SlideShare una empresa de Scribd logo
1 de 31
Descargar para leer sin conexión
=|== ↓▼↓= M inha Coletanea de CIRCUITOS ELETRONICOS = ↓▼↓==|=

18dB FM /UHF/VHF High Power TV Booster (TV Signal Amplifier) Circuit Diagram using 2sc3355

Today, we introduce simple & small High Power FM/UHF/VHF booster (TV signal amplifier) circuit. It covers the frequencies from
40MHz to 900MHz and boosts the VHF signals up to 23dB and UHF signal up to 18dB. An External power supply not necessary
for this circuit, it operates using the coaxial cable as feed line. It’s very easy to build, but try to maintain the terminals of component
as close as possible to discharge involved frequencies. Make this circuit on good quality PCB for best performance.
Frequency response – 40MHz – 900MHz
Typical Gain – 18dB
Maximum output level – 90μV
Impedance – 75Ω

Components:
D1, D2 – IN4148
D3, D4, D5, D6- IN4007
C1, C4 – 100PF (101) Ceramic
C2 – 2.2PF Ceramic
C3 – 1000PF (102) Ceramic
C5 – 470μf / 16V Electrolytic
C6 – 1000μf / 16V Electrolytic
C7 – 0.24μf (224) Ceramic
R1 – 82K/0.25W
R2 – 1.5K/0.25W
R3 – 270Ω/0.25W
R4 - 120Ω/0.25W
Q1 – 2SC3355
T1 – 230V – 12V/300mA step-down transformer
L1, L2 – Wire thickness – 0.5mm (25 SWG / 24 AWG)
Diameter – 5mm
Turns - 8
L3, L4 – Wire thickness - 0.5mm (25 SWG / 24 AWG)
Diameter – 3mm
Turns - 25

=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

MAR-6 VHF-UHF wide band amplifier circuit
design electronic project
This wide band amplifier circuit is designed using the M AR-6 IC manufactured by M ini Circuits . This
M AR-6 VHF-UHF wide band amplifier circuit will providing stable gain of at least 9dB up to 2GHz.
Because the M AR-6 is designed to receive its power via the signal output pin, it’s very suitable for use as a
masthead amplifier. It requires about 3.5V DC, at a working current of around 16mA.
As you can see in the circuit diagram this masthead amplifier electronic project , require few external electronic
parts , so if you will use SM D components you’ll have a very compact design . With power applied, the LED
should glow reassuringly and you should be able to measure about 6.8 - 7V DC at the end of R1 nearer IC2 and
C5 . If the LED doesn’t glow and you get no voltage reading, chances are that you’ve wired the DC input with
reverse polarity .If the LED doesn’t glow but there’s almost the full plug-pack voltage present at R1, you’ve
almost certainly wired the LED in backwards.

=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

Active Antenna AA-7 HF/VHF/UHF,
3-3000MHz
by Fred Blechman and Tony van Roon
"Lift those hard-to-hear signals out of the mud with
this handy receiver accessory."
If you have a shortwave or high-frequency receiver or scanner that is struggling to capture signals with a short,
whip antenna, and you'd like the kind of performance that a 60-foot longwire antenna can provide but lack the
space to put one up, consider building the AA-7 HF/VHF/UHF Active Antenna described in this article. The
AA-7 is a relatively simple antenna that is designed to amplify signals from 3 to 3000 M egaHertz, including
three recognized ranges: 3-30M hz high-frequency (HF) signals; 3-300M hz very-high frequency (VHF) signals;
300-3000M Hz ultra-high (UHF) frequency signals. Those bands are typically occupied by shortwave, ham,
government, and commercial radio signals.
Active Antennas:
In its simplest form, an active antenna uses a small whip antenna that feeds incoming RF to a pre-amplifier,
whose output is then connected to the antenna input of a receiver. Unless specifically designed otherwise, all
active antennas are intended for receive-only operation, and thus should not be used with transceivers;
transmitting into an active antenna will probably destroy its active components. A well designed broadband
active antenna consider field strength of the desired signal (measured in microvolts per meter of antenna length),
atmospheric and other noise, diameter of the antenna, radiation resistance, and antenna reactance at various
frequencies, plus the efficiency and noise figure of the amplifier circuit itself.
Circuit Description:
Fig. 1 shows the schematic diagram of the AA-7, which contains only two active elements; Q1 (an M FE201
N-Channel dual-gate M OSFET) and Q2 (a 2SC2570 NPN VHF silicon transistor). Those transistors provide
the basis of two independent, switchable RF pre-amplifiers. Two double-pole double-throw (DPDT) switches
play a major role in this operation of the AA-7. Switch S1 is used to select one of the two pre-amplifier
circuits (either HF or VHF/UHF). Switch 2 is used to turn off the power to the circuit, while coupling the
incoming RF directly to the input of the receiver. That gives the receiver non-amplified access to the auxiliary
antenna jack, at J1, as well as the on-board telescoping whip antenna. With switch S2 in its power-on position,
the input and output jacks are disconnected and B1 (a 9 volt battery) is connected to the circuit. With switch
S1 in the position shown in the schematic, incoming RF is directed to the HF pre-amp circuit built around Q1
(an M FE201 N-Channel dual-gate M OSFET). The HF pre-amp operates with an exceptionally low noise level,
and is ideal for copying weak CW and singe-side band signals. When S1 is switched to the other position, the
captured signal is coupled to the VHF/UHF pre-amp built around Q2 (a 2SC2570 NPN VHF silicon
transistor), which has excellent VHF through microwave characteristics. With the on-board whip antenna
adjustable to resonance through much of the VHF-UHF region (length in feet = 234 divide by the frequency in
M Hz), the VHF/UHF mode is ideal for indoor and portable use with VHF scanners and other receivers. Either
mode can be used when tuning 3-30 M Hz HF signals. The VHF/UHF pre-amp offers higher gain than the HF
pre-amp, but also has a higher noise level. You can easily choose either amplifier for copying any signal; of
interest--just try both positions. The RF gain control (R5) can be used to trim the output of either amplifier.

Caution: The AA-7 is not intended for transmitting operation (be it Ham, M aritime, or CB); if it is used
with a transceiver of any kind, make sure it is not possible to transmit by accidentally pressing a mike button
or CW keyer. Transmitting RF into the AA-7 is likely to ruin one of both of the transistors in the circuit.
Construction:
The AA-7, which can be built from scratch or purchased in kit form from the supplier listed in the Parts List,
was assembled on a printed circuit board, measuring 4 by 4-11/16 inches. A template for the pcb board is
shown in fig. 2. You can either etch your own board from that template, or purchase the circuit board or the
complete kit of parts (which includes the pcb and all parts, but not the enclosure). The kit comes with a
16-page kit instruction manual that gives step-by-step assembly instructions and contains additional
information not covered in this article. Kit assembly time, working slowly and carefully, should take less than
an hour. M ost of the parts specified in the Parts list are standard components and can be procured through
conventional hobby electronics suppliers. However, some parts--J1, J2, S1, S2, and R5-- have particular
physical mounting dimensions; the Printed Circuit Board is designed to accept these particular parts. In
addition, Q1 and Q2 can be hard to find; however, it is possible to make substitutions provided that you can
find a supplier. Suitable replacements for Q1 and Q2 are given in the Parts List.
The telescoping whip antenna screw-mounts to the board; the screw provides contact between the printed
circuit board traces and the antenna. To save time and trouble locating and ordering hard-to-find parts, a Special
Parts Kit is also offered by the supplier listed in the Parts List.
A parts placement (layout) diagram for the AA-7's printed circuit board is shown in figure 3. When assembling
the circuit, be especially careful that transistors Q1 and Q2, and the electrolytic capacitor C4, are oriented as
shown.
Although not shown in the schematic (Fig. 1) or the layout (Fig. 3) diagrams, an optional led power indicator
can be added to the circuit. Adding a power indicator to the circuit allows you to tell at a glance if the circuit is
on; leaving the circuit on, even though the AA-7 draws only about 0.7 mA, will eventually discharge the
battery. Of course, adding an led will increase the current drain to by about 7 mA, but the red glow makes it
obvious when the unit is on.
If you decide to include the LED indicator in your project, power for the indicator can be easily taken from the
switched 9-volt DC terminal of S2 (center terminal, right side, looking at the top of S2). Simply connect the
positive voltage to the anode (longer wire) of the led and connect her cathode lead through a current limiting
resistor of about 1000 ohm to a ground point on the printed circuit board, or as the author did from the frame
of R5. M ount the led at any convenient point near the switch.
Although not supplied with the kit, a custom plastic enclosure (with front and back panels) or a regular 'hobby'
case of some sorts, and knobs for the switches and gain control can be purchased from most local electronics
stores or mail-order.
Test and Use:
Prepare a coaxial cable to connect the RF output of the AA-7 to the antenna input of your receiver or
scanner. One end of the interconnecting cable must be terminated with an RCA phono plug; the other end
connector depends on the target receiver or scanner. With some receivers, the only practical connection is to
clip the output of the AA-7 to the receiver's antenna, although that connection won't be as effective as
conventional (ground-return type) coupling.
To increase signal strength, especially for the lower frequencies, you can connect a simple supplementary
portable antenna of any design (a dipole, random-length wire with Earth ground, a bigger vertical whip of some
kind, etc.) to the circuit. Just use a small-diameter coaxial cable terminated in an RCA plug for mating with J1.
No alignments are required. If you're using the whip antenna, simply connect the output of the AA-7 to your
receiver, with the unit turned off (that's the bypass position) and the RF gain control (R5) turned fully
counter-clock wise. Turn on the receiver and tune-in a weak station. Switch S2 on, and adjust the gain control
clockwise to increase the output signal. Toggle S1 back and forth to see which setting gives you the best
results. Don't be surprised if the gain control overloads the receiver; if so, back it off.
Troubleshooting:
The fact that there are two independent pre-amplifiers in the AA-7 makes faults easier to diagnose than with
many other devices. If a problem occurs, only at one setting of S1, concentrate on that part of the circuit. If the
problem is common to both settings, the components and the connections common to both preamps should be
checked. M ake sure the jumper wires are in place!
There are other characteristics or phenomena associated with preamplifiers and active antennas that does not
mean that your circuit is malfunctioning. For example, if you have strong AC hum in the HF setting, the
antenna is too close to an AC cord or powerline. HF signals may be clearer at the VHF/UHF setting than in the
HF setting. Why? Although either pram may be used for HF, the signal strength will be greater with the
VHF/UHF pram. However, the HF signal-to-noise ration is better with the dual-gate-M OSFET-based pram.
Try both and use the best for your particular receiver conditions.
Some portable receivers not enclosed in metal cases may break into oscillation when connected to any RF
preamplifier. Try reducing the AA-7's gain and make sure that good grounds are provided with the
interconnecting coax cables. A preamplifier will intensify any problems due to poor receiver design:
overloading, images, or any other problems with selectivity and image rejection.

