INICIACION AL CALCULO
LIMITE DE UNA FUNCION EN UN PUNTO
Cuando se inicia un trabajo de cálculo, es importante aclarar ,que...
representación gráfica es la siguiente




Tomemos valores de x muy proximos a=2 y la función se aproximará al valor de 3
...
Tabla (Valores de x mayores que ,2 pero muy próximos)




Puede observarse de ambas tablas que conforme x se aproxima más ...
Se puede observar que f(x) se aproxima a cuatro siempre que x se aproxima a dos
esto lo notamos como
limx→2(x+2)=4
Lo otro...
Lo otro que podemos observar es que para el radio ∈=1 tenemos el radio δ=12 y
también podemos introducir los siguientes el...
Se nota si x →2      f(x) →3     diremos que la función tiene límite
limx→2f(x)=3
Donde muy claramente f(2)≠3
De este ejem...
Se observa que cuando       x→b     entonces   f(x) →L
lo que se escribe como:
limx→bf(x)=l
Recordemos que al calcular
lim...
En este caso, cuando x tiende a b por la derecha, que se escribe        , la función
tiende a , pero cuando x tiende a b p...
ε (epsilon) y δ (delta) son números reales positivos que indican qué tan pequeño
queremos hacer el valor absoluto de la di...
En general, para una función f cualquiera, el

limx→bf(x)=l
significa que "la diferencia entre f(x) y   puede hacerse tan ...
limx→2(2x+1)=5
En el estudio intuitivo vimos que para ε =1 unidad δ=1/2
La conjetura en ese momento fue que
              ...
Próxima SlideShare
Cargando en…5
×

Clase1.docx

972 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
972
En SlideShare
0
De insertados
0
Número de insertados
4
Acciones
Compartido
0
Descargas
8
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Clase1.docx

