Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen.
Universidad Centroamericana
“Jo...
Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen.
3. Calcular el producto de los ...
Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen.
6. Comprobar que el número comp...
Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen.
12. Usar la fórmula de D´Moivre...
Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen.
20. Calcular:
a)  
1
3
3 j
b...
Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen.
28. Sean cos( ) ( )j
e jsen
 ...
Próxima SlideShare
Cargando en…5
×

Guia comp avm

606 visualizaciones

Publicado el

Operaciones con Números Complejos

Publicado en: Educación
0 comentarios
2 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
606
En SlideShare
0
De insertados
0
Número de insertados
13
Acciones
Compartido
0
Descargas
39
Comentarios
0
Recomendaciones
2
Insertados 0
No insertados

No hay notas en la diapositiva.

Guia comp avm

  1. 1. Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen. Universidad Centroamericana “José Simeón Cañas” Departamento de Matemática. Álgebra Vectorial y Matrices. Catedrático: Ing. Eduardo Escapini. Jefe de Instructores: Jonathan Landaverde. A continuación se presentan una serie de ejercicios para el estudio de los números complejos. 1. Dibujar la representación gráfica de cada uno de los siguientes números complejos. a) 3 2z j  b) 3 2z j  c) 5 4z j   d) 1 6z j   e) 5z j f) 4z  g) 3.99 4.76z j  2. Realizar la operación indicada (suma o diferencia) en cada uno de los ejercicios. a) (8 2 ) ( 7 5 )j j    b) 15 (13 2 )j  c) ( 1 0 ) (7 6 )j j    d) (15 7 ) (9 11 )j j   e) (13 5 ) ( 3 5 )j j    f) ( 2 2 3 ) ( 2 27 )j j     g) 3 2 1 1 2 7 8 3 j j               
  2. 2. Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen. 3. Calcular el producto de los números complejos dados. Representar geométricamente cada pareja de complejos y su producto para cada uno de los literales. a) (9 )(3 5 )j j b) ( 2 )(7 )j j   c) (3 2 )(3 2 )j j  d) (12 )(10 )j j e) (5 3 )(5 3 )j j  f) 7 ( 3 )(2 ) 2 j j  g) 14 3 ( 7 )( 11 ) 63 2 j j    4. Calcular el cociente de los números complejos dados y representar geométricamente el número complejo encontrado. a) 2 3 5 2 j j   b) 3 3 2 j j     c) 2 2 5 j j     d) 5 3 7 2 j j    e) 5 2 5 j j  5. Resolver las siguientes ecuaciones igualando las partes reales y las imaginarias para hallar los valores de “x” y “y”. a) ( )(3 2 ) 4x yj j j    b) 7 ( ) 3 5 j x yj j     c) 6 ( ) 7 4 j x yj j     d) ( )(7 ) 3 9x yj j j    e) ( )(9 6 ) 6 9x yj j j    
  3. 3. Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen. 6. Comprobar que el número complejo dado satisface la ecuación propuesta. a) 1 1 2z j  ; 2 1 12 5 0z z   b) 2 4z j  ; 2 2 2(7 3 ) (10 11 ) 0z j z j     c) 3 6 5z j  ; 2 3 3( 11 8 ) (15 43 ) 0z j z j      d) 4 2 2z j   ; 2 4 4( 1 4 ) (5 3 ) 0z j z j      7. Encontrar 3  donde: 1 3 2 2 j    8. Determinar dos números complejos tales que su suma sea el número real “a” y cuya diferencia sea el número imaginario “bj”(b real). 