Parts List and other components:
Semiconductors:
Q1 = MFE201, SK3991, or NTE454. N-Channel, dual-gate MOSFET (see text)
Q2 = 2SC2570, NTE10, NTE107. NPN VHF/UHF silicon transistor (see text)
Note: If you use the NTE107 as a replacement, make sure to insert it correctly
into the pcb. The orientation is different than as shown on the parts layout
diagram. (e-c-b seen front view for NTE107). See this Data Sheet

Resistors:
All Resistors are 5%, 1/4-watt
R1 = 1 Mega Ohm
R2 = 220K
R3,R6 = 100K
R4 = 100 ohm
R5 = 10K potentiometer, (pc mount)
Capacitors:
C1,C2,C5,C6 = 0.01uF, ceramic disc
C3 = 100pF ceramic disc
C4 = 4.7 to 10uF, 16WVDC, radial lead electrolytic
Additional Parts & Materials:
B1 = 9-volt alkaline battery
S1,S2 = DPDT PC mount pushbutton switch
J1,J2 = PC mount RCA jack
ANT1 = Telescoping whip antenna (screw mount)
MISC = PCB materials, enclosure, enclosure, battery holder and connector,
wire, solder, etc.
If you wish to purchase a parts kit and pcb, [CLICK HERE]

Fig. 1. "The AA-7 Active Antenna contains only two active elements: Q1 and Q2 (a 2SC2570 NPN VHF
silicon transistor), which provide the basis of two independent, switchable RF preamplifiers."
Fig. 2. "The AA-7 was assembled on a printed-circuit-board (PCB), measuring about 4 by 4-11/16
inches. A template for the printed-circuit-board is shown here. Note that it may not be to scale.
Parts assembly diagram (layout) is shown in Fig. 3 to make soldering the unit together a breeze!"
Fig. 4. shows the finished assembly without the enclosure. M ake sure the antenna-hole in the enclosure is
in-line with one on the pcb. On mine I used a stud with thread on both sides to enable me to use different
length antenna's; all I have to do is unscrew and screw another antenna back in without taking the AA-7 apart. I
used a 9-volt battery tray which allows me to replace the battery without opening up the case, but the regular
battery clip and battery works fine. As you can see from the pictures, this is a nice one-evening project.
I fully support this project. since my unit has been in operation for quite a few years now and still running on
the same battery. Power consumption if minimum. M ost parts can be obtained via your local electronics store.
I will answer all questions but via "Tony's Message Forum" only. This Forum can be accessed via the main
page, gadgets, or circuits page.
Copyright and Credits:
Source: "Electronics Hobbyist Handbook", Spring 1994. Copyright © Fred Blechman and Gernsback
Publications, Inc. 1994. Published with permission from Gernsback. (Gernsback Publishing no longer exists).
Document updates & modifications, all diagrams, PCB/Layout drawn by Tony van Roon.
Re-posting or taking graphics in any way or form of this project is expressly prohibited by international
copyright laws.

Back to Circuits page
Page Copyright © 1995 - Tony van Roon
Project Copyright © 1994, by Fred Blechman
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

Wideband PreAmp's for HF/VHF/UHF
RE-HFA1MAR6 Wideband VHF/UHF/SHF monolithic PreAmp based on
MARx-series
The MAR 6 (MSA-0686,0685,0885) is a high pe rform ance silicon bipolar Monolithic Microwave
Inte grate d C ircuit (MMIC ) house d in a low cost, surface m ount plastic pack age .
This MMIC is de signe d for use as a ge ne ral purpose 50 W gain block . Applications include
narrow and broad band IF and R F am plifie rs in com m e rcial and industrial applications.
The MSA-se rie s is fabricate d using HP’s 10 GHz fT, silicon bipolar MMIC proce ss which use s
nitride se lf-alignm e nt, ion im plantation, and gold m e tallization to achie ve e x ce lle nt
pe rform ance , uniform ity and re liability. The use of an e x te rnal bias re sistor for te m pe rature
and curre nt stability also allows bias fle x ibility. It is a C ascadable Silicon Bipolar
MMIC Am plifie r.

MAR 6 and MAR 8 Features (MSA-0685 & MSA-0885)
•
•
•
•

Fre que ncy range from DC to 2GHz
high gain, 22.5 dB (31.5dB MAR 8) at 100 MHz, re duce s com pone nt count
high powe r output, +12.5 dBm typ.
low noise
•
•
•
•
•

im prove d stability
prote ction against powe r supply transie nts
e x act footprint substitute ** MAR -8 and MSA-0885
3.2...4.2 volt @ pin 3

Schematic with external power supply

Components:

40Mc...2GHz
IC 1 = MAR -6 or MAR -8 or MSA-0685 and MSA-0885 re spe ctive ly
IC 2 = 78L05
C 1 = 56pF
C 2 & C 3 = 100pF
R 1 Bias* = 120 (re v1.3)
C 4 & C 7 = 4.7uF/25v
C 5 & C 6 = 100nF
C 8 = 560pF
L1 = 3 a 4 turns of 0.2 C u wire through a fe rite be ad
L2 = 2,7uH or 4 turns of 0.2 C u wire through a fe rite be ad (optional, static ble ad)
D1 & D2 = 1N4148
1Mc...1GHz
C 1 = 1000pF
C 2 & C 3 = 2200pF
L1 = 100uH
L2 = 47uH (optional, static ble ad)

PreAmp features:

• High gain, 22.5 dB (31.5dB MAR 8) at 100 MHz, 20dB @ 1GHz
• C an be use d for TV and ATV re ce ption too.
• Fre que ncy range from +/- 30Mc to 2GHz (1Mc to 2GHz se e above com pone nts list)
•
•
•
•
•
•
•
•
•

Voltage inde pe nte nd (8...20volts)
Low curre nt drain
Static drainage (L2)
O utput prote ction (D1 D2 inve rte d diode s) for accide ntal TX
50 O hm s input and output im pe dance
Voltage inde pe nte nd (8...20volts)
Dynam ic range 14.5 dBm - 20dBm MAR 8
VSW R in 1.5 out 1.8
Noise < 3dB
* Biasing R 1 =
120 O hm s @ 5v
270 O hm s @ 9v
470 O hm s @ 12v

Tips:
The be st place to put a pre -am plifie r is with out a doubt as close st to the ante nna as possible .
If possible , dire ctly m ounte d at the fe e de r (dipole ) and using phantom -type powe ring of the
am plifie r. The R F/DC splitte r com e s inside the shack just be fore your re ce ive r.
Ke e p the conne ctions as short as possible @ R F IN and R F O UT and k e e p the m in 50 O hm s
im pe dance starting at the le ads from the IC . Mount it in a shie lde d casing.
W ith use with an transce ive r: This pre am p is prote cte d to a ce rtain de gre e for accide ntal TX
(+/- 5watt) at the output, but no guare nte e is give n that your MAR -6 will survive . So m ak e the
ne e de d pre cautions to pre ve nt this from occuring whe n use d in a TX type situation (lik e
be twe e n your ante nna and transce ive r). Use a R F-se nsing circuit inste ad.
W he n using it only with a re ce ive r: you can le ave out the paralle l inve rte d diode s and C 3.
L2 can be le ft out if your ante nna has alre ady som e type of static ble e de r build in (or DC
shorte ne d, lik e a folde d dipole e tc...). If you don't k now for sure , just tak e your O hm -m e te r
and m e asure be twe e n the ce ntre and the braid of the coax which should re ad som e thing lik e <
1k or so. Inve rte d paralle l diode s are also use d to ble e d of static build up. Te st this with your
diode te ste r. Eve r so now and the n (m ostly with olde r type of R X ve rticals) a ne on bulb is use d
he nce ne ve r can be m e asure d. Just le ave L2 as it is (can't do m uch harm in any case state d
above anyway).

Schematic with phantom power supply using the coax as feedline
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

This wideband antenna preamplifier has a gain of around 20 dB from 40 to 860 MHz,
covering the entire VHF, FM, commercial, and UHF bands.
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

comprei o cabo RGC 213, que no meu caso foi o DLC 213 premium, da datalink, que no fundo é a mesma
coisa...
fiz o cálculo de medida para cada gomo..
= (v * c) ÷ (2 * f)
= (0,82 * 299792458) ÷ (2 * 2441000000)
= (245829815,56) ÷ (4882000000)
= 0,050354325186399016796394920114707
(multiplica por 100)
= 5,0354...
v = velocidade do cabo ou velocidade de propagação - nesse link tem essa velocidade dos cabos
da datalink Data Link.
c = velocidade da luz = * 299792458 km/s.
f= freqüência do sinal = 2441000000 (2.4 Ghz).

então cada gomo terá que ter 5,03 cm! Isso no meu caso, de acordo com o cabo que usei e de
acordo com a potência do meu roteador!!
não é cada gomo ter isso.. na realidade 5,03 cm é a distância que o início de um gomo terá do
início do outro gomo, veja o gráfico abaixo..
é isso aí.. espero ter contribuido..
demorou cerca de 4 horas pra fazer!!
e funciona mesmo!
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

Faça Sua Antena Omni
Um bom tipo de antena bem fácil de fazer é a antena omni, a antena omni tem como principal
característica irradiar os sinais de RF em todas as direções, por isso é uma antena muito
utilizada para curta e média distância.
A proposta deste texto é dar condições para que possa ser montada uma antena omni de acordo
com as necessidades do montador, sendo assim, em razão da disponibilidade do material e da
necessidade do ganho em dB, pode ser feita uma antena de três dB a dez dB, obviamente que
maior for o ganho desejado, também será usado mais material.
De qualquer modo, para ganho de três dB, devem ser usados quatro elementos, nesse caso a
antena irá ficar com pouco mais de 30 centímetros.
Quem desejar ganho de seis dB, deverá usar seis elementos, para 9 dB devem ser usados 16
elementos, para 10 dB devem ser usados 20 elementos, observe que com vinte elementos a
antena terá seu tamanho um pouco maior do que um metro e trinta centímetros.
Quem optar pela construção da antena para maior ganho, se usar um Acess Point de 400 mW,
poderá irradiar o sinal para aproximadamente 7 quilômetros com visada, isso é uma previsão
até bem pessimista para antenas com visada.
Mas também poderá nem chegar a um quilômetro, se a altura em que a antena for instalada for
baixa, e se houverem obstáculos no caminho, pois o sinal poderá nem chegar, mas isso não é
característica da antena, mas sim da faixa de freqüência (UHF) que é praticamente a linha do
visual.
Dependendo do ganho que você deseja para sua antena, você vai precisar de tantos elementos
iguais ao da figura abaixo, os elementos são feitos com o próprio cabo coaxial que é cortado em
pedaços com medidas certas e descascado uma parte da capa do cabo coaxial para possibilitar
a soldagem.
Lembrando que em se tratando de freqüências altas, mexer com equipamentos e antenas,
requer muito cuidado e todo e qualquer detalhe é importante, principalmente em se tratando de
medidas.
Cada elemento deve ter 6.7 centímetros (67 milímetros), deve ser tirada a capa de um centímetro
de cada lado do elemento, de forma que fique em cada uma extremidades um centímetro livre,
deve ser tirado um pedaço da capa que protege o fio malha, ele é muito importante, pois agira
como elemento inversor de fase do sinal captado e emitido.
A montagem deve ser feita com cuidado, as soldas devem ser feitas rápidas para não ficar uma
bicheira (solda fria) no local da solda. O detalhe das medidas é mostrado na figura abaixo:

Note que é soldado fio central no fio malha, e no estágio seguinte, o fio malha é soldado no fio
central, assim deve ser quantos elementos forem necessários na antena, mas devem ser
respeitadas as medidas conforme a figura acima: O elemento da antena fica na realidade com
57 milímetros(5.7 cm), separados um do outro por 5 milímetros (0.5 cm), note que nos
elementos da antena já foi descontado o fator de velocidade do cabo coaxial RGC 213, que é de
0.85, por isso, siga as medidas indicadas para esse tipo de antena.
Note também que o final da parte de cima da antena tem um elemento que é ligeiramente
diferente o tamanho:

