SlideShare una empresa de Scribd logo
1 de 64
Pharmacokinetics ,[object Object],Metabolism + Excretion = Elimination
A bsorption  - D istribution -M etabolism -E xcretion  ABSORPTION i.v. DISTRIBUTION DISTRIBUTION LIVER: M + BE KIDNEY: Ur. E
Pharmacokinetics techniques ,[object Object]
Pharmacokinetics techniques ,[object Object]
Pharmacokinetics techniques ,[object Object]
Pharmacokinetic parameters ,[object Object],[object Object],[object Object],[object Object]
Distribution Drug distribution means the reversible transfer of drug from one location to another within the body. Once a drug has entered  the vascular system it becomes distributed throughout the various tissues and body fluids in a pattern that reflects the physico-chemical nature of the drug and the ease with which it penetrates different membranes.
Factors affecting drug distribution: ,[object Object],[object Object]
[object Object],[object Object],[object Object]
Apparent Volume of Distribution (V d ) ,[object Object]
Apparent Volume of Distribution (V d ) ,[object Object],[object Object]
Apparent volume of distribution ,[object Object],[object Object],[object Object],[object Object]
Rapid (bolus) i.v. injection and uniform mixing  of the amount administered throughout  the volume of  total  body water:  V d =V total body water  V d = 0.6 L/kg BW Dose = c plasma .  V d V d =Dose/c plasma Fat !!! 0,2-0,35 L water  per 1 kg of weight
Vd =  Amount / Concentration in plasma         ,[object Object]
Volumes of some compartments of the adult human body in relation to V D : Total body water   0.6 L/kg BW  Intracellular water  0.4 L/kg BW  Extracellular water  0.2 L/kg  BW      Plasma   0.04  L/kg BW  V D  0.05 L/kg the drug remains in the blood (heparine) V D   0.1-0.3 L/kg distribution from blood into extracellular    fluid (gentamicin  - polar drugs). V D   0.6 L/kg distribution from blood into intracelular and    extracellular fluid (methotrexate) V D   >>0.6 L/kg distribution intracellularly and high binding  in tissues  ( amiodarone - 350 L/kg)
Use of Vd: ,[object Object],[object Object]
L. Dose Loading dose = C P  x V D
Use of Vd: EXAMPLE:  J.K.(TBW = 90 kg)was admitted to the ICU for pneumonia caused by Gram-negative bacteria. Calculate the loading dose of tobramycin for this patient to achieve the target average concentration of 4 mg/l.  Tobramycin V D  is 0.2 l/kg of TBW. Loading Dose = ? Loading Dose = 0.2 . TBW . Concentration  Loading Dose = 0.2 . 90 . 4  = 72 mg
Use of Vd: ,[object Object],[object Object]
Use of Vd: ,[object Object],[object Object]
Clearance (CL) ,[object Object],[object Object],[object Object],[object Object]
Clearance (CL) ,[object Object],[object Object],[object Object],Another possible way of understanding clearance:  Clearance is the volume of plasma completly cleared  of the drug per unit of time by all routes - by the liver, the kidney…).
Rate of elimination  Elimination of most drugs from the body after therapeutically relevant doses follows  first-order kinetics. To illustrate first order kinetics we might consider what would happen if we were  to give a drug by i.v. bolus injection, collect blood samples at various times and measure  the plasma concentrations of the drug. We might see a decrease in concentration as the drug is eliminated.
Rate of elimination Elimination which follows first-order kinetics: dC/dt = - k el  . C  k el  ….   rate constant  of elimination  rate of change  is proportional to concentration and is therefore decreasing with time as the conc. decreases
Rate of elimination half-life : t 1/2  C= C 0  / 2 t= t 1/2  = ln2 / kel  = 0.693/ kel after 4 half-lives:  6% remaining,  94% eliminated monoexponential decay: C(t) = C 0  . e - kel . t
Rate of elimination Elimination which follows first-order kinetics:  semi-log graph.  t  1/2  = 0.693/ k el k el  can be estimated by means of the linear-regression analysis
Clearance (CL) ,[object Object],[object Object],[object Object]
The principle of linear pharmacokinetics Linear (first-order) pharmacokinetics: For most drugs, clearance is constant over the plasma concentration range used in clinical practice. Elimination is not saturable (non-capacity-limited) and the rate of drug elimination is directly proporcionate to the concentration: Rate of elimin. = CL . Concentration
Nonlinear pharmacokinetics Nonlinear pharmacokinetics: (capacity-limited, dose or concentration dependent, saturable) CL varies depending on the concentration of a drug.  Rate of elimination =  Vmax . C  /Michaelis- Menten/   K m  + C CL  =  Vmax    K m  + C ethanol, phenytoin, theofylline
Use of clearance: ,[object Object],[object Object],[object Object],[object Object]
 
