to 14 • 0 – 5 strong acid0 – 5 strong acid • 6-7 neutral6-7 neutral • 8-14 strong base8-14 strong base
  • 20. • The goal of the body is to maintainThe goal of the body is to maintain HOMEOSTASIS (neutrality)HOMEOSTASIS (neutrality) – to do this when– to do this when pH is concerned, we add weak acids & bases topH is concerned, we add weak acids & bases to prevent sharp changes in pH.prevent sharp changes in pH. • These are calledThese are called BUFFERSBUFFERS
  • 21. And now for theAnd now for the Biochemistry portion ofBiochemistry portion of things….things….
  • 22.
  • 23. CARBOHYDRATESCARBOHYDRATES • Living things use carbohydrates as a key sourceLiving things use carbohydrates as a key source ofof ENERGYENERGY!! • Plants use carbohydrates for structurePlants use carbohydrates for structure ((CELLULOSECELLULOSE)) – include sugars and complex carbohydratesinclude sugars and complex carbohydrates (starches)(starches) – contain the elements carbon, hydrogen, and oxygencontain the elements carbon, hydrogen, and oxygen (the hydrogen is in a 2:1 ratio to oxygen)(the hydrogen is in a 2:1 ratio to oxygen)
  • 24. Monosaccharides (simple sugars)Monosaccharides (simple sugars) • all have the formula C6 H12 O6all have the formula C6 H12 O6 • all have a single ring structureall have a single ring structure – (glucose is an example)(glucose is an example)
  • 25. Disaccharides (double sugars)Disaccharides (double sugars) • all have the formula C12 H22 O11all have the formula C12 H22 O11 • sucrose (table sugar) is an examplesucrose (table sugar) is an example
  • 26. PolysaccharidesPolysaccharides • Formed of three or more simple sugar unitsFormed of three or more simple sugar units • Glycogen - animal starch stored in liver & musclesGlycogen - animal starch stored in liver & muscles • Cellulose - indigestible in humans - forms cell wallsCellulose - indigestible in humans - forms cell walls • Starches - used as energy storageStarches - used as energy storage
  • 27. How are complexHow are complex carbohydrates formedcarbohydrates formed and broken down?and broken down?
  • 28. Dehydration SynthesisDehydration Synthesis • Combining simple molecules to form a moreCombining simple molecules to form a more complex one with thecomplex one with the removal of waterremoval of water – ex. monosaccharide + monosaccharide ---->ex. monosaccharide + monosaccharide ----> disaccharide + waterdisaccharide + water – (C6H12O6 + C6H12O6 ----> C12H22O11 + H2O(C6H12O6 + C6H12O6 ----> C12H22O11 + H2O • Polysaccharides are formed from repeatedPolysaccharides are formed from repeated dehydration syntheses of waterdehydration syntheses of water – They are the stored extra sugars known as starchThey are the stored extra sugars known as starch
  • 29.
  • 30. HydrolysisHydrolysis • Addition ofAddition of WATERWATER to a compound toto a compound to SPLITSPLIT it into smaller subunitsit into smaller subunits – (also called chemical digestion)(also called chemical digestion) – ex. disaccharide + H2O --->ex. disaccharide + H2O ---> monosaccharide + monosaccharidemonosaccharide + monosaccharide C12 H22 O11 + H2 O ---> C6 H12 O6 + C6 H12 O6C12 H22 O11 + H2 O ---> C6 H12 O6 + C6 H12 O6
  • 31.
  • 32. Lipids (Fats)Lipids (Fats) • Fats, oils, waxes, steroidsFats, oils, waxes, steroids • Chiefly function inChiefly function in energy storage, protection,energy storage, protection, and insulationand insulation • Contain carbon, hydrogen, and oxygen but theContain carbon, hydrogen, and oxygen but the H:O is not in a 2:1 ratioH:O is not in a 2:1 ratio • Tend to beTend to be largelarge molecules -- an example of amolecules -- an example of a neutral lipid is belowneutral lipid is below
  • 33. • Neutral lipids are formed from the union ofNeutral lipids are formed from the union of oneone glycerol molecule and 3 fatty acidsglycerol molecule and 3 fatty acids • 3 fatty acids + glycerol ----> neutral fat (lipid)3 fatty acids + glycerol ----> neutral fat (lipid) • Fats -- found chiefly inFats -- found chiefly in animalsanimals • Oils and waxes -- found chiefly inOils and waxes -- found chiefly in plantsplants • Oils are liquid at room temperature, waxes areOils are liquid at room temperature, waxes are solidssolids • Lipids along with proteins are key components ofLipids along with proteins are key components of cell membranescell membranes • Steroids are special lipids used to build manySteroids are special lipids used to build many reproductive hormones and cholesterolreproductive hormones and cholesterol
  • 34. PROTEINSPROTEINS • contain the elements carbon, hydrogen, oxygen,contain the elements carbon, hydrogen, oxygen, and nitrogenand nitrogen • composed of MANY amino acid subunitscomposed of MANY amino acid subunits • It is the arrangement of the amino acid thatIt is the arrangement of the amino acid that forms the primary structure of proteins.forms the primary structure of proteins. • The basic amino acid form has aThe basic amino acid form has a carboxylcarboxyl groupgroup on one end, aon one end, a methyl groupmethyl group that onlythat only has one hydrogen in the middle, and ahas one hydrogen in the middle, and a aminoamino groupgroup on the other end.on the other end. • Attached to the methyl group is aAttached to the methyl group is a RR groupgroup..
