SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
AN APPLICATION OF RENEWAL THEOREMS TO EXPONENTIAL
                      MOMENTS OF LOCAL TIMES

                                         ¨
                                   LEIF DORING AND MLADEN SAVOV




         Abstract. In this note we explain two transitions known for moment generating functions of
         local times by means of properties of the renewal measure of a related renewal equation. The
         arguments simplify and strengthen results on the asymptotic behavior in the literature.
Suppose (Xt ) is a time-homogeneous continuous time Markov process on a countable set S with
transition probabilities pt (i, j) = P[Xt = j |X0 = i] for i, j ∈ S. We fix some arbitrary i ∈ S and
denote by Li the time (Xt ) spends at i until time t:
            t
                                                        t
                                            Li =
                                             t              δi (Xs ) ds.
                                                    0
                                                                                                        i
A quantity that has been studied in different contexts is the moment generating function Ei eγLt ,
where X0 = i and γ is a positive real number.
                                 i
To explain the interest in Ei eγLt let us have a brief look at the parabolic Anderson model with
Brownian potential, i.e.
(0.1)                               dut (i) = ∆ut (i) dt + γut (i)dBt (i)
with homogeneous initial conditions u0 ≡ 1. Here, i ∈ Zd , ∆ denotes the discrete Laplacian
∆f (i) = |i−j|=1 1/(2d)(f (j)−f (i)), and {B(i)}i∈Zd is a family of independent Brownian motions.
It is known (see for instance Theorem II.3.2 of [CM94]) that the moments of ut (i) solve discrete-
space heat equations with one-point potentials. In particular, E[ut (i)ut (j)] solves
                            d
(0.2)                         w(t, i, j) = ∆w(t, i, j) + γδ0 (i − j)w(t, i, j)
                           dt
with homogeneous initial conditions. The discrete Laplacian acts on both spatial variables i and
j seperately. Applying the Feynman-Kac formula one reveals that
                                                                Rt        1   2
                                                                     δ0 (Xs −Xs ) ds
                                   w(t, i, j) = Ei,j eγ         0


where X 1 , X 2 are independent simple random walks. Hence, for Lt corresponding to the difference
walk X 1 − X 2 (or equivalently corresponding to a simple random walk with doubled jump rate)
                                                                                 0
                                    E ut (i)2 = w(t, i, i) = E0 eγLt .
The notion of weak 2-intermittency, i.e. exponential growth of the second moment E[ut (i)2 ], now
explains the interest in the study of the exponential moment of Li for continuous time Markov
                                                                   t
processes.
Applying the variation of constant formula to solutions of (0.2) one can guess that the following
renewal equation holds for fixed γ ≥ 0 and t ≥ 0:
                                                        t
                                       i                                i
(0.3)                          Ei eγLt = 1 + γ              Ei eγLt−s ps (i, i) ds.
                                                    0
Indeed, expanding the exponential one can show directly the validity of Equation (0.3) for general
time-homogeneous Markov processes on countable state spaces (see Lemma 3.2 of [AD09]). The
                             j
same equation holds for Ei eLt with ps (i, i) replaced by ps (i, j). As the analysis does not change

  2000 Mathematics Subject Classification. Primary 60J27; Secondary 60J55.
  Key words and phrases. Renewal Theorem, Local Times.
  The first author was supported by the EPSRC grant EP/E010989/1.
                                                            1
2                                         ¨
                                    LEIF DORING AND MLADEN SAVOV


we restrict ourselves to i = j.

In Section III of [CM94] and as well in Lemma 1.3 and Theorem 1.4 of [GdH06] analytic tech-
niques were applied to understand the longtime behavior of solutions of (0.2) by means of spectral
properties of the discrete Laplacian with one-point potential. They showed that the exponential
growth rate
                          1                     1                    1         0
               r(γ) := lim  log E ut (i)2 = lim log w(t, i, i) = lim log E0 eγLt .
                     t→∞ t                  t→∞ t                t→∞ t

exists and obeys the following transition in γ:
                                  r(γ) > 0 if and only if γ > 1/G∞ (i, i),
                                              ∞
where G∞ (i, i) is the Green function 0 ps (i, i) ds of the difference random walk. This first
transition in γ can be proved analytically, as identifying r(γ) corresponds to identifying the smallest
eigenvalue of the perturbed operator H = ∆+γδ0 . As multiplication with γδ0 is a one-dimensional
perturbation and for the discrete Laplacian explicit formulas for eigenfunctions are available, all
necessary quantities can be calculated. In particular the exponential growth rate r(γ), in the
general case of part (1) our Theorem 1 represented by the Laplace transform of the transition
probabilities, has been described for the simple random walk as the unique solution of
                                    2     1                  1
                                      =                               ds
                                    γ   (2π)d     S2   Φ(s) + r(γ)γ/2
                                                                         d
where S 2 denotes the d-dimensional torus and Φ(s) = 2 i=1 (1 − cos(si )). Compared to this
expression, our Laplace transform representation is particularly useful as it immediately provides
the qualitative behavior of r(γ) as a function of γ.