Use of clearance: ,[object Object],[object Object],[object Object],[object Object],[object Object]
Calculation of the maintenance dose J.K.was admitted to the ICU for pneumonia caused by Gram-negative bacteria. Calculate the maintenance dose (i.v.-infusion in 6 h intervals)of tobramycin for this patient to achive the target average concentration of 4 mg/l. Clearance of tobramycin was estimated to be 70 ml/min. Rate of dosing = Dose / Interval Rate of dosing = Rate of elimination = CL.c T Rate  of dosing  = 4.70.60 / 1000 = 16.8 mg/h  Dose = Rate of dosing . Interval = 6 . 16.8 = 101 mg
Multiple i.v. bolus dose administration :  drug accu- mulation in plasma until the steady state is achieved
 
Use of clearance: ,[object Object]
Biliary clearance CLh ,[object Object],Q… hepatic blood flow per 1 min: 1.5 L/min,  Q . C out  Amount excreted in bile = Amount extracted=  Q.(C in -   C out )  LIVER CL h  = rate of elimin. / C in  = Q .  (C in -   C out ) / C in   CL= Q .  E  hepatic extraction ratio Q . C in bile
Hepatic extraction ratio (E) ,[object Object],[object Object],[object Object],[object Object],[object Object]
Renal clearance CL R     Amount  excreted  =  V U  . C U   KIDNEY CL R  = rate of elim. / C  in plasma   = V U  . C U / C  in plasma   GFR , C  in plasma   V U  , C U GFR   100 -150    ml/min   URINE V U  =  volume collected / urine collection period
Renal clearance CL R     CL R  = rate of elim. / C  in plasma   = V U  . C U / C  in plasma   Renal clearance of a drug is the ratio of the rate of elimination of the drug by the kidney divided by its concentration in plasma.
Renal clearance of the drug    CL R  = GFR x f unbound   + Tubular secretion - Tubular      reabsorption Glomerular filtration rate is measured using endogenous creatinine: GFR    creatinine clearance = 100 - 150 ml/min 1/ CL R  >  GFR x f unbound   : filtration  + Tubular    secretion 2/ CL R  <  GFR x f unbound   : filtration - Tubular    reabsorption 3/  CL R    GFR x f unbound   : filtration
Elimination half-life (t 1/2 )   Definition:   Elimination half-life is the time it takes  the drug concentration in the blood to decline to one half of its initial value. It is a secondary parameter :  The elimination half-life is dependent on the ratio  of V D  and CL.  Unit :  time (min, h, day)
Use of t 1/2 : 1/ t 1/2  can be used to predict how long it will take  for the drug to be eliminated from plasma.
Use of t 1/2 : 2/ t 1/2  can be used to predict how long it will take from the start of dosing to reach steady-state levels during multiple dosing or continuous i.v. infusion.  No. of t 1/2    Concentration achieved      (% of steady conc.)  1 50 2 75 3 87.5 4 94 5 97
 