  • 35. AN R GROUP IS ANY GROUPAN R GROUP IS ANY GROUP OF ATOMS – THIS CHANGESOF ATOMS – THIS CHANGES THE PROPERTIES OF THETHE PROPERTIES OF THE PROTEIN!PROTEIN!
  • 36. FUNCTIONAL GROUPSFUNCTIONAL GROUPS • There are certain groups of atoms that areThere are certain groups of atoms that are frequently attached to the organic molecules wefrequently attached to the organic molecules we will be studying, and these are calledwill be studying, and these are called functionalfunctional groupsgroups.. • These are things likeThese are things like hydroxyl groupshydroxyl groups whichwhich formform alcoholsalcohols,, carbonyl groupscarbonyl groups which formwhich form aldehydesaldehydes oror ketonesketones,, carboxyl groupscarboxyl groups whichwhich formform carboxylic acidscarboxylic acids, and, and amino groupsamino groups which formwhich form aminesamines..
  • 37.
  • 38. Major Protein FunctionsMajor Protein Functions • Growth and repairGrowth and repair • EnergyEnergy • Buffer -- helps keep body pH constantBuffer -- helps keep body pH constant
  • 39. DipeptideDipeptide • formed from two amino acid subunitsformed from two amino acid subunits • Formed by the process ofFormed by the process of Dehydration SynthesisDehydration Synthesis • amino acid + amino acid ----- dipeptide + wateramino acid + amino acid ----- dipeptide + water
  • 40. Hydrolysis of a dipeptideHydrolysis of a dipeptide • Breaking down of a dipeptide into amino acidsBreaking down of a dipeptide into amino acids • dipeptide + H2O ---> aminoacid + amino aciddipeptide + H2O ---> aminoacid + amino acid
  • 41. Polypeptide (protein)Polypeptide (protein) • composed ofcomposed of three or morethree or more amino acids linkedamino acids linked by synthesis reactionsby synthesis reactions • Examples of proteins includeExamples of proteins include insulin,insulin, hemoglobin, and enzymes.hemoglobin, and enzymes. • ** There are an extremely large number of** There are an extremely large number of different proteins.different proteins. • The bases for variability include differences inThe bases for variability include differences in the number, kinds and sequences of aminothe number, kinds and sequences of amino acids in the proteinsacids in the proteins
  • 42. NUCLEIC ACIDSNUCLEIC ACIDS • in all cellsin all cells • composed ofcomposed of NUCLEOTIDESNUCLEOTIDES • store & transmitstore & transmit heredity/geneticheredity/genetic informationinformation • Nucleotides consist of 3 parts:Nucleotides consist of 3 parts: • 1.1. 5-Carbon Sugar5-Carbon Sugar • 2.2. Phosphate GroupPhosphate Group • 3.3. Nitrogenous BaseNitrogenous Base
  • 43.
  • 44. DNA (deoxyribonucleic acid)DNA (deoxyribonucleic acid) • contains the genetic code of instructions that direct acontains the genetic code of instructions that direct a cell's behavior through the synthesis of proteinscell's behavior through the synthesis of proteins • found in the chromosomes of the nucleus (and a fewfound in the chromosomes of the nucleus (and a few other organelles)other organelles)
  • 45. RNA (ribonucleic acid)RNA (ribonucleic acid) • directs cellular protein synthesisdirects cellular protein synthesis • found in ribosomes & nucleolifound in ribosomes & nucleoli
  • 46. CHEMICAL REACTIONSCHEMICAL REACTIONS • a process thata process that changeschanges one set of chemicals intoone set of chemicals into another set of chemicalsanother set of chemicals • REACTANTSREACTANTS – elements or compounds that– elements or compounds that enter into a chemical reactionenter into a chemical reaction • PRODUCTSPRODUCTS – elements or compounds that are– elements or compounds that are produced in a chemical reactionproduced in a chemical reaction • Chemical reactions always involve theChemical reactions always involve the breaking ofbreaking of bonds in reactantsbonds in reactants and theand the formation of newformation of new bonds in products.bonds in products.