Essa antena foi calculada para operar na freqüência central na faixa utilizada por redes Wlan,
note que a faixa utilizada começa em 2.4000 e termina em 2.4835, para obter a freqüência central
basta que seja realizado o seguinte cálculo:(2.4000 + 2.4835) / 2 4.8835 / 2, e teremos como
resultado 2.441 GHz, e é nosso objetivo montar a antena para essa freqüência.
Essa antena é projetada para trabalhar em meia onda, e o fator de velocidade do cabo coaxial
RGC 213 já foi incluído nos cálculos, em todo caso, relembro que o fator de velocidade para o
cabo coaxial RGC 213 é 0.85.
Conforme deve ser de seu conhecimento, a velocidade de propagação de RF no vácuo é de
300000 km/s, mas a propagação através de outro meio que não seja o vácuo sofre redução de
velocidade.
Para cada material tipo de material utilizado, o fator de velocidade terá um valor diferente, como
nosso material é o cabo coaxial RGC 213, o cálculo para obter a velocidade da propagação de
RF através do cabo é o seguinte: 300000 x 0.85, e como resultado,nesse caso, temos 255000
Km/s.
E a antena pronta deve ficar com aspecto parecido com o da figura abaixo:

E para quem gosta de conectores que compre dois, um macho e um fêmea, eu soldo a antena
no cabo coaxial, faço da mesma forma que faço com os elementos da antena, tiro um centímetro
de capa com a malha e tiro um pedaço do plástico da capa do cabo coaxial para permitir a
soldagem.
Como dados técnicos adicionais: o comprimento total de cada seção de cabo coaxial é ½ onda
mais 15 milímetros, onde o resultado é 67 milímetros, note que arredondei o valor, que na
realidade era 67.2 milímetros.
Para ficar bem claro, esclareço que o condutor central do elemento feito com cabo coaxial deve
ser de 10 milímetros expostos de cada lado de cada seção.
A malha que reveste o elemento feito de cabo coaxial é importante, as soldagens devem ser
feitas rapidamente para não deformar a malha e para evitar que a malha venha a sair do lugar.
O último elemento que vai à ponta, aquele do final da antena, fique atento, porque ele tem
medidas diferentes.
O último elemento é acrescentado para fazer o acoplamento inicial da antena, se você montar
uma antena com seis elementos, esse elemento final será o sétimo elemento.
Depois de tantos detalhes, acho que chega, então finalmente, para montar a antena é só ir
soldando com cuidado os elementos, de maneira que o dielétrico de um elemento fique
exatamente a 5 milímetros de distância do dielétrico do outro elemento.
Depois da antena montada é só colocar tudo em um pedaço de tubo de PVC do tamanho da
antena recém montada, desde que seja hermeticamente fechado, eu uso um tampão e um cano
de PVC de 25, duas abraçadeiras e um parafuso para prender o cabo coaxial, isso é o que
possibilita que a antena seja instalada em ambientes externos.
É isso, boa sorte.
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

Antena WiFi biquad com antena SKY

Entusiastas do wireless vêm transformando antenas a anos. Estabeleceram uma marca de
mais de 200 km, usando velhas parabólicas de 3m. O que é muito se comparado com os
modernos pratos, tipo sky. O prato parabólico permite focalizar a ondas de rádio para uma antena
direcional. É utilizada uma antena biquad, pois é bastante tolerante a erros de montagem e tem
um rendimento muito bom. No final a biquad é acoplada a uma velha sky e… eureka,
conseguiram detectar APs a mais de 12km.
Construindo a ANTENA:
As antenas biquad podem ser construídas a partir de materiais comuns, o que é bom, contudo
algum material você terá que comprar.3060000000054037 A coisa mais importante aqui é o
pequeno conector N, não me perguntem onde tem. Aqui em Joinville eu sei, na sua cidade…
O “N-conector” é padrão na maioria das antenas comercial e você pode conectá-los aos seus
dispositivos sem fio usando “pigtails”.
O cabo longo é um pigtail com conectores RP-TNC para N-macho que será usado para conectar
a antena a um AP Linksys WRT54G.
O curto é um RP-MMCX para N-macho para que possamos ligar a antena a nosso cartáo PCI
Senao 2511CD PLUS EXT2 WiFi.
Também se utilizam 10 metros de cabo coaxial WBC 400 pora não ter de se sentar com o prato
no colo. Além é claro, da valha antena SKY
.
Trevor Marshall construiu uma das primeiras antenas WiFi biquad encontradas na internet. Aqui
se foi um pouco mais fundo nas instruções encontradas em martybugs.net e aqui estão as
matérias-primas com que começar:
Um fio padrão de núcleo rígido, utilizado em instalações elétricas residenciais. Como os
executores do projeto não tinham uma placa de circuito impresso disponível, utilizaram uma
chapa fina de cobre colada a um suporte plástico, mas é mais recomendável e prático, utilizar
uma placa de CI virgem.
O primeiro passo na construção do elemento foi descascar e cortar um padaço de 244
milímetros de fio.

O fio foi marcado em intervalos de 31 milímetros e começou a fase das dobras. Ele deverá ser
dobrado em forama de um duplo diamantae. Tenta-se alcançar a maior aproxiomação de cada
perna a 30,5 milímetros.
A maneira mais fácil de fazer curvas muito acentuado no fio de cobre sólido é usar dois pares de
alicates.

Como fica o elemento com todas as curvas completas:

Em seguida, um quadrado de 110 milímetros de lado, de plástico, para apoio da chapa de cobre
ou diretamente um quadrado de circuito impresso virgem com as mesmas medidas deverá ser
confeccionado.
Agora deve-se soldar dois pedaços de fio de cobre ao pino N, começando pelo fio externo, pois
precisa de um aquecimento maior para uma boa solda.
Após esfriar, fixe o pinco (conector-N)
a base de cobre e solde a parte
externa a placa (quadrado de 110
milimetros de lado).
O próximo passo é a solda do laço,
elemento em forma de diamante
duplo, aos fios verticais. O elemento
deve ser apoiado em calços de 15 milímetros para garantir a
posição correta.
Em seguida, corta-se o excesso dos fios verticais e fica assim:

Para fazer a do nosso elemento ao prato, a maneira mais fácil é modificar o lbnf original,
utilizando partes do mesmo. Esta é a aparecncia inicial.
Após a remoção da caixa e dos elementos internos, ficamos com isto:

Anexamos nosso elemento a essa caixa e fica assim, com o cabo coaxial conectado:
Prontinho para anexar no prato da sky:

Se sua antena é do tipo com offset, ficará como na figura. Para saber se está apontada para o
horizonte, deverá ser alinhada a 45º e montada num tubo de suporte com inclinação de, também
45º. Parece apontada para o chão mas está certo. Se for sem offset (modelo em que o elemento
fica no centro da parábola) então deverá ser apontada diretamente mesmo.
Segundo os desenvolvedores, o resultado é exelente e conseguiram se conectar a 12km de
sitancia.
Este eu ainda não teste. Assim que montar a minha informo.
Para os que já montaram a sua sinhantena, explicada neste site, segui uma serie de fotos
animadoras:
2leep.com
Originally posted 2009-08-17 15:02:02. Republished by Blog Post Promoter
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

WIFI 16dBi Super Antenna Pictorial
http://antenaswireless.aarca.com/2011/11/01/que-tal-fazer-uma-antena-wifi-de-16-dbi-baratissimo-e-facil/
Que tal fazer uma antena WiFi de 16 dBi baratíssimo e fácil?
Que tal fazer uma antena WiFi de 16 dBi baratíssimo e fácil?
Encontre esta antena wireless, no artito: Que tal fazer uma antena WiFi de 16 dBi
baratíssimo e fácil? e achei incrível. Parece realmente muito fácil de fazer e encontrei muta coisa boa sobre ela na internet. Ainda não
testei, mas tem tudo para funcionar bem.
E vejam. Pela lista de material é bem simples mesmo:
Quais são os materiais?
1 placa de cobre, latão ou metal comum fino de 12x12cm
1 Chassi de conector BNC
1 Conector de cabo BNC
placa de isopor na densidade do styrofoam de 35mm de espessura
Fio elétrico de 1.5mm2
No site você vai encontrar até um vídeo para ajudar.

http://www.tecnomodo.com/2009/03/que-tal-fazer-uma-antena-wifi-de-16-dbi.html

Q ue tal faz e r uma ante na WiFi de 16 dBi baratíssimo e fácil?

Nós postamos aqui há alguns anos atrás um hackeamento da antena WiFi tradicional para obter um ganho no sinal. Agora a intenção
é demonstrar que podemos criar uma antena inteira com preço acessível.
Quais são os materiais?
1 placa de cobre, latão ou metal comum fino de 12x12cm
1 Chassi de conector BNC
1 Conector de cabo BNC
placa de isopor na densidade do styrofoam de 35mm de espessura
Fio elétrico de 1.5mm2
Mais informações você pode achar na página do instructables
fonte: instructables.
http://www.instructables.com/id/10--WIFI-16dBi-Super-Antenna-Pictorial/
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

High Gain Wi-fi Helical Antenna
Presented here is a versatile, durable, and rather unique wi fi antenna that can greatly extend your wireless networking range and
speed. When built with ten or more turns, this helical wi fi antenna vastly outperforms the cantennas and wi fi wok tops often seen
on the internet. A short five turn helical makes a very good feeder for a wi fi parabolic dish antenna. A special quality of this antenna
is that it radiates and receives a circularly polarized signal. It does not favor vertically or horizontally polarized signals. Thus, this
antenna works well with wi fi signals reflecting off of buildings, moving vehicles, or antennas oriented at odd angles. Circularly
polarized signals are less affected by rain, so you can reach distant access points in stormy weather. There is a 3 dB loss of gain when
using this antenna with linearly polarized signals; high gain is maintained by making the antenna long - at least ten turns for
stand-alone usage.
Design parameters for this helical wi fi antenna were calculated using the online helical antenna calculator and was inspired by
similar designs used for the AMSAT OSCAR 40 satellite.

PARTS REQ UIRED FO R THE WIFI HELICAL ANTENNA:
1.
2.
3.
4.
5.
6.

one square piece of copper sheet metal or single sided PC board for a ground plane.
one PVC kitchen drain tailpiece (3.8 cm / 1.5" diameter) to hold the helical windings
six 1/8" plastic cable ties
a length of copper circuit tape (adhesive backed, width 3mm or 1/8") or #14 copper wire
one suitable chassis connector (I used a reverse sma type matching the connector on my adaptor)
one 90 degree angle bracket with screws and bolts to fit

CO NSTRUCTIO N:
1. Center the tailpiece on the PC board, copper side, and mark the circumference in ink.
2. Mark four locations on the circumference, spaced 90 degrees, where the cable ties will hold down the PVC tube.
3. Mark one location on the circumference, exactly between two 90 degree markings, where the coaxial connector will be
mounted.

At this point you should have a PC board with a circle in the center, four tick marks on the circle at 90 deg intervals, and
one tick mark exactly between two others.

4. Drill 1/8" holes on the inside and outside of the circumference at the cable tie locations.
5. Drill a hole directly on the circumference suitable for the chassis connector. Carefully measure and drill other holes for this
connector if necessary.
6. Drill four holes, spaced 90 deg apart near the bottom end of the PVC tailpiece.
7. Drill holes to accomodate a small 90 degree corner bracket.
8. Drill holes on opposite side of board to accomodate USB wi-fi adapter that will be affixed with cable ties.
9. Tin the copper around the connector mounting hole, then mount the connector. Clip the center pin to keep it only long
enough for connection to the helix windings.
10. Cut out a notch to accomodate the connector; it should clear center conductor, but avoud cutting out excess PVC material.
11. Feed cable ties through from the back side of the board, through holes in the tube, and back through the board. Tighten the
cable ties, making sure the tube is firmly held to the copper ground plane.
12. Use a ruler and the edge of a sheet of paper to create a template for positioning the windings on the PVC tube. Distance zero
represents the ground plane, then add the feedpoint distance, then ticks matching the turns spacing. Use the template to mark
your tube on both the feedpoint side and the opposite side.
The objective is to precisely wind the helical wi-fi antenna using an accurate guide...
Space the turns 2.5 cm on a
tube of 3.9cm outer diameter.