Important During continuous (infusion) or continuous intermittent dosing (oral dosing): The steady-concentration depends on the rate  of dosing (the dose/dosing interval) and the clearance. Time required to achieve steady-state depends on the half-life and is independent of the rate  of dosing and the clearance..
Use of  t 1/2 : 3/ the relationship between t 1/2  and dosing interval    can be used to predict the degree of accumulation of  a drug in the blood. The longer  t 1/2  and the shorter   , the more drug accumulates.       t 1/2   Moderate accumulation during  dosing 2-times)    < t 1/2 Significant accumulation during  dosing ( > 2-times)    > t 1/2   Insignificant accumulation during  dosing ( < 2-times)
Use of  t 1/2 : 4/ t 1/2  (the relationship between t 1/2  and dosing interval   ) can be used to predict the degree of fluctuation of a drug concentration within a dosing interval.        t 1/2   C ss,min  levels at steady state are  aprox. 50% of C ss,max . Moderate fluctuation.    < t 1/2 C ss,min  levels at steady state are more than 50% of C ss,max . Small fluctuation.     > t 1/2   C ss,min  levels at steady state are less than 50% of C ss,max . Wide fluctuation.
Multiple short i.v. infusions of amikacin:  the rate of dosing is constant but interdose interval is changing, t 1/2 = 6 h
Multiple short i.v. infusions of amikacin:  the rate of dosing is constant but interdose interval is changing, t 1/2 = 6 h
Use of  t 1/2 : 5/ t 1/2  can be used to predict how long it will take a drug concentration to decline from one specific value to another. t = t 1/2  . ln(C1/C2) / 0.7  It can be usefull in overdoses and dosage adjustments.
Fundamental relationships between various PK parameters Elimination which follows first-order kinetics can be described by rate constants (or half-lives).  If we assume rapid transfer of drug from other parts of the body into plasma, the drug is cleared from its total distribution volume in the body:  Rate of elimination = V D  . Rate of removal from the unit volume = V D   . dC/dt = V d  . k el  . C CL =  Rate of elimination / C =  V d  . k el  =  V d  . 0.7 / t 1/2
Fundamental relationships between various PK parameters Elimination which follows first-order kinetics can be described by rate constants (or half-lives).  If we assume rapid transfer of drug from other parts of the body into plasma, the drug is cleared from its total distribution volume in the body:  Rate of elimination = Distr. Volume . Rate of removal from the unit volume = V d  . dC/dt = V d  . k el  . C Clearance = Rate of elimination / C = V d  . k el  = V d  . 0.7 / t 1/2   AUC = Dose / (V d  . k el )     Clearance = Dose / AUC
Area  under the curve, AUC C = C 0  . e - k.t  monoexponential decay AUC is an integral AUC = Dose / (V . k el ) AUC = Dose / CL CL= Dose / AUC  (i.v.) CL= F. Dose / AUC The AUC value is very useful for calculating the amount  of drug which reaches the systemic circulation (the absolute bioavailability F) after administration of different drug products.
Pharmacokinetics after extravascular administration Most of the routes of administration are extravascular; for example IM, SC, and most importantly oral.  With this type of drug administration the drug isn't placed in the systemic circulation but must be absorbed through at least one membrane. This has a considerable effect on drug pharmacokinetics and may cause  a reduction in the actual amount of drug which is absorbed and reaches the systemic circulation.
Pharmacokinetics after extravascular administration Bioavailable dose = F . Dose F…absolute bioavailability  (0  < F  <  1) … .after i.v. administration  F = 1 Most commonly the absorption process follows first order kinetics. Even though many oral dosage forms are solids, which must dissolve  before being absorbed,  the overall absorption process can often be considered to be a single first order process.
Pharmacokinetics after extravascular administration. Bioavailability AUC C max   T max
Absorption rate constant (k a )
Bioavailable fraction of the dose (F)
Bioavailability F must be determined by comparison with another dose administration. If the other dosage form is an intravenous form then the  F  value is termed the  absolute  bioavailability. In the case where the reference dosage form is another oral product, the value for  F R  is termed the  relative  bioavailability.  CL = (D/AUC)  i.v.   = F. (D/AUC) oral
Bioavailability Bioavailability  indicates a measurement of the rate and extent (amount) of therapeutically active drug which reaches the general circulation.  Absolute bioavailability  is the absolute fraction of dose which is available from a drug formulation in general circulation. It is measured by comparing AUC after i.v. and extravascular administration. Relative bioavailability  is a relative amount and relative rate of availability if two formulations (other than i.v.) are compared.
Bioequivalence  Two drug formulations are bioequivalent if the extent and rate of bioavailability of a drug is comparable (within certain limits). Bioequivalence study:  new drug formulation of  a known active drug is compared to the reference (original formulation or another marketed formulation) in a study with healthy volunteers. Original product, Generic copies
Bioequivalence  Two drug formulations are bioequivalent if the extent and rate of bioavailability of a drug is comparable (within certain limits). Cross-over study with 2 periods Group 1: Test  Reference Group 2:  Reference  Test AUC, c max , T max ,
Some definitions Brand Name   is the trade name of the drug.  Chemical Name   is the name used by the organic chemist to indicate the chemical structure of the drug.  Drug Product   means a finished dosage form,  e.g., tablet, capsule, or solution, that contains the active drug ingredient, generally, but not necessarily, in association with inactive ingredients.  Generic Name   is the established, common name  of the active drug in a drug product.

Más contenido relacionado

La actualidad más candente

P'kinetic parameters
P'kinetic parametersP'kinetic parameters
P'kinetic parameters
Anil Joshi
 
Types of equivalent and measurement of bioavailability
Types of equivalent and measurement of bioavailabilityTypes of equivalent and measurement of bioavailability
Types of equivalent and measurement of bioavailability
Sonam Gandhi
 
Penetration enhancers Used in transdermal drug delivry
Penetration enhancers Used in transdermal drug delivryPenetration enhancers Used in transdermal drug delivry
Penetration enhancers Used in transdermal drug delivry
MalLiKaRjunA yadav
 
Methods of Assessing Bioavailability
Methods of Assessing BioavailabilityMethods of Assessing Bioavailability
Methods of Assessing Bioavailability
Dibrugarh University
 
Physicochemical and biological properties of sustained release formulations
Physicochemical and biological properties of sustained release formulationsPhysicochemical and biological properties of sustained release formulations
Physicochemical and biological properties of sustained release formulations
Sonam Gandhi
 

La actualidad más candente (20)

Bioavilability and Bioequivalence study designs
Bioavilability and Bioequivalence study designsBioavilability and Bioequivalence study designs
Bioavilability and Bioequivalence study designs
 
P'kinetic parameters
P'kinetic parametersP'kinetic parameters
P'kinetic parameters
 
Bioequivalence Studies
Bioequivalence StudiesBioequivalence Studies
Bioequivalence Studies
 
Application of pharmacokinetics
Application of pharmacokineticsApplication of pharmacokinetics
Application of pharmacokinetics
 
Gastrointestinal absorption of drugs
Gastrointestinal absorption of drugsGastrointestinal absorption of drugs
Gastrointestinal absorption of drugs
 