  • 47. • In a reaction, energy is either TAKEN INIn a reaction, energy is either TAKEN IN ((ENDOTHERMICENDOTHERMIC) or GIVEN OFF) or GIVEN OFF ((EXOTHERMICEXOTHERMIC)) • Can you think of an everyday example ofCan you think of an everyday example of each type of reaction?each type of reaction?
  • 48. Enzymes and Enzyme ActionEnzymes and Enzyme Action • catalystcatalyst: inorganic or organic substance which: inorganic or organic substance which speeds up the ratespeeds up the rate of a chemical reaction withoutof a chemical reaction without entering the reaction itselfentering the reaction itself • enzymesenzymes: organic catalysts made of protein: organic catalysts made of protein • most enzyme names end in -asemost enzyme names end in -ase • enzymes lower the energy needed to start aenzymes lower the energy needed to start a chemical reaction. (chemical reaction. (activation energyactivation energy)) • begin to be destroyed above 45øC. (above thisbegin to be destroyed above 45øC. (above this temperature all proteins begin to be destroyed)temperature all proteins begin to be destroyed)
  • 49. It is thought that, in order for an enzyme to affect the rate of aIt is thought that, in order for an enzyme to affect the rate of a reaction, the following events must take place.reaction, the following events must take place. 1.1. The enzyme must form aThe enzyme must form a temporary associationtemporary association with thewith the substance or substances whose reaction rate it affects.substance or substances whose reaction rate it affects. These substances are known asThese substances are known as substratessubstrates.. 2.2. The association between enzyme and substrate is thought toThe association between enzyme and substrate is thought to form aform a close physical associationclose physical association between the molecules andbetween the molecules and is called theis called the enzyme-substrate complexenzyme-substrate complex.. 3.3. While the enzyme-substrate complex is formed, enzymeWhile the enzyme-substrate complex is formed, enzyme action takes place.action takes place. 4.4. Upon completion of the reaction, the enzyme and product(s)Upon completion of the reaction, the enzyme and product(s) separateseparate. The enzyme molecule is now available to form. The enzyme molecule is now available to form additional complexes.additional complexes.
  • 50. How do enzymes work?How do enzymes work? • substratesubstrate: molecules upon which an enzyme acts: molecules upon which an enzyme acts • the enzyme is shaped so that it can only lock upthe enzyme is shaped so that it can only lock up with awith a specific substratespecific substrate moleculemolecule enzymeenzyme substrate -------------> productsubstrate -------------> product
  • 51. "Lock and Key Theory" • each enzyme is specific foreach enzyme is specific for one and ONLY oneone and ONLY one substratesubstrate (one lock - one key)(one lock - one key) • this theory has many weaknesses, but itthis theory has many weaknesses, but it explains some basic things about enzymeexplains some basic things about enzyme functionfunction
  • 52. Factors Influencing Rate ofFactors Influencing Rate of Enzyme ActionEnzyme Action 1.1. pHpH - the optimum (best) in most living things is- the optimum (best) in most living things is close to 7 (neutral)close to 7 (neutral) • high or low pH levels usually slow enzyme activityhigh or low pH levels usually slow enzyme activity • A few enzymes (such as gastric protease) workA few enzymes (such as gastric protease) work best at a pH of about 2.0best at a pH of about 2.0
  • 53. 2.2. TemperatureTemperature - strongly influences enzyme- strongly influences enzyme activityactivity • optimum temperature for maximum enzymeoptimum temperature for maximum enzyme function is usually about 35-40 C.function is usually about 35-40 C. • reactions proceed slowly below optimalreactions proceed slowly below optimal temperaturestemperatures • above 45 C most enzymes are denaturedabove 45 C most enzymes are denatured (change in their shape so the enzyme active site(change in their shape so the enzyme active site no longer fits with the substrate and the enzymeno longer fits with the substrate and the enzyme can't function)can't function)
  • 54.
  • 55. 3.3. ConcentrationsConcentrations of Enzyme and Substrateof Enzyme and Substrate • ** When there is a fixed amount of enzyme and** When there is a fixed amount of enzyme and an excess of substrate molecules -- the rate ofan excess of substrate molecules -- the rate of reaction will increase to a point and then levelreaction will increase to a point and then level off.off.