Here is a table used for my prototype helical wi-fi antenna and its connector. Note that turn 1 starts at 0.8 cm (height above ground
plane of feedpoint). Turns Spacing is 2.5 cm, and the diameter is 3.9 cm (close enough for 1.5" PVC tailpiece). If your connector
can be trimmed to allow a feed connection closer to the ground plane than 0.8CM, then simply run the helix as low as
necessary. Most impartant is keeping the proper spacing between turns.

S pacing=2.5cm
Diameter=3.9cm
(fits 1.5" PVC tailpiece)
Turn #
Height (cm) above Half Turns
groundplane Height (cm)
1 (feedpoint)
0.8
2.05
2
3.3
4.55
3
5.8
7.05
4
8.3
9.55
5
10.8
12.05
6
13.3
14.55
7
15.8
17.05
8
18.3
19.55
9
20.8
22.05
10
23.3
24.55
11
25.8
27.05
12
28.3
29.55
13
30.8
32.05

13. Carefully wind the helix, using circuit tape or wire, then solder to center conductor of chassis connector. Double check against
the turns template. Polarization will be right-handed if the turns spiral clockwise (looking outward from feedpoint).
14. Attach the angle bracket and wi-fi adapter, making sure all parts are secure and ready for service, as seen in the images below.

The high gain wi-fi helical antenna.
10 turn stand alone version

Cable losses avoided by
mounting wi-fi adapter
at base of antenna.

Short wi-fi helix feeding a long range
parabolic wi-fi
antenna.

At this point, helical wi-fi antenna is ready for its smoke test...plug in the cables and look for some signals! Theoretical gain of the
prototype helical was about 18 dB over an isotropic radiator; it beat my biquad by about 7 to 13 RSSI units, and indeed seemed
less sensitive to polarization and rainfall. Signals still seem to fluctuate much from second to second. If your antenna is functioning
satisfactorily at this point, I suggest spray painting three layers of clearcoat onto the windings and groundplane for stability and
corrosion prevention.
=|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================

Más contenido relacionado

La actualidad más candente

SACPCMP PROOF OF REGISTRATION
SACPCMP PROOF OF REGISTRATIONSACPCMP PROOF OF REGISTRATION
SACPCMP PROOF OF REGISTRATIONThabani Nkomo
 
Kritik schafft Frustration. Feedback eröffnet Perspektiven!
Kritik schafft Frustration. Feedback eröffnet Perspektiven! Kritik schafft Frustration. Feedback eröffnet Perspektiven!
Kritik schafft Frustration. Feedback eröffnet Perspektiven! Michael Holub
 
Week-02 - Single line diagram of Substations
Week-02 - Single line diagram of SubstationsWeek-02 - Single line diagram of Substations
Week-02 - Single line diagram of SubstationsPremanandDesai
 
Keine Chance für Micromanager?
Keine Chance für Micromanager?Keine Chance für Micromanager?
Keine Chance für Micromanager?Michael Holub
 
Zagor sd 022 vjestica iz sierre (enwil &amp; emeri)(6 mb)
Zagor sd 022   vjestica iz sierre (enwil &amp; emeri)(6 mb)Zagor sd 022   vjestica iz sierre (enwil &amp; emeri)(6 mb)
Zagor sd 022 vjestica iz sierre (enwil &amp; emeri)(6 mb)zoran radovic
 
0099. Zagor Prica
0099. Zagor Prica0099. Zagor Prica
0099. Zagor PricaTompa *
 
0703. TVRDOKRILAC
0703. TVRDOKRILAC0703. TVRDOKRILAC
0703. TVRDOKRILACTompa *
 
Zagor ZS KA COL 113 - Poslednji Viking
Zagor ZS KA COL 113 - Poslednji VikingZagor ZS KA COL 113 - Poslednji Viking
Zagor ZS KA COL 113 - Poslednji VikingBroj Jedan
 
Lms 300 - veliki blek - blago zelenih mocvara
Lms   300 - veliki blek - blago zelenih mocvaraLms   300 - veliki blek - blago zelenih mocvara
Lms 300 - veliki blek - blago zelenih mocvaraStripovizijacom
 
TUM Certificate
TUM CertificateTUM Certificate
TUM CertificateAndy Vo
 
Zagor sd 034 - Strah nad rijekom
Zagor sd   034 - Strah nad rijekomZagor sd   034 - Strah nad rijekom
Zagor sd 034 - Strah nad rijekomStripovizijacom
 
Güneş enerji santrali projesi
Güneş enerji santrali projesiGüneş enerji santrali projesi
Güneş enerji santrali projesiEnerjiBeş Blog
 
Partituras jazz facil jazz club piano solos
Partituras jazz facil jazz club piano solosPartituras jazz facil jazz club piano solos
Partituras jazz facil jazz club piano solosGerardo Daniel Gallo
 
Bachelor's Degree Certificate
Bachelor's Degree CertificateBachelor's Degree Certificate
Bachelor's Degree CertificateRajan Bawa
 
B787 Air conditioning and cargo heating
B787 Air conditioning and cargo heatingB787 Air conditioning and cargo heating
B787 Air conditioning and cargo heatingMyBseveneightsevenCo
 

La actualidad más candente (20)

888 mracna slutnja
888  mracna slutnja888  mracna slutnja
888 mracna slutnja
 
SACPCMP PROOF OF REGISTRATION
SACPCMP PROOF OF REGISTRATIONSACPCMP PROOF OF REGISTRATION
SACPCMP PROOF OF REGISTRATION
 
Kbach khmer
Kbach khmerKbach khmer
Kbach khmer
 
GYNAE & OBS (DIMS NOTES).pdf
GYNAE & OBS (DIMS NOTES).pdfGYNAE & OBS (DIMS NOTES).pdf
GYNAE & OBS (DIMS NOTES).pdf
 
Kritik schafft Frustration. Feedback eröffnet Perspektiven!
Kritik schafft Frustration. Feedback eröffnet Perspektiven! Kritik schafft Frustration. Feedback eröffnet Perspektiven!
Kritik schafft Frustration. Feedback eröffnet Perspektiven!
 
Week-02 - Single line diagram of Substations
Week-02 - Single line diagram of SubstationsWeek-02 - Single line diagram of Substations
Week-02 - Single line diagram of Substations
 
Keine Chance für Micromanager?
Keine Chance für Micromanager?Keine Chance für Micromanager?
Keine Chance für Micromanager?
 
Zagor sd 022 vjestica iz sierre (enwil &amp; emeri)(6 mb)
Zagor sd 022   vjestica iz sierre (enwil &amp; emeri)(6 mb)Zagor sd 022   vjestica iz sierre (enwil &amp; emeri)(6 mb)
Zagor sd 022 vjestica iz sierre (enwil &amp; emeri)(6 mb)
 
Mister NO - Bandit
Mister NO - BanditMister NO - Bandit
Mister NO - Bandit
 
0099. Zagor Prica
0099. Zagor Prica0099. Zagor Prica
0099. Zagor Prica
 
0703. TVRDOKRILAC
0703. TVRDOKRILAC0703. TVRDOKRILAC
0703. TVRDOKRILAC
 
Zagor ZS KA COL 113 - Poslednji Viking
Zagor ZS KA COL 113 - Poslednji VikingZagor ZS KA COL 113 - Poslednji Viking
Zagor ZS KA COL 113 - Poslednji Viking
 
Lms 300 - veliki blek - blago zelenih mocvara
Lms   300 - veliki blek - blago zelenih mocvaraLms   300 - veliki blek - blago zelenih mocvara
Lms 300 - veliki blek - blago zelenih mocvara
 
TUM Certificate
TUM CertificateTUM Certificate
TUM Certificate
 
Zagor sd 034 - Strah nad rijekom
Zagor sd   034 - Strah nad rijekomZagor sd   034 - Strah nad rijekom
Zagor sd 034 - Strah nad rijekom
 
Güneş enerji santrali projesi
Güneş enerji santrali projesiGüneş enerji santrali projesi
Güneş enerji santrali projesi
 
Partituras jazz facil jazz club piano solos
Partituras jazz facil jazz club piano solosPartituras jazz facil jazz club piano solos
Partituras jazz facil jazz club piano solos
 
Bachelor's Degree Certificate
Bachelor's Degree CertificateBachelor's Degree Certificate
Bachelor's Degree Certificate
 
B787 Air conditioning and cargo heating
B787 Air conditioning and cargo heatingB787 Air conditioning and cargo heating
B787 Air conditioning and cargo heating
 
P N - ZG - SD 63
P N - ZG - SD 63P N - ZG - SD 63
P N - ZG - SD 63
 

Destacado

VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseAlp Sayin
 
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost Meeting
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost MeetingVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost Meeting
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost MeetingAlp Sayin
 
Stl (standard template library)
Stl (standard template library)Stl (standard template library)
Stl (standard template library)Hemant Jain
 
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer ConsiderationUHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Considerationxiaohuzhang
 
Vsat basics - an ExploreGate tutorial
Vsat basics - an ExploreGate tutorialVsat basics - an ExploreGate tutorial
Vsat basics - an ExploreGate tutorialOrit Fredkof
 

Destacado (10)

VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
 
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost Meeting
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost MeetingVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost Meeting
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Bifrost Meeting
 
Stl (standard template library)
Stl (standard template library)Stl (standard template library)
Stl (standard template library)
 
WWOR Fox Ch9
WWOR Fox Ch9WWOR Fox Ch9
WWOR Fox Ch9
 
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer ConsiderationUHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
 
VSAT Technology
VSAT TechnologyVSAT Technology
VSAT Technology
 
Vsat
VsatVsat
Vsat
 
Vsat basics - an ExploreGate tutorial
Vsat basics - an ExploreGate tutorialVsat basics - an ExploreGate tutorial
Vsat basics - an ExploreGate tutorial
 
Vsat Training
Vsat  TrainingVsat  Training
Vsat Training
 
8.vsat
8.vsat8.vsat
8.vsat
 

Similar a Coletanea booter antenatv

Simple regen receiver
Simple regen receiverSimple regen receiver
Simple regen receiversmail hondo
 
Introduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture SwitchIntroduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture Switchcriterion123
 
40 Watt Bass Amplifier Circuit
40 Watt Bass Amplifier Circuit40 Watt Bass Amplifier Circuit
40 Watt Bass Amplifier Circuitlukewillsonwill
 
LTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC Drivers
LTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC DriversLTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC Drivers
LTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC DriversPremier Farnell
 
Miniproject report receiver
Miniproject report receiverMiniproject report receiver
Miniproject report receiverGAURAV SINHA
 
Types of Multistage Transistor Amplifiers
Types of Multistage Transistor AmplifiersTypes of Multistage Transistor Amplifiers
Types of Multistage Transistor Amplifierssherifhanafy4
 
Sinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docxSinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docxjennifer822
 
Edwards Signaling ANS25MDR Installation Manual
Edwards Signaling ANS25MDR Installation ManualEdwards Signaling ANS25MDR Installation Manual
Edwards Signaling ANS25MDR Installation ManualJMAC Supply
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroDavid Cripe
 
Accoustic Junkies
Accoustic JunkiesAccoustic Junkies
Accoustic Junkiesangieknows
 
Accoustic Junkies
Accoustic JunkiesAccoustic Junkies
Accoustic Junkiesangieknows
 
MZ15-RN input module schems
MZ15-RN input module schemsMZ15-RN input module schems
MZ15-RN input module schemsStefano Manca
 