Types of equivalent and measurement of bioavailability
Types of equivalent and measurement of bioavailabilityTypes of equivalent and measurement of bioavailability
Types of equivalent and measurement of bioavailability
 
Drug Interactions and protein drug binding interactions
Drug Interactions and protein drug binding interactionsDrug Interactions and protein drug binding interactions
Drug Interactions and protein drug binding interactions
 
Penetration enhancers Used in transdermal drug delivry
Penetration enhancers Used in transdermal drug delivryPenetration enhancers Used in transdermal drug delivry
Penetration enhancers Used in transdermal drug delivry
 
Non linear pharmacokinetics
Non linear pharmacokineticsNon linear pharmacokinetics
Non linear pharmacokinetics
 
Bioequivalence study
Bioequivalence studyBioequivalence study
Bioequivalence study
 
Non linear kinetics
Non linear kineticsNon linear kinetics
Non linear kinetics
 
Methods of Assessing Bioavailability
Methods of Assessing BioavailabilityMethods of Assessing Bioavailability
Methods of Assessing Bioavailability
 
Drug interaction at plasma and tissue binding site
Drug interaction at plasma and tissue binding siteDrug interaction at plasma and tissue binding site
Drug interaction at plasma and tissue binding site
 
Physiologic, pharmacokinetic models, statistic moment,.pptx
Physiologic, pharmacokinetic models, statistic moment,.pptxPhysiologic, pharmacokinetic models, statistic moment,.pptx
Physiologic, pharmacokinetic models, statistic moment,.pptx
 
Pharmacokinetics -Auc - area under curve
Pharmacokinetics -Auc -  area under curvePharmacokinetics -Auc -  area under curve
Pharmacokinetics -Auc - area under curve
 
Excretion renal and non-renal
Excretion renal and non-renalExcretion renal and non-renal
Excretion renal and non-renal
 
Biopharmaceutical factors effecting bioavailability
Biopharmaceutical factors effecting bioavailabilityBiopharmaceutical factors effecting bioavailability
Biopharmaceutical factors effecting bioavailability
 
IN-VITRO-IN VIVO CORRELATION (IVIVC).pptx
IN-VITRO-IN VIVO CORRELATION (IVIVC).pptxIN-VITRO-IN VIVO CORRELATION (IVIVC).pptx
IN-VITRO-IN VIVO CORRELATION (IVIVC).pptx
 
Chronopharmacokinetics..
Chronopharmacokinetics..Chronopharmacokinetics..
Chronopharmacokinetics..
 
Physicochemical and biological properties of sustained release formulations
Physicochemical and biological properties of sustained release formulationsPhysicochemical and biological properties of sustained release formulations
Physicochemical and biological properties of sustained release formulations
 

Destacado

Bioavailability studies
Bioavailability studiesBioavailability studies
Bioavailability studies
swapna porandla
 
Bioavailability studies ii
Bioavailability studies iiBioavailability studies ii
Bioavailability studies ii
homebwoi
 
Combination of drugs
Combination of drugsCombination of drugs
Combination of drugs
Sidra Naeem
 
Human body organization
Human body organizationHuman body organization
Human body organization
Jim Haver
 
Bioavailability studies lecture7
Bioavailability studies lecture7Bioavailability studies lecture7
Bioavailability studies lecture7
homebwoi
 
Low Cost Design of Arsenic Removal from Groundwater in Bangladesh
Low Cost Design of Arsenic Removal from Groundwater in BangladeshLow Cost Design of Arsenic Removal from Groundwater in Bangladesh
Low Cost Design of Arsenic Removal from Groundwater in Bangladesh
Kevin Banahan
 
Forensic Toxicology
Forensic ToxicologyForensic Toxicology
Forensic Toxicology
annperry09
 

Destacado (20)

Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
 
Importance of clinical pharmacokinetic studies
Importance of clinical pharmacokinetic studiesImportance of clinical pharmacokinetic studies
Importance of clinical pharmacokinetic studies
 
ADME: the Absorption, Distribution, Metabolism, and Excretion of Drugs
ADME: the Absorption, Distribution, Metabolism, and Excretion of DrugsADME: the Absorption, Distribution, Metabolism, and Excretion of Drugs
ADME: the Absorption, Distribution, Metabolism, and Excretion of Drugs
 
one compartment model ppt
one compartment model pptone compartment model ppt
one compartment model ppt
 
Bioavailability studies
Bioavailability studiesBioavailability studies
Bioavailability studies
 
Metabolism 1
Metabolism 1Metabolism 1
Metabolism 1
 
Bioavailability studies ii
Bioavailability studies iiBioavailability studies ii
Bioavailability studies ii
 
Pharmacodynamics
Pharmacodynamics Pharmacodynamics
Pharmacodynamics
 
Parenterals
ParenteralsParenterals
Parenterals
 
Combination of drugs
Combination of drugsCombination of drugs
Combination of drugs
 
Presentation CP450
Presentation CP450Presentation CP450
Presentation CP450
 
The Expert Witness in Forensic Toxicology: Two one-hour undergraduate lectur...
 The Expert Witness in Forensic Toxicology: Two one-hour undergraduate lectur... The Expert Witness in Forensic Toxicology: Two one-hour undergraduate lectur...
The Expert Witness in Forensic Toxicology: Two one-hour undergraduate lectur...
 