9. Calcular los módulos en cada una de las expresiones siguientes: a) ( 8 )(4 3 )(1 24 )j j j   b) (1 )(4 6 ) ( 3 7 ) j j j    c) (6 8 )(4 3 ) 1 (6 8 ) 4 3 j j j j      10. Demostrar que el número complejo: 1 3 7 j z j    satisface la ecuación: 3 1 1 1z z    . 11. Usar la forma polar para calcular: a) (4 3 4 )(6 6 3 )j j  b) 16 16 3 3 3 3 j j   c) 4(cos(15) (15))(2 2 )jsen j  d) 3 2 2 3 2 3 1 2 ( 1 3 ) cos 3 3 3 3 cos( ) ( ) ( 5 3 ) 11cos 11 4 4 j j jsen jsen j jsen                                            Sugerencia: 3 1 4 3 4 8( ) 8(cos(30) (30)) 2 2 j j jsen    
  4. 4. Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen. 12. Usar la fórmula de D´Moivre para calcular: a) 8 (7 7 3 )j b) 5 3 1 j j        13. Demostrar que: 6 1 3 1 2 j       14. Probar que si: 2 2 z z , entonces z es real. 15. Escribir el número complejo en su forma polar en cada caso: a) 1 j b) 1 3 j c) 2 j d) 7 2 j  e) 3 3 j  16. Probar que: a) ( 1 3 )( 3 ) 2 3 2j j j      b) ( 2 )(2 ) 5j j     17. Graficar cada uno de los siguientes números complejos: a) 6(cos(240) (240))jsen b) 2 2 3 j c) 3(cos(40) (40))jsen d) 3 2 j e) 2 2 cos 3 3 jsen              18. Encontrar los valores de z para los cuales: 5 32z   19. Calcular todas las raíces cúbicas de: 1 j
  5. 5. Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen. 20. Calcular: a)   1 3 3 j b) 1 5 36 18 2 2 j       21. Si 1 2,z z y 3z son números complejos, entonces a través de una sustitución directa pruebe que: 2 2 2 1 3 1 4 2 z z z z z z     satisface que: 2 1 2 3 0z z z z z   22. Resolver 2 2 (1 ) 16z z  23. Resuelva: a) 2 3 6 3 0z jz   b) 2 4 12 40 0z z j   24. Probar la fórmula de D´Moivre para exponentes racionales. 25. Sea “a” una constante real y positiva, entonces la ecuación: 1 1 z a z    representa: a) Un círculo si 1a  b) Una recta si 1a  26. Sean 0 2   y z un número complejo. Demostrar que el triángulo con vértices 1 (cos( ) ( ))z z jsen   , 2 ( )(cos( ) ( ))z j z jsen    , 3 (1 )(cos( ) ( ))z z jsen    es un triángulo rectángulo isósceles. 27. ¿Qué puede decir del triángulo con vértices: 1 (3 )cos( ) (1 3 ) ( )z j j sen     , 2 (4 2 )cos( ) (2 4 ) ( )z j j sen     ,  3 (5 ) cos( ) ( )z j jsen    ?
  6. 6. Álgebra Vectorial y Matrices. Ciclo 02/2015 Sección: 03 Guía-Discusión #1 Jonathan λGreen. 28. Sean cos( ) ( )j e jsen    y cos( ) ( )j e jsen     . Demuestre que: cos( ) 2 j j e e      y ( ) 2 j j e e sen j       . Estas expresiones se les conoce como fórmulas de Euler. 29. Haciendo uso de las fórmulas de Euler, demuestre que: 3 1 3 cos ( ) cos(3 ) cos( ) 4 4     . 30. Desarrolle 3 ( )sen  linealmente en términos de ( )sen  y (3 )sen  . 31. Demuestre que: a) 1 2 1 2 1 2cos( ) cos( )cos( ) ( ) ( )sen sen        b) 1 2 1 2 2 1( ) ( )cos( ) ( )cos( )sen sen sen        32. Demuestre que si: (cos( ) ( ))z r jsen   , entonces j z re  . 33. Para los ejercicios siguientes, represente los números complejos dados en forma exponencial. a) 1 j b) 7 2 j  c) 2 j d) 3 j e) 1 3 j f) 3 3 j  34. Calcular: a) 3 j e  b) 4 j e  c) 2 j e  35. Demuestre que si 0a  , entonces:  ln( ) ( 2 ) , 0, 1, 2,... a r k ja z e k        36. Calcular: a)   5 1 3 j y b) 3 (2 2 )j

×