Similar a Coletanea booter antenatv (20)

Vhf receiver 6m
Vhf receiver 6mVhf receiver 6m
Vhf receiver 6m
 
Simple regen receiver
Simple regen receiverSimple regen receiver
Simple regen receiver
 
5988 5846 en+an-1285+24aug10%2c0
5988 5846 en+an-1285+24aug10%2c05988 5846 en+an-1285+24aug10%2c0
5988 5846 en+an-1285+24aug10%2c0
 
Project public address system
Project public address systemProject public address system
Project public address system
 
A5191HRTNGEVB.pdf
A5191HRTNGEVB.pdfA5191HRTNGEVB.pdf
A5191HRTNGEVB.pdf
 
Introduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture SwitchIntroduction To Antenna Impedance Tuner And Aperture Switch
Introduction To Antenna Impedance Tuner And Aperture Switch
 
Bridges
BridgesBridges
Bridges
 
137lna
137lna137lna
137lna
 
40 Watt Bass Amplifier Circuit
40 Watt Bass Amplifier Circuit40 Watt Bass Amplifier Circuit
40 Watt Bass Amplifier Circuit
 
LTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC Drivers
LTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC DriversLTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC Drivers
LTC6420 - Dual Matched 1.8GHz Differential Amplifiers / ADC Drivers
 
Miniproject report receiver
Miniproject report receiverMiniproject report receiver
Miniproject report receiver
 
July 24, 2003
July 24, 2003July 24, 2003
July 24, 2003
 
Opertional amplifier khiri elrmali libya
Opertional amplifier khiri elrmali  libyaOpertional amplifier khiri elrmali  libya
Opertional amplifier khiri elrmali libya
 
Types of Multistage Transistor Amplifiers
Types of Multistage Transistor AmplifiersTypes of Multistage Transistor Amplifiers
Types of Multistage Transistor Amplifiers
 
Sinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docxSinewave Generation 1. Problem Statement The goal of t.docx
Sinewave Generation 1. Problem Statement The goal of t.docx
 
Edwards Signaling ANS25MDR Installation Manual
Edwards Signaling ANS25MDR Installation ManualEdwards Signaling ANS25MDR Installation Manual
Edwards Signaling ANS25MDR Installation Manual
 
Class e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qroClass e power amplifiers for qrp2 qro
Class e power amplifiers for qrp2 qro
 
Accoustic Junkies
Accoustic JunkiesAccoustic Junkies
Accoustic Junkies
 
Accoustic Junkies
Accoustic JunkiesAccoustic Junkies
Accoustic Junkies
 
MZ15-RN input module schems
MZ15-RN input module schemsMZ15-RN input module schems
MZ15-RN input module schems
 

Más de Venicio Pontes

Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.
Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.
Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.Venicio Pontes
 
Album du mininu di Vovô
Album du mininu di VovôAlbum du mininu di Vovô
Album du mininu di VovôVenicio Pontes
 
Antena pirata wifi em pvc pringles.
Antena pirata wifi em pvc pringles.Antena pirata wifi em pvc pringles.
Antena pirata wifi em pvc pringles.Venicio Pontes
 
Manuales fabricación antenas caseras.
Manuales fabricación antenas caseras.Manuales fabricación antenas caseras.
Manuales fabricación antenas caseras.Venicio Pontes
 
Curso de eduacao fisica
Curso de eduacao fisicaCurso de eduacao fisica
Curso de eduacao fisicaVenicio Pontes
 
InstaladorSistemaTvCaboViaSatelite.
InstaladorSistemaTvCaboViaSatelite.InstaladorSistemaTvCaboViaSatelite.
InstaladorSistemaTvCaboViaSatelite.Venicio Pontes
 
Guia eletricista-residencial completo
Guia eletricista-residencial completoGuia eletricista-residencial completo
Guia eletricista-residencial completoVenicio Pontes
 
Mar 6-vhf-uhf-wide-band-amplifier.
Mar 6-vhf-uhf-wide-band-amplifier.Mar 6-vhf-uhf-wide-band-amplifier.
Mar 6-vhf-uhf-wide-band-amplifier.Venicio Pontes
 
Minha Coletanea de circuitos eletronicos tv wireless-wi fi booster
Minha Coletanea de circuitos eletronicos tv wireless-wi fi boosterMinha Coletanea de circuitos eletronicos tv wireless-wi fi booster
Minha Coletanea de circuitos eletronicos tv wireless-wi fi boosterVenicio Pontes
 
Nova eletrônica 83 jan1984
Nova eletrônica   83 jan1984Nova eletrônica   83 jan1984
Nova eletrônica 83 jan1984Venicio Pontes
 
Nova eletrônica 81 nov1983
Nova eletrônica   81 nov1983Nova eletrônica   81 nov1983
Nova eletrônica 81 nov1983Venicio Pontes
 
Nova eletrônica 78 ago1983
Nova eletrônica   78 ago1983Nova eletrônica   78 ago1983
Nova eletrônica 78 ago1983Venicio Pontes
 
Nova eletrônica 75 mai1983
Nova eletrônica   75 mai1983Nova eletrônica   75 mai1983
Nova eletrônica 75 mai1983Venicio Pontes
 
Nova eletrônica 73 mar1983
Nova eletrônica   73 mar1983Nova eletrônica   73 mar1983
Nova eletrônica 73 mar1983Venicio Pontes
 
Nova eletrônica 64 jun1982
Nova eletrônica   64 jun1982Nova eletrônica   64 jun1982
Nova eletrônica 64 jun1982Venicio Pontes
 
Nova eletrônica 63 mai1982
Nova eletrônica   63 mai1982Nova eletrônica   63 mai1982
Nova eletrônica 63 mai1982Venicio Pontes
 
Nova eletrônica 62 abr1982
Nova eletrônica   62 abr1982Nova eletrônica   62 abr1982
Nova eletrônica 62 abr1982Venicio Pontes
 
Nova eletrônica 61 mar1982
Nova eletrônica   61 mar1982Nova eletrônica   61 mar1982
Nova eletrônica 61 mar1982Venicio Pontes
 
Nova eletrônica 53 jul1981
Nova eletrônica   53 jul1981Nova eletrônica   53 jul1981
Nova eletrônica 53 jul1981Venicio Pontes
 
Nova eletrônica 48 fev1981
Nova eletrônica   48 fev1981Nova eletrônica   48 fev1981
Nova eletrônica 48 fev1981Venicio Pontes
 

Más de Venicio Pontes (20)

Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.
Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.
Venicio - Viviane&Hinode, Comércio de Perfumes e Cosméticos.
 
Album du mininu di Vovô
Album du mininu di VovôAlbum du mininu di Vovô
Album du mininu di Vovô
 
Antena pirata wifi em pvc pringles.
Antena pirata wifi em pvc pringles.Antena pirata wifi em pvc pringles.
Antena pirata wifi em pvc pringles.
 
Manuales fabricación antenas caseras.
Manuales fabricación antenas caseras.Manuales fabricación antenas caseras.
Manuales fabricación antenas caseras.
 
Curso de eduacao fisica
Curso de eduacao fisicaCurso de eduacao fisica
Curso de eduacao fisica
 
InstaladorSistemaTvCaboViaSatelite.
InstaladorSistemaTvCaboViaSatelite.InstaladorSistemaTvCaboViaSatelite.
InstaladorSistemaTvCaboViaSatelite.
 
Guia eletricista-residencial completo
Guia eletricista-residencial completoGuia eletricista-residencial completo
Guia eletricista-residencial completo
 
Mar 6-vhf-uhf-wide-band-amplifier.
Mar 6-vhf-uhf-wide-band-amplifier.Mar 6-vhf-uhf-wide-band-amplifier.
Mar 6-vhf-uhf-wide-band-amplifier.
 
Minha Coletanea de circuitos eletronicos tv wireless-wi fi booster
Minha Coletanea de circuitos eletronicos tv wireless-wi fi boosterMinha Coletanea de circuitos eletronicos tv wireless-wi fi booster
Minha Coletanea de circuitos eletronicos tv wireless-wi fi booster
 
Nova eletrônica 83 jan1984
Nova eletrônica   83 jan1984Nova eletrônica   83 jan1984
Nova eletrônica 83 jan1984
 
Nova eletrônica 81 nov1983
Nova eletrônica   81 nov1983Nova eletrônica   81 nov1983
Nova eletrônica 81 nov1983
 
Nova eletrônica 78 ago1983
Nova eletrônica   78 ago1983Nova eletrônica   78 ago1983
Nova eletrônica 78 ago1983
 
Nova eletrônica 75 mai1983
Nova eletrônica   75 mai1983Nova eletrônica   75 mai1983
Nova eletrônica 75 mai1983
 
Nova eletrônica 73 mar1983
Nova eletrônica   73 mar1983Nova eletrônica   73 mar1983
Nova eletrônica 73 mar1983
 
Nova eletrônica 64 jun1982
Nova eletrônica   64 jun1982Nova eletrônica   64 jun1982
Nova eletrônica 64 jun1982
 
Nova eletrônica 63 mai1982
Nova eletrônica   63 mai1982Nova eletrônica   63 mai1982
Nova eletrônica 63 mai1982
 
Nova eletrônica 62 abr1982
Nova eletrônica   62 abr1982Nova eletrônica   62 abr1982
Nova eletrônica 62 abr1982
 
Nova eletrônica 61 mar1982
Nova eletrônica   61 mar1982Nova eletrônica   61 mar1982
Nova eletrônica 61 mar1982
 
Nova eletrônica 53 jul1981
Nova eletrônica   53 jul1981Nova eletrônica   53 jul1981
Nova eletrônica 53 jul1981
 
Nova eletrônica 48 fev1981
Nova eletrônica   48 fev1981Nova eletrônica   48 fev1981
Nova eletrônica 48 fev1981
 

Último

CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 

Último (20)

CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 

Coletanea booter antenatv

  • 1. =|== ↓▼↓= M inha Coletanea de CIRCUITOS ELETRONICOS = ↓▼↓==|= 18dB FM /UHF/VHF High Power TV Booster (TV Signal Amplifier) Circuit Diagram using 2sc3355 Today, we introduce simple & small High Power FM/UHF/VHF booster (TV signal amplifier) circuit. It covers the frequencies from 40MHz to 900MHz and boosts the VHF signals up to 23dB and UHF signal up to 18dB. An External power supply not necessary for this circuit, it operates using the coaxial cable as feed line. It’s very easy to build, but try to maintain the terminals of component as close as possible to discharge involved frequencies. Make this circuit on good quality PCB for best performance. Frequency response – 40MHz – 900MHz Typical Gain – 18dB Maximum output level – 90μV Impedance – 75Ω Components: D1, D2 – IN4148 D3, D4, D5, D6- IN4007 C1, C4 – 100PF (101) Ceramic C2 – 2.2PF Ceramic C3 – 1000PF (102) Ceramic C5 – 470μf / 16V Electrolytic C6 – 1000μf / 16V Electrolytic C7 – 0.24μf (224) Ceramic R1 – 82K/0.25W R2 – 1.5K/0.25W R3 – 270Ω/0.25W R4 - 120Ω/0.25W Q1 – 2SC3355 T1 – 230V – 12V/300mA step-down transformer L1, L2 – Wire thickness – 0.5mm (25 SWG / 24 AWG) Diameter – 5mm Turns - 8 L3, L4 – Wire thickness - 0.5mm (25 SWG / 24 AWG) Diameter – 3mm Turns - 25 =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ MAR-6 VHF-UHF wide band amplifier circuit
  • 2. design electronic project This wide band amplifier circuit is designed using the M AR-6 IC manufactured by M ini Circuits . This M AR-6 VHF-UHF wide band amplifier circuit will providing stable gain of at least 9dB up to 2GHz. Because the M AR-6 is designed to receive its power via the signal output pin, it’s very suitable for use as a masthead amplifier. It requires about 3.5V DC, at a working current of around 16mA. As you can see in the circuit diagram this masthead amplifier electronic project , require few external electronic parts , so if you will use SM D components you’ll have a very compact design . With power applied, the LED should glow reassuringly and you should be able to measure about 6.8 - 7V DC at the end of R1 nearer IC2 and C5 . If the LED doesn’t glow and you get no voltage reading, chances are that you’ve wired the DC input with reverse polarity .If the LED doesn’t glow but there’s almost the full plug-pack voltage present at R1, you’ve almost certainly wired the LED in backwards. =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ Active Antenna AA-7 HF/VHF/UHF, 3-3000MHz by Fred Blechman and Tony van Roon "Lift those hard-to-hear signals out of the mud with this handy receiver accessory."
  • 3. If you have a shortwave or high-frequency receiver or scanner that is struggling to capture signals with a short, whip antenna, and you'd like the kind of performance that a 60-foot longwire antenna can provide but lack the space to put one up, consider building the AA-7 HF/VHF/UHF Active Antenna described in this article. The AA-7 is a relatively simple antenna that is designed to amplify signals from 3 to 3000 M egaHertz, including three recognized ranges: 3-30M hz high-frequency (HF) signals; 3-300M hz very-high frequency (VHF) signals; 300-3000M Hz ultra-high (UHF) frequency signals. Those bands are typically occupied by shortwave, ham, government, and commercial radio signals. Active Antennas: In its simplest form, an active antenna uses a small whip antenna that feeds incoming RF to a pre-amplifier, whose output is then connected to the antenna input of a receiver. Unless specifically designed otherwise, all active antennas are intended for receive-only operation, and thus should not be used with transceivers; transmitting into an active antenna will probably destroy its active components. A well designed broadband active antenna consider field strength of the desired signal (measured in microvolts per meter of antenna length), atmospheric and other noise, diameter of the antenna, radiation resistance, and antenna reactance at various frequencies, plus the efficiency and noise figure of the amplifier circuit itself. Circuit Description: Fig. 1 shows the schematic diagram of the AA-7, which contains only two active elements; Q1 (an M FE201 N-Channel dual-gate M OSFET) and Q2 (a 2SC2570 NPN VHF silicon transistor). Those transistors provide the basis of two independent, switchable RF pre-amplifiers. Two double-pole double-throw (DPDT) switches play a major role in this operation of the AA-7. Switch S1 is used to select one of the two pre-amplifier circuits (either HF or VHF/UHF). Switch 2 is used to turn off the power to the circuit, while coupling the incoming RF directly to the input of the receiver. That gives the receiver non-amplified access to the auxiliary antenna jack, at J1, as well as the on-board telescoping whip antenna. With switch S2 in its power-on position, the input and output jacks are disconnected and B1 (a 9 volt battery) is connected to the circuit. With switch S1 in the position shown in the schematic, incoming RF is directed to the HF pre-amp circuit built around Q1 (an M FE201 N-Channel dual-gate M OSFET). The HF pre-amp operates with an exceptionally low noise level, and is ideal for copying weak CW and singe-side band signals. When S1 is switched to the other position, the captured signal is coupled to the VHF/UHF pre-amp built around Q2 (a 2SC2570 NPN VHF silicon transistor), which has excellent VHF through microwave characteristics. With the on-board whip antenna adjustable to resonance through much of the VHF-UHF region (length in feet = 234 divide by the frequency in M Hz), the VHF/UHF mode is ideal for indoor and portable use with VHF scanners and other receivers. Either mode can be used when tuning 3-30 M Hz HF signals. The VHF/UHF pre-amp offers higher gain than the HF pre-amp, but also has a higher noise level. You can easily choose either amplifier for copying any signal; of interest--just try both positions. The RF gain control (R5) can be used to trim the output of either amplifier. Caution: The AA-7 is not intended for transmitting operation (be it Ham, M aritime, or CB); if it is used with a transceiver of any kind, make sure it is not possible to transmit by accidentally pressing a mike button or CW keyer. Transmitting RF into the AA-7 is likely to ruin one of both of the transistors in the circuit. Construction:
  • 4. The AA-7, which can be built from scratch or purchased in kit form from the supplier listed in the Parts List, was assembled on a printed circuit board, measuring 4 by 4-11/16 inches. A template for the pcb board is shown in fig. 2. You can either etch your own board from that template, or purchase the circuit board or the complete kit of parts (which includes the pcb and all parts, but not the enclosure). The kit comes with a 16-page kit instruction manual that gives step-by-step assembly instructions and contains additional information not covered in this article. Kit assembly time, working slowly and carefully, should take less than an hour. M ost of the parts specified in the Parts list are standard components and can be procured through conventional hobby electronics suppliers. However, some parts--J1, J2, S1, S2, and R5-- have particular physical mounting dimensions; the Printed Circuit Board is designed to accept these particular parts. In addition, Q1 and Q2 can be hard to find; however, it is possible to make substitutions provided that you can find a supplier. Suitable replacements for Q1 and Q2 are given in the Parts List. The telescoping whip antenna screw-mounts to the board; the screw provides contact between the printed circuit board traces and the antenna. To save time and trouble locating and ordering hard-to-find parts, a Special Parts Kit is also offered by the supplier listed in the Parts List. A parts placement (layout) diagram for the AA-7's printed circuit board is shown in figure 3. When assembling the circuit, be especially careful that transistors Q1 and Q2, and the electrolytic capacitor C4, are oriented as shown. Although not shown in the schematic (Fig. 1) or the layout (Fig. 3) diagrams, an optional led power indicator can be added to the circuit. Adding a power indicator to the circuit allows you to tell at a glance if the circuit is on; leaving the circuit on, even though the AA-7 draws only about 0.7 mA, will eventually discharge the battery. Of course, adding an led will increase the current drain to by about 7 mA, but the red glow makes it obvious when the unit is on. If you decide to include the LED indicator in your project, power for the indicator can be easily taken from the switched 9-volt DC terminal of S2 (center terminal, right side, looking at the top of S2). Simply connect the positive voltage to the anode (longer wire) of the led and connect her cathode lead through a current limiting resistor of about 1000 ohm to a ground point on the printed circuit board, or as the author did from the frame of R5. M ount the led at any convenient point near the switch. Although not supplied with the kit, a custom plastic enclosure (with front and back panels) or a regular 'hobby' case of some sorts, and knobs for the switches and gain control can be purchased from most local electronics stores or mail-order. Test and Use: Prepare a coaxial cable to connect the RF output of the AA-7 to the antenna input of your receiver or scanner. One end of the interconnecting cable must be terminated with an RCA phono plug; the other end connector depends on the target receiver or scanner. With some receivers, the only practical connection is to clip the output of the AA-7 to the receiver's antenna, although that connection won't be as effective as conventional (ground-return type) coupling. To increase signal strength, especially for the lower frequencies, you can connect a simple supplementary portable antenna of any design (a dipole, random-length wire with Earth ground, a bigger vertical whip of some kind, etc.) to the circuit. Just use a small-diameter coaxial cable terminated in an RCA plug for mating with J1. No alignments are required. If you're using the whip antenna, simply connect the output of the AA-7 to your receiver, with the unit turned off (that's the bypass position) and the RF gain control (R5) turned fully counter-clock wise. Turn on the receiver and tune-in a weak station. Switch S2 on, and adjust the gain control
  • 5. clockwise to increase the output signal. Toggle S1 back and forth to see which setting gives you the best results. Don't be surprised if the gain control overloads the receiver; if so, back it off. Troubleshooting: The fact that there are two independent pre-amplifiers in the AA-7 makes faults easier to diagnose than with many other devices. If a problem occurs, only at one setting of S1, concentrate on that part of the circuit. If the problem is common to both settings, the components and the connections common to both preamps should be checked. M ake sure the jumper wires are in place! There are other characteristics or phenomena associated with preamplifiers and active antennas that does not mean that your circuit is malfunctioning. For example, if you have strong AC hum in the HF setting, the antenna is too close to an AC cord or powerline. HF signals may be clearer at the VHF/UHF setting than in the HF setting. Why? Although either pram may be used for HF, the signal strength will be greater with the VHF/UHF pram. However, the HF signal-to-noise ration is better with the dual-gate-M OSFET-based pram. Try both and use the best for your particular receiver conditions. Some portable receivers not enclosed in metal cases may break into oscillation when connected to any RF preamplifier. Try reducing the AA-7's gain and make sure that good grounds are provided with the interconnecting coax cables. A preamplifier will intensify any problems due to poor receiver design: overloading, images, or any other problems with selectivity and image rejection. Parts List and other components: Semiconductors: Q1 = MFE201, SK3991, or NTE454. N-Channel, dual-gate MOSFET (see text) Q2 = 2SC2570, NTE10, NTE107. NPN VHF/UHF silicon transistor (see text) Note: If you use the NTE107 as a replacement, make sure to insert it correctly