Human body organization
Human body organizationHuman body organization
Human body organization
 
Pharmacokinetics: Lecture two
Pharmacokinetics: Lecture twoPharmacokinetics: Lecture two
Pharmacokinetics: Lecture two
 
Bioavailability studies lecture7
Bioavailability studies lecture7Bioavailability studies lecture7
Bioavailability studies lecture7
 
Low Cost Design of Arsenic Removal from Groundwater in Bangladesh
Low Cost Design of Arsenic Removal from Groundwater in BangladeshLow Cost Design of Arsenic Removal from Groundwater in Bangladesh
Low Cost Design of Arsenic Removal from Groundwater in Bangladesh
 
Pharmacokinetics: Lecture four
Pharmacokinetics: Lecture four Pharmacokinetics: Lecture four
Pharmacokinetics: Lecture four
 
Halitosis - Dr Sanjana Ravindra
Halitosis - Dr Sanjana RavindraHalitosis - Dr Sanjana Ravindra
Halitosis - Dr Sanjana Ravindra
 
Compartment modeling
Compartment modelingCompartment modeling
Compartment modeling
 
Forensic Toxicology
Forensic ToxicologyForensic Toxicology
Forensic Toxicology
 

Similar a Kinetika En 2002

CO1_L10_ Introduction to Pharmacology and Therapeutics Part 3.pptx
CO1_L10_ Introduction to Pharmacology and Therapeutics  Part 3.pptxCO1_L10_ Introduction to Pharmacology and Therapeutics  Part 3.pptx
CO1_L10_ Introduction to Pharmacology and Therapeutics Part 3.pptx
Samwel Samwel
 
Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011
Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011
Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011
Muhammad Saim
 
Therapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciences
Therapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciencesTherapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciences
Therapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciences
khalafpharm
 
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
BADAR UDDIN UMAR
 

Similar a Kinetika En 2002 (20)

Pocket Guide: Pharmacokinetics Made Easy - sample
Pocket Guide: Pharmacokinetics Made Easy - sample Pocket Guide: Pharmacokinetics Made Easy - sample
Pocket Guide: Pharmacokinetics Made Easy - sample
 
Pharmacokinetics ppt
Pharmacokinetics pptPharmacokinetics ppt
Pharmacokinetics ppt
 
Pharmacokinetics ppt
Pharmacokinetics pptPharmacokinetics ppt
Pharmacokinetics ppt
 
Aaditya- calculation of pk parameters
Aaditya- calculation of pk parametersAaditya- calculation of pk parameters
Aaditya- calculation of pk parameters
 
CO1_L10_ Introduction to Pharmacology and Therapeutics Part 3.pptx
CO1_L10_ Introduction to Pharmacology and Therapeutics  Part 3.pptxCO1_L10_ Introduction to Pharmacology and Therapeutics  Part 3.pptx
CO1_L10_ Introduction to Pharmacology and Therapeutics Part 3.pptx
 
Pharmacokinetic Models
Pharmacokinetic ModelsPharmacokinetic Models
Pharmacokinetic Models
 
One compartment model intro
One compartment model introOne compartment model intro
One compartment model intro
 
Pharmacokinetic
PharmacokineticPharmacokinetic
Pharmacokinetic
 
Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011
Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011
Clinical pharmaco kinetics 1 bioavailability, 1st pass, renal clearance 2011
 
TOXICOKINETICS
TOXICOKINETICSTOXICOKINETICS
TOXICOKINETICS
 
one compartment open model
one compartment open modelone compartment open model
one compartment open model
 
2.pharmacokinetics
2.pharmacokinetics2.pharmacokinetics
2.pharmacokinetics
 
Pharmacokinetics
Pharmacokinetics Pharmacokinetics
Pharmacokinetics
 
Therapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciences
Therapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciencesTherapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciences
Therapeutic drug monitoring LECTURE 2.pptx pharmaceutical sciences
 
ONE COMPARTMENT MODEL.pptx
ONE COMPARTMENT MODEL.pptxONE COMPARTMENT MODEL.pptx
ONE COMPARTMENT MODEL.pptx
 
pharmacokinetics .Pharm.D(one compartment).pptx
pharmacokinetics .Pharm.D(one compartment).pptxpharmacokinetics .Pharm.D(one compartment).pptx
pharmacokinetics .Pharm.D(one compartment).pptx
 
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
 
3. Pharmacokinetics - I.ppt
3. Pharmacokinetics - I.ppt3. Pharmacokinetics - I.ppt
3. Pharmacokinetics - I.ppt
 
Clinical pharmacokinetics
Clinical pharmacokineticsClinical pharmacokinetics
Clinical pharmacokinetics
 