  1. 1. INICIACION AL CALCULO LIMITE DE UNA FUNCION EN UN PUNTO Cuando se inicia un trabajo de cálculo, es importante aclarar ,que históricamente a partir del siglo xviii y con los trabajos de Newton en Inglaterra y Leibniz en Alemania se dio inicio al cálculo infinitesimal, el trabajo sobre infinitésimos que por analogía lo podríamos entender como la aproximación del dedo índice sobre el dedo gordo o pulgar (hacer el ejercicio), todo lo que más podamos, sin que idealmente nunca se tocan pero sabemos que en la realidad esto no se cumple, también podríamos hacer analogía cuando nos acercamos en la recta real a un número cualquiera a través de puntos cercanos a a en la recta, idealmente nunca se tocan pero en la realidad la punta del lápiz llegara a sobrepasarla. La mejor interpretación de estos infinitésimos es escribir números x cercanos a a ,digamos a=2 pueden ser x=2.01,x=2,001,x= 2,0001, x= 2,00001, x=2,000001,x=2,0000001….no necesitamos seguir aproximándonos porque entenderemos claramente que siguiendo esta sucesión nunca llegaremos a dos. Lo mismo podemos hacer con números más pequeños que a=2 ……x=1,9, x= 1,99,x= 1,999, x= 1,9999 x=1,99999 ,x=1,999999,x=1,9999999,……. entendemos que en esta sucesión de número nunca llegaremos a 2 pero estamos tan cerca que en un momento aceptamos la aproximación como dos. Observación (no reemplazamos x por dos, si no que el valor es tan aproximado que admitimos que después de una sucesión de números tan próximos a dos, x toma el valor de dos). Es importante recordar el concepto de intervalo abierto notado (a, b)={xεR/a< x < bt} donde a y b no pertenecen al intervalo abierto Hablaremos de entorno o de intervalo abierto de centro en a y radio r notado Volviendo al concepto de infinitesimal cuando hablemos de un entorno de centro en a y radio r estamos pensando en todos los elementos x tal que | x-a|<r , lo que es lo mismo -r<x-a<r donde r tiene medida lo más pequeña posible es decir r tiende a cero r→0 Vamos a presentar la idea de límite como un concepto puntual, es decir una operación aplicada a una función en un punto. Iniciaremos la clase con la idea intuitiva de límite. Ejemplo 1: Consideramos la función definida por f(x)=x2-1 con dominio en . La
  2. 2. representación gráfica es la siguiente Tomemos valores de x muy proximos a=2 y la función se aproximará al valor de 3 veámoslos en forma gráfica Tomamos un radio ε=1 y proyectamos sobre el eje x y vemos el radio δ <1 y formamos un intervalo de radio la menor proyección que está a la derecha de 2 más adelante probaremos que δ<1 Veamos esto mismo utilizando una tabla de valores donde continuamos con la misma idea, nos interesa observar el comportamiento de la función para valores de cercanos a 2 pero no iguales a 2. Tabla (Valores de x menores que 2, pero muy próximos a 2).
  3. 3. Tabla (Valores de x mayores que ,2 pero muy próximos) Puede observarse de ambas tablas que conforme x se aproxima más a 2, f(x) toma, cada vez, valores más próximos a 3, lo notaremos Si x→2 f(x)→3 En otras palabras, al restringir el dominio de la función a valores cada vez "más cercanos a 2", el conjunto de imágenes o sea, los valores que toma la función, se "acercan cada vez más a tres". En este caso se dice que cuando tiende a 2, que se simboliza , entonces f(x) tiende a 3,. f(x)→3 Esto puede escribirse utilizando la notación de límites limx→2fx=3 que se lee: “el límite de f(x) cuando x tiende a 2, es igual a 3”. Ejemplo2.
  4. 4. Se puede observar que f(x) se aproxima a cuatro siempre que x se aproxima a dos esto lo notamos como limx→2(x+2)=4 Lo otro que podemos observar es que para el radio ∈=1 tenemos el radio δ=1 y también podemos introducir los siguientes elementos en el eje y |f(x)-4|<∈ que es lo mismo -∈<f(x)-4<∈ o también 4-∈<f(x)< ∈+4 Y en el eje x tenemos 0<|x-2|< δ que es lo mismo – δ<x-2< δ o también – δ+2<x< δ+2 Ejemplo 3 Se puede observar que f(x) se aproxima a cinco siempre que x se aproxima a dos esto lo notamos como limx→2(2x+1)=5
  5. 5. Lo otro que podemos observar es que para el radio ∈=1 tenemos el radio δ=12 y también podemos introducir los siguientes elementos en el eje y |f(x)-5|<∈ que es lo mismo -∈<f(x)-5<∈ o también 5-∈<f(x)< ∈+5 Y en el eje x tenemos 0<|x-2|< δ que es lo mismo – δ<x-2< δ o también donde – δ+2<x< δ+2 Ejemplo 4 f(x)=(x2-1)x+1 Este ejemplo nos permitirá entender, que puede existir el límite en un punto sin que la función este definida en dicho punto en este caso a=-1 Vemos en la gráfica que -1 no tiene imagen, sin embargo cuando x→-1 F(x)→-2 es decir limx→-1(x2-1)x+1=-2 Ejemplo 5 Estudiemos la función y revisemos el límite en a=2 Vemos que la imagen de 2 es cero f(2)=0 ¿Que pasa cuando nos aproximamos a 2? Haga un recorrido con su lápiz aproximándolo a 2. Según por donde haga el recorrido puede observar que la función se aproxima a 3
  6. 6. Se nota si x →2 f(x) →3 diremos que la función tiene límite limx→2f(x)=3 Donde muy claramente f(2)≠3 De este ejemplo podemos conjeturar que al calcular el límite de una función no necesariamente el resultado es la imagen del punto Ejemplo 6 Estudiemos la función Observamos que cuando nos aproximamos por la derecha a 2 lo notamos x→2, la función se aproxima a cero lo notamos f(x)→0 y si nos aproximamos por la izquierda a 2 lo notamos x→2 la función se aproxima a tres lo notamos F(x)→3. Resumiendo diríamos cuando x→2 f(x)→0 x→2 f(x)→3 Por lo anterior diríamos que la función no tiene límite en a=2 limx→2fx no existe Veamos el problema del límite en una forma más general Sea f una función definida para valores reales en los alrededores de un número b, aunque no necesariamente en b mismo, como se representa gráficamente a continuación:
  7. 7. Se observa que cuando x→b entonces f(x) →L lo que se escribe como: limx→bf(x)=l Recordemos que al calcular limx→bf(x) no importa que la función f, esté o no definida en b; lo que interesa es que f esté definida en las proximidades de b. Consideremos la siguiente representación gráfica de una función f cualquiera para la que : f(b)=p Observe que aunque f(b) ≠ L, para valores de x próximos a b se tiene que f(x)→L, por lo que puede escribirse siempre limx→bf(x)=l Observe ahora la siguiente representación gráfica de una función f.
  8. 8. En este caso, cuando x tiende a b por la derecha, que se escribe , la función tiende a , pero cuando x tiende a b por la izquierda, (denotado ) los valores de f(x) tienden a T. Así, la función f no tiende a un mismo valor cuando , x→b por lo que se dice que el límite no existe limx→bfx no existe Veamos la formalización de la idea intuitiva de límite vista en los ejemplos anteriores En el ejemplo 1 se analizó el comportamiento de la función f con ecuación f(x)= x 2 -1 en las proximidades de 2. Expresamos como limx→2fx=3 Lo que hicimos en los ejemplos anteriores; acercamos los valores de la función tanto como quisimos a 3, y para ello era suficiente acercar adecuadamente x al valor 2, donde nos aprovechamos de que x≠2 . De otra forma, puede decirse que | f(x)-3 |es tan pequeño como se quiera, siempre que |x-2| sea suficientemente pequeño, aunque no igual a cero. Utilizaremos las letras griegas ε (epsilon) y δ (delta) para escribir en forma más precisa lo anterior.
  9. 9. ε (epsilon) y δ (delta) son números reales positivos que indican qué tan pequeño queremos hacer el valor absoluto de la diferencia entre f(x) y 3, y el valor absoluto de la diferencia entre x y 2 respectivamente. Se dice entonces que | f(x)-3 | será menor que ε, siempre que | x-2| sea menor que δ y |x-2|≠0. Luego, si para podo ε>0 puede encontrarse un δ>0 tal que |f(x)-3|< ε siempre que 0< |x-2| < δ entonces se dice que limx→2fx=3 Observe que se establece la condición 0< |x-2| , ya que únicamente nos interesa saber como es f(x) para valores de x muy cercanos a 2, no en 2 mismo, en cuyo caso |x-2| sería igual a cero. Gráficamente tenemos: Se tiene que, en el eje , los valores f(x) están entre 3-ε y 3-ε , siempre que los valores de x, en el eje de , se localicen entre 2-δ,y 2+ δ o sea. |f(x)-3|< ε siempre que 0< | x-2|< δ En general, el valor de ε es escogido arbitrariamente, pero la elección δ depende de la elección previa de ε. No se requiere que exista un número δ "apropiado" para todo ε, si no que, para cada ε existe un δ específico que dependa de ε Entre ,más pequeño sea el valor que se escoja de ε, más pequeño será el valor del correspondiente δ. Luego, para el ejemplo 1, diremos que , limx→2fx=3 pues para cada ε>0 , existe δ>0, tal que |f(x)-3|< ε , siempre que . 0< | x-2|< δ
  10. 10. En general, para una función f cualquiera, el limx→bf(x)=l significa que "la diferencia entre f(x) y puede hacerse tan pequeña como se desee, haciendo simplemente que x esté suficientemente próximo a b, x≠b. Ya estamos listo para la definición de límite limx→af(x)=l ( se lee la función f tiende hacia el limite L cuando x tiende a a) Definición: La función f tiende hacia el limite L cuando x tiende a a significa: para todo ε>0 existe algún δ>0 tal que para todo x, si 0< | x-a|< δ, entonces |f(x)-L|< ε Otra manera de dar la definición y que se encuentra en libros de matemáticas limx→afx=L ⇔ para todo ε>0 existe δ>0 tal que |f(x)-L|< ε siempre que 0< | x- a|< δ No nos debemos sorprender , la hipótesis sigue siendo 0< | x-a|< δ y la tesis |f(x)-L|< ε veamos como se aplica está definición: recordemos el ejemplo 2 limx→2(x+2)=4 Cuando realizamos su gráfica y desarrollamos la idea intuitiva de límite nos encontramos que para un ε=1 unidad encontrabamos un δ=1 esto nos daba una conjetura δ= ε veamoslo formalmente Problema: Demostrar que limx→2(x+2)=4 Demostración Utilizando la definición podemos decir , que, esto se da si y solo Para todo ε >0 existe δ>0 tal que , |f(x)-L|< ε reemplazando (|x+2-4|< ε) siempre que 0<|x-a|< δ reeplazando (0<|x-2|< δ). Partamos de , |f(x)-L|= |(x+2)-4|=|x-2| Por hipótesis |x-2|< δ, entonces claramente podemos hacer δ= ε Esto nos indica que dado cualquier valor muy peqeño de ε este mismo valor lo tomará δ. Recordemos el ejemplo 3
  11. 11. limx→2(2x+1)=5 En el estudio intuitivo vimos que para ε =1 unidad δ=1/2 La conjetura en ese momento fue que δ=1/2 ε Es decir que si escojemos cualquier ε >0 pequeño ya sabiamos el valor de δ Demostremolo formalmente: Demostar que limx→2(2x+1)=5 Por definición de límite limx→22x+1=5 ⇔ para todo ε>0 existe δ>0 tal que |(2x+1)-5|< ε siempre que 0< | x-2|< δ Partamos de |(2x+1)-5|=|2x-4|=|2(x-2)|=2|x-2| operaciones conocidas| Por hipótesis |x-2|< δ y tenemos |(2x+1)-5|=|2x-4|=|2(x-2)|=2|x-2| Por lo tanto 2|x-2|<2 δ es decir |(2x+1)-5|=|2x-4|=|2(x-2)|=2|x-2|<2 δ de aquí podemos deducir que 2 δ= ε luego δ= ε/2 Es decir que nuestra conjetura es válida donde cada que escoja un ε ya sabemos que δ= ε/2 es decir la mitad ( ver gráfico ejemplo 3)

×