  • 6. into the pcb. The orientation is different than as shown on the parts layout diagram. (e-c-b seen front view for NTE107). See this Data Sheet Resistors: All Resistors are 5%, 1/4-watt R1 = 1 Mega Ohm R2 = 220K R3,R6 = 100K R4 = 100 ohm R5 = 10K potentiometer, (pc mount) Capacitors: C1,C2,C5,C6 = 0.01uF, ceramic disc C3 = 100pF ceramic disc C4 = 4.7 to 10uF, 16WVDC, radial lead electrolytic Additional Parts & Materials: B1 = 9-volt alkaline battery S1,S2 = DPDT PC mount pushbutton switch J1,J2 = PC mount RCA jack ANT1 = Telescoping whip antenna (screw mount) MISC = PCB materials, enclosure, enclosure, battery holder and connector, wire, solder, etc. If you wish to purchase a parts kit and pcb, [CLICK HERE] Fig. 1. "The AA-7 Active Antenna contains only two active elements: Q1 and Q2 (a 2SC2570 NPN VHF silicon transistor), which provide the basis of two independent, switchable RF preamplifiers." Fig. 2. "The AA-7 was assembled on a printed-circuit-board (PCB), measuring about 4 by 4-11/16 inches. A template for the printed-circuit-board is shown here. Note that it may not be to scale.
  • 7. Parts assembly diagram (layout) is shown in Fig. 3 to make soldering the unit together a breeze!" Fig. 4. shows the finished assembly without the enclosure. M ake sure the antenna-hole in the enclosure is in-line with one on the pcb. On mine I used a stud with thread on both sides to enable me to use different length antenna's; all I have to do is unscrew and screw another antenna back in without taking the AA-7 apart. I used a 9-volt battery tray which allows me to replace the battery without opening up the case, but the regular battery clip and battery works fine. As you can see from the pictures, this is a nice one-evening project. I fully support this project. since my unit has been in operation for quite a few years now and still running on the same battery. Power consumption if minimum. M ost parts can be obtained via your local electronics store. I will answer all questions but via "Tony's Message Forum" only. This Forum can be accessed via the main page, gadgets, or circuits page. Copyright and Credits: Source: "Electronics Hobbyist Handbook", Spring 1994. Copyright © Fred Blechman and Gernsback Publications, Inc. 1994. Published with permission from Gernsback. (Gernsback Publishing no longer exists). Document updates & modifications, all diagrams, PCB/Layout drawn by Tony van Roon. Re-posting or taking graphics in any way or form of this project is expressly prohibited by international copyright laws. Back to Circuits page Page Copyright © 1995 - Tony van Roon Project Copyright © 1994, by Fred Blechman =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ Wideband PreAmp's for HF/VHF/UHF RE-HFA1MAR6 Wideband VHF/UHF/SHF monolithic PreAmp based on MARx-series The MAR 6 (MSA-0686,0685,0885) is a high pe rform ance silicon bipolar Monolithic Microwave Inte grate d C ircuit (MMIC ) house d in a low cost, surface m ount plastic pack age . This MMIC is de signe d for use as a ge ne ral purpose 50 W gain block . Applications include narrow and broad band IF and R F am plifie rs in com m e rcial and industrial applications. The MSA-se rie s is fabricate d using HP’s 10 GHz fT, silicon bipolar MMIC proce ss which use s nitride se lf-alignm e nt, ion im plantation, and gold m e tallization to achie ve e x ce lle nt pe rform ance , uniform ity and re liability. The use of an e x te rnal bias re sistor for te m pe rature and curre nt stability also allows bias fle x ibility. It is a C ascadable Silicon Bipolar MMIC Am plifie r. MAR 6 and MAR 8 Features (MSA-0685 & MSA-0885) • • • • Fre que ncy range from DC to 2GHz high gain, 22.5 dB (31.5dB MAR 8) at 100 MHz, re duce s com pone nt count high powe r output, +12.5 dBm typ. low noise
  • 8. • • • • • im prove d stability prote ction against powe r supply transie nts e x act footprint substitute ** MAR -8 and MSA-0885 3.2...4.2 volt @ pin 3 Schematic with external power supply Components: 40Mc...2GHz IC 1 = MAR -6 or MAR -8 or MSA-0685 and MSA-0885 re spe ctive ly IC 2 = 78L05 C 1 = 56pF C 2 & C 3 = 100pF R 1 Bias* = 120 (re v1.3) C 4 & C 7 = 4.7uF/25v C 5 & C 6 = 100nF C 8 = 560pF L1 = 3 a 4 turns of 0.2 C u wire through a fe rite be ad L2 = 2,7uH or 4 turns of 0.2 C u wire through a fe rite be ad (optional, static ble ad) D1 & D2 = 1N4148 1Mc...1GHz C 1 = 1000pF C 2 & C 3 = 2200pF L1 = 100uH L2 = 47uH (optional, static ble ad) PreAmp features: • High gain, 22.5 dB (31.5dB MAR 8) at 100 MHz, 20dB @ 1GHz • C an be use d for TV and ATV re ce ption too. • Fre que ncy range from +/- 30Mc to 2GHz (1Mc to 2GHz se e above com pone nts list)
  • 9. • • • • • • • • • Voltage inde pe nte nd (8...20volts) Low curre nt drain Static drainage (L2) O utput prote ction (D1 D2 inve rte d diode s) for accide ntal TX 50 O hm s input and output im pe dance Voltage inde pe nte nd (8...20volts) Dynam ic range 14.5 dBm - 20dBm MAR 8 VSW R in 1.5 out 1.8 Noise < 3dB * Biasing R 1 = 120 O hm s @ 5v 270 O hm s @ 9v 470 O hm s @ 12v Tips: The be st place to put a pre -am plifie r is with out a doubt as close st to the ante nna as possible . If possible , dire ctly m ounte d at the fe e de r (dipole ) and using phantom -type powe ring of the am plifie r. The R F/DC splitte r com e s inside the shack just be fore your re ce ive r. Ke e p the conne ctions as short as possible @ R F IN and R F O UT and k e e p the m in 50 O hm s im pe dance starting at the le ads from the IC . Mount it in a shie lde d casing. W ith use with an transce ive r: This pre am p is prote cte d to a ce rtain de gre e for accide ntal TX (+/- 5watt) at the output, but no guare nte e is give n that your MAR -6 will survive . So m ak e the ne e de d pre cautions to pre ve nt this from occuring whe n use d in a TX type situation (lik e be twe e n your ante nna and transce ive r). Use a R F-se nsing circuit inste ad. W he n using it only with a re ce ive r: you can le ave out the paralle l inve rte d diode s and C 3. L2 can be le ft out if your ante nna has alre ady som e type of static ble e de r build in (or DC shorte ne d, lik e a folde d dipole e tc...). If you don't k now for sure , just tak e your O hm -m e te r and m e asure be twe e n the ce ntre and the braid of the coax which should re ad som e thing lik e < 1k or so. Inve rte d paralle l diode s are also use d to ble e d of static build up. Te st this with your diode te ste r. Eve r so now and the n (m ostly with olde r type of R X ve rticals) a ne on bulb is use d he nce ne ve r can be m e asure d. Just le ave L2 as it is (can't do m uch harm in any case state d above anyway). Schematic with phantom power supply using the coax as feedline
  • 10. =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ This wideband antenna preamplifier has a gain of around 20 dB from 40 to 860 MHz, covering the entire VHF, FM, commercial, and UHF bands.
  • 11. =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ comprei o cabo RGC 213, que no meu caso foi o DLC 213 premium, da datalink, que no fundo é a mesma coisa... fiz o cálculo de medida para cada gomo.. = (v * c) ÷ (2 * f)
  • 12. = (0,82 * 299792458) ÷ (2 * 2441000000) = (245829815,56) ÷ (4882000000) = 0,050354325186399016796394920114707 (multiplica por 100) = 5,0354... v = velocidade do cabo ou velocidade de propagação - nesse link tem essa velocidade dos cabos da datalink Data Link. c = velocidade da luz = * 299792458 km/s. f= freqüência do sinal = 2441000000 (2.4 Ghz). então cada gomo terá que ter 5,03 cm! Isso no meu caso, de acordo com o cabo que usei e de acordo com a potência do meu roteador!! não é cada gomo ter isso.. na realidade 5,03 cm é a distância que o início de um gomo terá do início do outro gomo, veja o gráfico abaixo..
  • 13. é isso aí.. espero ter contribuido.. demorou cerca de 4 horas pra fazer!! e funciona mesmo! =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ Faça Sua Antena Omni Um bom tipo de antena bem fácil de fazer é a antena omni, a antena omni tem como principal característica irradiar os sinais de RF em todas as direções, por isso é uma antena muito utilizada para curta e média distância. A proposta deste texto é dar condições para que possa ser montada uma antena omni de acordo com as necessidades do montador, sendo assim, em razão da disponibilidade do material e da necessidade do ganho em dB, pode ser feita uma antena de três dB a dez dB, obviamente que maior for o ganho desejado, também será usado mais material. De qualquer modo, para ganho de três dB, devem ser usados quatro elementos, nesse caso a antena irá ficar com pouco mais de 30 centímetros. Quem desejar ganho de seis dB, deverá usar seis elementos, para 9 dB devem ser usados 16 elementos, para 10 dB devem ser usados 20 elementos, observe que com vinte elementos a antena terá seu tamanho um pouco maior do que um metro e trinta centímetros. Quem optar pela construção da antena para maior ganho, se usar um Acess Point de 400 mW, poderá irradiar o sinal para aproximadamente 7 quilômetros com visada, isso é uma previsão até bem pessimista para antenas com visada. Mas também poderá nem chegar a um quilômetro, se a altura em que a antena for instalada for baixa, e se houverem obstáculos no caminho, pois o sinal poderá nem chegar, mas isso não é característica da antena, mas sim da faixa de freqüência (UHF) que é praticamente a linha do visual. Dependendo do ganho que você deseja para sua antena, você vai precisar de tantos elementos iguais ao da figura abaixo, os elementos são feitos com o próprio cabo coaxial que é cortado em pedaços com medidas certas e descascado uma parte da capa do cabo coaxial para possibilitar a soldagem.
  • 14. Lembrando que em se tratando de freqüências altas, mexer com equipamentos e antenas, requer muito cuidado e todo e qualquer detalhe é importante, principalmente em se tratando de medidas. Cada elemento deve ter 6.7 centímetros (67 milímetros), deve ser tirada a capa de um centímetro de cada lado do elemento, de forma que fique em cada uma extremidades um centímetro livre, deve ser tirado um pedaço da capa que protege o fio malha, ele é muito importante, pois agira como elemento inversor de fase do sinal captado e emitido.
  • 15. A montagem deve ser feita com cuidado, as soldas devem ser feitas rápidas para não ficar uma bicheira (solda fria) no local da solda. O detalhe das medidas é mostrado na figura abaixo: Note que é soldado fio central no fio malha, e no estágio seguinte, o fio malha é soldado no fio central, assim deve ser quantos elementos forem necessários na antena, mas devem ser respeitadas as medidas conforme a figura acima: O elemento da antena fica na realidade com 57 milímetros(5.7 cm), separados um do outro por 5 milímetros (0.5 cm), note que nos elementos da antena já foi descontado o fator de velocidade do cabo coaxial RGC 213, que é de 0.85, por isso, siga as medidas indicadas para esse tipo de antena. Note também que o final da parte de cima da antena tem um elemento que é ligeiramente diferente o tamanho: Essa antena foi calculada para operar na freqüência central na faixa utilizada por redes Wlan,
  • 16. note que a faixa utilizada começa em 2.4000 e termina em 2.4835, para obter a freqüência central basta que seja realizado o seguinte cálculo:(2.4000 + 2.4835) / 2 4.8835 / 2, e teremos como resultado 2.441 GHz, e é nosso objetivo montar a antena para essa freqüência. Essa antena é projetada para trabalhar em meia onda, e o fator de velocidade do cabo coaxial RGC 213 já foi incluído nos cálculos, em todo caso, relembro que o fator de velocidade para o cabo coaxial RGC 213 é 0.85. Conforme deve ser de seu conhecimento, a velocidade de propagação de RF no vácuo é de 300000 km/s, mas a propagação através de outro meio que não seja o vácuo sofre redução de velocidade. Para cada material tipo de material utilizado, o fator de velocidade terá um valor diferente, como nosso material é o cabo coaxial RGC 213, o cálculo para obter a velocidade da propagação de RF através do cabo é o seguinte: 300000 x 0.85, e como resultado,nesse caso, temos 255000 Km/s. E a antena pronta deve ficar com aspecto parecido com o da figura abaixo: E para quem gosta de conectores que compre dois, um macho e um fêmea, eu soldo a antena no cabo coaxial, faço da mesma forma que faço com os elementos da antena, tiro um centímetro de capa com a malha e tiro um pedaço do plástico da capa do cabo coaxial para permitir a soldagem. Como dados técnicos adicionais: o comprimento total de cada seção de cabo coaxial é ½ onda mais 15 milímetros, onde o resultado é 67 milímetros, note que arredondei o valor, que na realidade era 67.2 milímetros. Para ficar bem claro, esclareço que o condutor central do elemento feito com cabo coaxial deve ser de 10 milímetros expostos de cada lado de cada seção. A malha que reveste o elemento feito de cabo coaxial é importante, as soldagens devem ser feitas rapidamente para não deformar a malha e para evitar que a malha venha a sair do lugar. O último elemento que vai à ponta, aquele do final da antena, fique atento, porque ele tem medidas diferentes. O último elemento é acrescentado para fazer o acoplamento inicial da antena, se você montar uma antena com seis elementos, esse elemento final será o sétimo elemento. Depois de tantos detalhes, acho que chega, então finalmente, para montar a antena é só ir soldando com cuidado os elementos, de maneira que o dielétrico de um elemento fique exatamente a 5 milímetros de distância do dielétrico do outro elemento. Depois da antena montada é só colocar tudo em um pedaço de tubo de PVC do tamanho da