Pharmacokinetics
PharmacokineticsPharmacokinetics
Pharmacokinetics
 

Más de Flavio Guzmán (20)

Ops
OpsOps
Ops
 
Pk2
Pk2Pk2
Pk2
 
Pk2
Pk2Pk2
Pk2
 
Kinetika En 2002
Kinetika En 2002Kinetika En 2002
Kinetika En 2002
 
Pk1 Ppt
Pk1 PptPk1 Ppt
Pk1 Ppt
 
Ceorins
CeorinsCeorins
Ceorins
 
AUPDATE
AUPDATEAUPDATE
AUPDATE
 
05052008OvarianTelehealth
05052008OvarianTelehealth05052008OvarianTelehealth
05052008OvarianTelehealth
 
mati
matimati
mati
 
DrTerespolsky
DrTerespolskyDrTerespolsky
DrTerespolsky
 
15
1515
15
 
gopalan031607
gopalan031607gopalan031607
gopalan031607
 
IncidentalomaTalk
IncidentalomaTalkIncidentalomaTalk
IncidentalomaTalk
 
Nikiforov
NikiforovNikiforov
Nikiforov
 
Thpt
ThptThpt
Thpt
 
Thyroid Disease
Thyroid DiseaseThyroid Disease
Thyroid Disease
 
THYCER
THYCERTHYCER
THYCER
 
DrRobertFoxUtahSSF
DrRobertFoxUtahSSFDrRobertFoxUtahSSF
DrRobertFoxUtahSSF
 
Sjögren's_syndrome~_Role_for_Cevimeline
Sjögren's_syndrome~_Role_for_CevimelineSjögren's_syndrome~_Role_for_Cevimeline
Sjögren's_syndrome~_Role_for_Cevimeline
 
Sjogren-Parotitis
Sjogren-ParotitisSjogren-Parotitis
Sjogren-Parotitis
 

Último

Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
lizamodels9
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
daisycvs
 
Al Mizhar Dubai Escorts +971561403006 Escorts Service In Al Mizhar
Al Mizhar Dubai Escorts +971561403006 Escorts Service In Al MizharAl Mizhar Dubai Escorts +971561403006 Escorts Service In Al Mizhar
Al Mizhar Dubai Escorts +971561403006 Escorts Service In Al Mizhar
allensay1
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
amitlee9823
 

Último (20)

Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 
Famous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st CenturyFamous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st Century
 
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
 
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 MonthsSEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
 
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceMalegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
Call Girls From Raj Nagar Extension Ghaziabad❤️8448577510 ⊹Best Escorts Servi...
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business Growth
 
Falcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investorsFalcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investors
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
Whitefield CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
Whitefield CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLWhitefield CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
Whitefield CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
 
Falcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to ProsperityFalcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to Prosperity
 
Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...
Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...
Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...
 
Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...
Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...
Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptx
 
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLBAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
BAGALUR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
 
Business Model Canvas (BMC)- A new venture concept
Business Model Canvas (BMC)-  A new venture conceptBusiness Model Canvas (BMC)-  A new venture concept
Business Model Canvas (BMC)- A new venture concept
 
Al Mizhar Dubai Escorts +971561403006 Escorts Service In Al Mizhar
Al Mizhar Dubai Escorts +971561403006 Escorts Service In Al MizharAl Mizhar Dubai Escorts +971561403006 Escorts Service In Al Mizhar
Al Mizhar Dubai Escorts +971561403006 Escorts Service In Al Mizhar
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
 
Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024
 

Kinetika En 2002

  • 1.
  • 2. A bsorption - D istribution -M etabolism -E xcretion ABSORPTION i.v. DISTRIBUTION DISTRIBUTION LIVER: M + BE KIDNEY: Ur. E
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. Distribution Drug distribution means the reversible transfer of drug from one location to another within the body. Once a drug has entered the vascular system it becomes distributed throughout the various tissues and body fluids in a pattern that reflects the physico-chemical nature of the drug and the ease with which it penetrates different membranes.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13. Rapid (bolus) i.v. injection and uniform mixing of the amount administered throughout the volume of total body water: V d =V total body water V d = 0.6 L/kg BW Dose = c plasma . V d V d =Dose/c plasma Fat !!! 0,2-0,35 L water per 1 kg of weight
  • 14.
  • 15. Volumes of some compartments of the adult human body in relation to V D : Total body water 0.6 L/kg BW Intracellular water 0.4 L/kg BW Extracellular water 0.2 L/kg BW Plasma 0.04 L/kg BW V D 0.05 L/kg the drug remains in the blood (heparine) V D 0.1-0.3 L/kg distribution from blood into extracellular fluid (gentamicin - polar drugs). V D 0.6 L/kg distribution from blood into intracelular and extracellular fluid (methotrexate) V D >>0.6 L/kg distribution intracellularly and high binding in tissues ( amiodarone - 350 L/kg)
  • 16.
  • 17. L. Dose Loading dose = C P x V D
  • 18. Use of Vd: EXAMPLE: J.K.(TBW = 90 kg)was admitted to the ICU for pneumonia caused by Gram-negative bacteria. Calculate the loading dose of tobramycin for this patient to achieve the target average concentration of 4 mg/l. Tobramycin V D is 0.2 l/kg of TBW. Loading Dose = ? Loading Dose = 0.2 . TBW . Concentration Loading Dose = 0.2 . 90 . 4 = 72 mg
  • 19.
  • 20.
  • 21.
  • 22.
  • 23. Rate of elimination Elimination of most drugs from the body after therapeutically relevant doses follows first-order kinetics. To illustrate first order kinetics we might consider what would happen if we were to give a drug by i.v. bolus injection, collect blood samples at various times and measure the plasma concentrations of the drug. We might see a decrease in concentration as the drug is eliminated.
  • 24. Rate of elimination Elimination which follows first-order kinetics: dC/dt = - k el . C k el …. rate constant of elimination rate of change is proportional to concentration and is therefore decreasing with time as the conc. decreases
  • 25. Rate of elimination half-life : t 1/2 C= C 0 / 2 t= t 1/2 = ln2 / kel = 0.693/ kel after 4 half-lives: 6% remaining, 94% eliminated monoexponential decay: C(t) = C 0 . e - kel . t
  • 26. Rate of elimination Elimination which follows first-order kinetics: semi-log graph. t 1/2 = 0.693/ k el k el can be estimated by means of the linear-regression analysis
  • 27.
  • 28. The principle of linear pharmacokinetics Linear (first-order) pharmacokinetics: For most drugs, clearance is constant over the plasma concentration range used in clinical practice. Elimination is not saturable (non-capacity-limited) and the rate of drug elimination is directly proporcionate to the concentration: Rate of elimin. = CL . Concentration
  • 29. Nonlinear pharmacokinetics Nonlinear pharmacokinetics: (capacity-limited, dose or concentration dependent, saturable) CL varies depending on the concentration of a drug. Rate of elimination = Vmax . C /Michaelis- Menten/ K m + C CL = Vmax K m + C ethanol, phenytoin, theofylline
  • 30.
  • 31.  
  • 32.
  • 33. Calculation of the maintenance dose J.K.was admitted to the ICU for pneumonia caused by Gram-negative bacteria. Calculate the maintenance dose (i.v.-infusion in 6 h intervals)of tobramycin for this patient to achive the target average concentration of 4 mg/l. Clearance of tobramycin was estimated to be 70 ml/min. Rate of dosing = Dose / Interval Rate of dosing = Rate of elimination = CL.c T Rate of dosing = 4.70.60 / 1000 = 16.8 mg/h Dose = Rate of dosing . Interval = 6 . 16.8 = 101 mg
  • 34. Multiple i.v. bolus dose administration : drug accu- mulation in plasma until the steady state is achieved
  • 35.  
  • 36.
  • 37.
  • 38.
  • 39. Renal clearance CL R Amount excreted = V U . C U KIDNEY CL R = rate of elim. / C in plasma = V U . C U / C in plasma GFR , C in plasma V U , C U GFR 100 -150 ml/min URINE V U = volume collected / urine collection period
  • 40. Renal clearance CL R CL R = rate of elim. / C in plasma = V U . C U / C in plasma Renal clearance of a drug is the ratio of the rate of elimination of the drug by the kidney divided by its concentration in plasma.
  • 41. Renal clearance of the drug CL R = GFR x f unbound + Tubular secretion - Tubular reabsorption Glomerular filtration rate is measured using endogenous creatinine: GFR  creatinine clearance = 100 - 150 ml/min 1/ CL R > GFR x f unbound : filtration + Tubular secretion 2/ CL R < GFR x f unbound : filtration - Tubular reabsorption 3/ CL R  GFR x f unbound : filtration
  • 42. Elimination half-life (t 1/2 ) Definition: Elimination half-life is the time it takes the drug concentration in the blood to decline to one half of its initial value. It is a secondary parameter : The elimination half-life is dependent on the ratio of V D and CL. Unit : time (min, h, day)
  • 43. Use of t 1/2 : 1/ t 1/2 can be used to predict how long it will take for the drug to be eliminated from plasma.
  • 44. Use of t 1/2 : 2/ t 1/2 can be used to predict how long it will take from the start of dosing to reach steady-state levels during multiple dosing or continuous i.v. infusion. No. of t 1/2 Concentration achieved (% of steady conc.) 1 50 2 75 3 87.5 4 94 5 97
  • 45.  