  • 17. antena recém montada, desde que seja hermeticamente fechado, eu uso um tampão e um cano de PVC de 25, duas abraçadeiras e um parafuso para prender o cabo coaxial, isso é o que possibilita que a antena seja instalada em ambientes externos. É isso, boa sorte. =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ Antena WiFi biquad com antena SKY Entusiastas do wireless vêm transformando antenas a anos. Estabeleceram uma marca de mais de 200 km, usando velhas parabólicas de 3m. O que é muito se comparado com os modernos pratos, tipo sky. O prato parabólico permite focalizar a ondas de rádio para uma antena direcional. É utilizada uma antena biquad, pois é bastante tolerante a erros de montagem e tem um rendimento muito bom. No final a biquad é acoplada a uma velha sky e… eureka, conseguiram detectar APs a mais de 12km. Construindo a ANTENA: As antenas biquad podem ser construídas a partir de materiais comuns, o que é bom, contudo algum material você terá que comprar.3060000000054037 A coisa mais importante aqui é o pequeno conector N, não me perguntem onde tem. Aqui em Joinville eu sei, na sua cidade… O “N-conector” é padrão na maioria das antenas comercial e você pode conectá-los aos seus dispositivos sem fio usando “pigtails”. O cabo longo é um pigtail com conectores RP-TNC para N-macho que será usado para conectar a antena a um AP Linksys WRT54G. O curto é um RP-MMCX para N-macho para que possamos ligar a antena a nosso cartáo PCI Senao 2511CD PLUS EXT2 WiFi. Também se utilizam 10 metros de cabo coaxial WBC 400 pora não ter de se sentar com o prato no colo. Além é claro, da valha antena SKY . Trevor Marshall construiu uma das primeiras antenas WiFi biquad encontradas na internet. Aqui se foi um pouco mais fundo nas instruções encontradas em martybugs.net e aqui estão as matérias-primas com que começar:
  • 18. Um fio padrão de núcleo rígido, utilizado em instalações elétricas residenciais. Como os executores do projeto não tinham uma placa de circuito impresso disponível, utilizaram uma chapa fina de cobre colada a um suporte plástico, mas é mais recomendável e prático, utilizar uma placa de CI virgem. O primeiro passo na construção do elemento foi descascar e cortar um padaço de 244 milímetros de fio. O fio foi marcado em intervalos de 31 milímetros e começou a fase das dobras. Ele deverá ser dobrado em forama de um duplo diamantae. Tenta-se alcançar a maior aproxiomação de cada perna a 30,5 milímetros.
  • 19. A maneira mais fácil de fazer curvas muito acentuado no fio de cobre sólido é usar dois pares de alicates. Como fica o elemento com todas as curvas completas: Em seguida, um quadrado de 110 milímetros de lado, de plástico, para apoio da chapa de cobre ou diretamente um quadrado de circuito impresso virgem com as mesmas medidas deverá ser confeccionado.
  • 20. Agora deve-se soldar dois pedaços de fio de cobre ao pino N, começando pelo fio externo, pois precisa de um aquecimento maior para uma boa solda. Após esfriar, fixe o pinco (conector-N) a base de cobre e solde a parte externa a placa (quadrado de 110 milimetros de lado). O próximo passo é a solda do laço, elemento em forma de diamante duplo, aos fios verticais. O elemento deve ser apoiado em calços de 15 milímetros para garantir a posição correta.
  • 21. Em seguida, corta-se o excesso dos fios verticais e fica assim: Para fazer a do nosso elemento ao prato, a maneira mais fácil é modificar o lbnf original, utilizando partes do mesmo. Esta é a aparecncia inicial.
  • 22. Após a remoção da caixa e dos elementos internos, ficamos com isto: Anexamos nosso elemento a essa caixa e fica assim, com o cabo coaxial conectado:
  • 23. Prontinho para anexar no prato da sky: Se sua antena é do tipo com offset, ficará como na figura. Para saber se está apontada para o horizonte, deverá ser alinhada a 45º e montada num tubo de suporte com inclinação de, também 45º. Parece apontada para o chão mas está certo. Se for sem offset (modelo em que o elemento fica no centro da parábola) então deverá ser apontada diretamente mesmo.
  • 24. Segundo os desenvolvedores, o resultado é exelente e conseguiram se conectar a 12km de sitancia. Este eu ainda não teste. Assim que montar a minha informo. Para os que já montaram a sua sinhantena, explicada neste site, segui uma serie de fotos animadoras: 2leep.com Originally posted 2009-08-17 15:02:02. Republished by Blog Post Promoter =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ WIFI 16dBi Super Antenna Pictorial http://antenaswireless.aarca.com/2011/11/01/que-tal-fazer-uma-antena-wifi-de-16-dbi-baratissimo-e-facil/ Que tal fazer uma antena WiFi de 16 dBi baratíssimo e fácil? Que tal fazer uma antena WiFi de 16 dBi baratíssimo e fácil?
  • 25. Encontre esta antena wireless, no artito: Que tal fazer uma antena WiFi de 16 dBi baratíssimo e fácil? e achei incrível. Parece realmente muito fácil de fazer e encontrei muta coisa boa sobre ela na internet. Ainda não testei, mas tem tudo para funcionar bem. E vejam. Pela lista de material é bem simples mesmo: Quais são os materiais? 1 placa de cobre, latão ou metal comum fino de 12x12cm 1 Chassi de conector BNC 1 Conector de cabo BNC placa de isopor na densidade do styrofoam de 35mm de espessura Fio elétrico de 1.5mm2 No site você vai encontrar até um vídeo para ajudar. http://www.tecnomodo.com/2009/03/que-tal-fazer-uma-antena-wifi-de-16-dbi.html Q ue tal faz e r uma ante na WiFi de 16 dBi baratíssimo e fácil? Nós postamos aqui há alguns anos atrás um hackeamento da antena WiFi tradicional para obter um ganho no sinal. Agora a intenção é demonstrar que podemos criar uma antena inteira com preço acessível.
  • 26. Quais são os materiais? 1 placa de cobre, latão ou metal comum fino de 12x12cm 1 Chassi de conector BNC 1 Conector de cabo BNC placa de isopor na densidade do styrofoam de 35mm de espessura Fio elétrico de 1.5mm2
  • 27.
  • 28. Mais informações você pode achar na página do instructables fonte: instructables. http://www.instructables.com/id/10--WIFI-16dBi-Super-Antenna-Pictorial/ =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================ High Gain Wi-fi Helical Antenna Presented here is a versatile, durable, and rather unique wi fi antenna that can greatly extend your wireless networking range and speed. When built with ten or more turns, this helical wi fi antenna vastly outperforms the cantennas and wi fi wok tops often seen on the internet. A short five turn helical makes a very good feeder for a wi fi parabolic dish antenna. A special quality of this antenna is that it radiates and receives a circularly polarized signal. It does not favor vertically or horizontally polarized signals. Thus, this antenna works well with wi fi signals reflecting off of buildings, moving vehicles, or antennas oriented at odd angles. Circularly polarized signals are less affected by rain, so you can reach distant access points in stormy weather. There is a 3 dB loss of gain when using this antenna with linearly polarized signals; high gain is maintained by making the antenna long - at least ten turns for stand-alone usage. Design parameters for this helical wi fi antenna were calculated using the online helical antenna calculator and was inspired by similar designs used for the AMSAT OSCAR 40 satellite. PARTS REQ UIRED FO R THE WIFI HELICAL ANTENNA: 1. 2. 3. 4. 5. 6. one square piece of copper sheet metal or single sided PC board for a ground plane. one PVC kitchen drain tailpiece (3.8 cm / 1.5" diameter) to hold the helical windings six 1/8" plastic cable ties a length of copper circuit tape (adhesive backed, width 3mm or 1/8") or #14 copper wire one suitable chassis connector (I used a reverse sma type matching the connector on my adaptor) one 90 degree angle bracket with screws and bolts to fit CO NSTRUCTIO N:
  • 29. 1. Center the tailpiece on the PC board, copper side, and mark the circumference in ink. 2. Mark four locations on the circumference, spaced 90 degrees, where the cable ties will hold down the PVC tube. 3. Mark one location on the circumference, exactly between two 90 degree markings, where the coaxial connector will be mounted. At this point you should have a PC board with a circle in the center, four tick marks on the circle at 90 deg intervals, and one tick mark exactly between two others. 4. Drill 1/8" holes on the inside and outside of the circumference at the cable tie locations. 5. Drill a hole directly on the circumference suitable for the chassis connector. Carefully measure and drill other holes for this connector if necessary. 6. Drill four holes, spaced 90 deg apart near the bottom end of the PVC tailpiece. 7. Drill holes to accomodate a small 90 degree corner bracket. 8. Drill holes on opposite side of board to accomodate USB wi-fi adapter that will be affixed with cable ties. 9. Tin the copper around the connector mounting hole, then mount the connector. Clip the center pin to keep it only long enough for connection to the helix windings. 10. Cut out a notch to accomodate the connector; it should clear center conductor, but avoud cutting out excess PVC material. 11. Feed cable ties through from the back side of the board, through holes in the tube, and back through the board. Tighten the cable ties, making sure the tube is firmly held to the copper ground plane. 12. Use a ruler and the edge of a sheet of paper to create a template for positioning the windings on the PVC tube. Distance zero represents the ground plane, then add the feedpoint distance, then ticks matching the turns spacing. Use the template to mark your tube on both the feedpoint side and the opposite side. The objective is to precisely wind the helical wi-fi antenna using an accurate guide...
  • 30. Space the turns 2.5 cm on a tube of 3.9cm outer diameter. Here is a table used for my prototype helical wi-fi antenna and its connector. Note that turn 1 starts at 0.8 cm (height above ground plane of feedpoint). Turns Spacing is 2.5 cm, and the diameter is 3.9 cm (close enough for 1.5" PVC tailpiece). If your connector can be trimmed to allow a feed connection closer to the ground plane than 0.8CM, then simply run the helix as low as necessary. Most impartant is keeping the proper spacing between turns. S pacing=2.5cm Diameter=3.9cm (fits 1.5" PVC tailpiece) Turn # Height (cm) above Half Turns groundplane Height (cm) 1 (feedpoint) 0.8 2.05 2 3.3 4.55 3 5.8 7.05 4 8.3 9.55 5 10.8 12.05 6 13.3 14.55 7 15.8 17.05 8 18.3 19.55 9 20.8 22.05 10 23.3 24.55 11 25.8 27.05 12 28.3 29.55 13 30.8 32.05 13. Carefully wind the helix, using circuit tape or wire, then solder to center conductor of chassis connector. Double check against the turns template. Polarization will be right-handed if the turns spiral clockwise (looking outward from feedpoint).
  • 31. 14. Attach the angle bracket and wi-fi adapter, making sure all parts are secure and ready for service, as seen in the images below. The high gain wi-fi helical antenna. 10 turn stand alone version Cable losses avoided by mounting wi-fi adapter at base of antenna. Short wi-fi helix feeding a long range parabolic wi-fi antenna. At this point, helical wi-fi antenna is ready for its smoke test...plug in the cables and look for some signals! Theoretical gain of the prototype helical was about 18 dB over an isotropic radiator; it beat my biquad by about 7 to 13 RSSI units, and indeed seemed less sensitive to polarization and rainfall. Signals still seem to fluctuate much from second to second. If your antenna is functioning satisfactorily at this point, I suggest spray painting three layers of clearcoat onto the windings and groundplane for stability and corrosion prevention. =|== ↓▼↓ = →►→► == →→►►= ↓▼↓=|== ↑▲↑ == ◄◄←← ================