  • 46. Important During continuous (infusion) or continuous intermittent dosing (oral dosing): The steady-concentration depends on the rate of dosing (the dose/dosing interval) and the clearance. Time required to achieve steady-state depends on the half-life and is independent of the rate of dosing and the clearance..
  • 47. Use of t 1/2 : 3/ the relationship between t 1/2 and dosing interval  can be used to predict the degree of accumulation of a drug in the blood. The longer t 1/2 and the shorter  , the more drug accumulates.   t 1/2 Moderate accumulation during dosing 2-times)  < t 1/2 Significant accumulation during dosing ( > 2-times)  > t 1/2 Insignificant accumulation during dosing ( < 2-times)
  • 48. Use of t 1/2 : 4/ t 1/2 (the relationship between t 1/2 and dosing interval  ) can be used to predict the degree of fluctuation of a drug concentration within a dosing interval.   t 1/2 C ss,min levels at steady state are aprox. 50% of C ss,max . Moderate fluctuation.  < t 1/2 C ss,min levels at steady state are more than 50% of C ss,max . Small fluctuation.  > t 1/2 C ss,min levels at steady state are less than 50% of C ss,max . Wide fluctuation.
  • 49. Multiple short i.v. infusions of amikacin: the rate of dosing is constant but interdose interval is changing, t 1/2 = 6 h
  • 50. Multiple short i.v. infusions of amikacin: the rate of dosing is constant but interdose interval is changing, t 1/2 = 6 h
  • 51. Use of t 1/2 : 5/ t 1/2 can be used to predict how long it will take a drug concentration to decline from one specific value to another. t = t 1/2 . ln(C1/C2) / 0.7 It can be usefull in overdoses and dosage adjustments.
  • 52. Fundamental relationships between various PK parameters Elimination which follows first-order kinetics can be described by rate constants (or half-lives). If we assume rapid transfer of drug from other parts of the body into plasma, the drug is cleared from its total distribution volume in the body: Rate of elimination = V D . Rate of removal from the unit volume = V D . dC/dt = V d . k el . C CL = Rate of elimination / C = V d . k el = V d . 0.7 / t 1/2
  • 53. Fundamental relationships between various PK parameters Elimination which follows first-order kinetics can be described by rate constants (or half-lives). If we assume rapid transfer of drug from other parts of the body into plasma, the drug is cleared from its total distribution volume in the body: Rate of elimination = Distr. Volume . Rate of removal from the unit volume = V d . dC/dt = V d . k el . C Clearance = Rate of elimination / C = V d . k el = V d . 0.7 / t 1/2 AUC = Dose / (V d . k el )  Clearance = Dose / AUC
  • 54. Area under the curve, AUC C = C 0 . e - k.t monoexponential decay AUC is an integral AUC = Dose / (V . k el ) AUC = Dose / CL CL= Dose / AUC (i.v.) CL= F. Dose / AUC The AUC value is very useful for calculating the amount of drug which reaches the systemic circulation (the absolute bioavailability F) after administration of different drug products.
  • 55. Pharmacokinetics after extravascular administration Most of the routes of administration are extravascular; for example IM, SC, and most importantly oral. With this type of drug administration the drug isn't placed in the systemic circulation but must be absorbed through at least one membrane. This has a considerable effect on drug pharmacokinetics and may cause a reduction in the actual amount of drug which is absorbed and reaches the systemic circulation.
  • 56. Pharmacokinetics after extravascular administration Bioavailable dose = F . Dose F…absolute bioavailability (0 < F < 1) … .after i.v. administration F = 1 Most commonly the absorption process follows first order kinetics. Even though many oral dosage forms are solids, which must dissolve before being absorbed, the overall absorption process can often be considered to be a single first order process.
  • 57. Pharmacokinetics after extravascular administration. Bioavailability AUC C max T max
  • 59. Bioavailable fraction of the dose (F)
  • 60. Bioavailability F must be determined by comparison with another dose administration. If the other dosage form is an intravenous form then the F value is termed the absolute bioavailability. In the case where the reference dosage form is another oral product, the value for F R is termed the relative bioavailability. CL = (D/AUC) i.v. = F. (D/AUC) oral
  • 61. Bioavailability Bioavailability indicates a measurement of the rate and extent (amount) of therapeutically active drug which reaches the general circulation. Absolute bioavailability is the absolute fraction of dose which is available from a drug formulation in general circulation. It is measured by comparing AUC after i.v. and extravascular administration. Relative bioavailability is a relative amount and relative rate of availability if two formulations (other than i.v.) are compared.
  • 62. Bioequivalence Two drug formulations are bioequivalent if the extent and rate of bioavailability of a drug is comparable (within certain limits). Bioequivalence study: new drug formulation of a known active drug is compared to the reference (original formulation or another marketed formulation) in a study with healthy volunteers. Original product, Generic copies
  • 63. Bioequivalence Two drug formulations are bioequivalent if the extent and rate of bioavailability of a drug is comparable (within certain limits). Cross-over study with 2 periods Group 1: Test Reference Group 2: Reference Test AUC, c max , T max ,
  • 64. Some definitions Brand Name is the trade name of the drug. Chemical Name is the name used by the organic chemist to indicate the chemical structure of the drug. Drug Product means a finished dosage form, e.g., tablet, capsule, or solution, that contains the active drug ingredient, generally, but not necessarily, in association with inactive ingredients. Generic Name is the established, common name of the active drug in a drug product.