Replacing the discrete Laplacian by a generator of a finite range random walk, in [DD06] the
second moment of solutions of (0.1) were analyzed via a random walk representation. For more
general initial conditions this leads to a renewal equation similar to (0.3). The authors analyzed
their equation (3.16) directly without appealing to the renewal theorem. In precisely the same
way as we do in the proof of our Theorem 1 one can proceed in their case and strengthen the
asymptotics of their Equation (3.15).

Assuming only that pt (i, i) ∼ ct−α for some α > 0 (by ∼ we denote strong asymptotic equivalence
at infinity) a second transition was revealed in Proposition 3.12 of [AD09] by a Laplace transform
technique combined with Tauberian theorems: at the critical point γ = 1/G∞ the growth is of
linear order if and only if α > 2. As for the simple random walk on Zd the local central limit
theorem implies pt (i, i) ∼ ct−d/2 , linear growth occurs for dimensions at least 5.

The main goal of the following is to show how the known results easily follow from different renewal
theorems utilizing the fact that Equation (0.3) is a renewal equation of the type
                                                           t
(0.4)                                 Z(t) = z(t) +            Z(t − s)U (ds)
                                                       0
                      i
with Z(t) = Ei eγLt , initial condition z ≡ 1, and renewal measure U (ds) = γps (i, i) ds. This
approach is robust as there is no need to assume any properties of the underlying Markov process
(neither symmetry to obtain a self-adjoint operator, nor polynomial decay for Tauberian theorems
or finite range transitions kernels).
The two transitions will now appear in terms of whether or not the renewal measure
        • is a probability measure,
        • has a finite mean.
In the supercritical case of γ > 1/G∞ (i, i) without any further consideration we obtain the strong
                       i
asymptotics of Ei eγLt . This of course is stronger than considering the Lyapunov exponent r(γ)
AN APPLICATION OF RENEWAL THEOREMS TO EXPONENTIAL MOMENTS OF LOCAL TIMES                                            3


that appears in [CM94], [GdH06], and [AD09] as we exclude the possible existence of a subexpo-
nential factor.
                                                                                           ∞
For the statement of the theorem we denote by H∞ (i, i) = 0 sps (i, i) ds the expected time of
hitting of two independent copies of (Xt ). In contrast to the Green function G∞ here we count
the hitting time of the entire paths not only of the paths at same time. The Laplace transform in
time of pt (i, i) is denoted by p(λ), λ > 0, and weak asymptotic equivalence at infinity by f ≈ g.
                                ˆ
Theorem 1. Suppose (Xt ) is a time-homogeneous Markov process on S started in i. Then for
     t
Li = 0 δi (Xs ) ds the following holds:
 t
   (1) If γ >     1
                G∞ (i,i) ,   then p−1 (1/γ) > 0 and
                                  ˆ
                                i                                      1                            −1
                      Ei eγLt ∼                            ∞                                       ep
                                                                                                    ˆ       (1/γ)t
                                                                                                                     .
                                         p−1 (1/γ)γ
                                         ˆ                 0
                                                                   se−p−1 (1/γ)s p
                                                                      ˆ
                                                                                     s (i, i) ds
                  1
   (2) If γ =   G∞ (i,i) ,   then
                                                     i                      t
                                             Ei eγLt ≈             t ∞                      ,
                                                           γ       0 s
                                                                           pr (i, i) drds
        where the asymptotic bounds are 1 and 2. If moreover
                                                                   ∞
                                             H∞ (i, i) =               sps (i, i) ds < ∞,
                                                               0
        then
                                                           i              t
                                                    Ei eγLt ∼                     .
                                                                       γH∞ (i, i)
                       1
   (3) If 0 ≤ γ <    G∞ (i,i) ,     then
                                                           i                 1
                                              lim Ei eγLt =                            .
                                             t→∞                        1 − γG∞ (i, i)
Remark 1. In the general case, we only obtained weak convergence in (2) of the previous theorem
with asymptotic bounds 1 and 2. Under the stronger assumptions pt (i, i) ∼ ct−α , in Proposition
3.12 of [AD09] strong asymptotics were obtained by Tauberian theorems. The case of α > 2 is
contained in the second part of (2), α ≤ 1 is contained in part (1) of our previous theorem and
also strong asymptotics for α ∈ (1, 2] can be obtained by extended renewal theorems. Here, we can
directly use the infinite mean renewal Theorem 1 of [AA87] to obtain precisely the same strong
asymptotics as of Proposition 3.12 of [AD09].
Proof. The proof of Theorem 1 is based on the renewal equation (0.4) setting z ≡ 1, Z(t) =
       i
Ei eγLt , and U (ds) = γps (i, i) ds.
(1) The assumptions of the theorem directly imply that in this case U is not a probability measure.
Either the measure is infinite (with density bounded by γ) or it is finite with total mass strictly
larger than 1. From the definition of the Laplace transform we obtain for λ = p−1 (1/γ) that
                                                                                 ˆ
                                      ¯
                                      U (ds) = γe−λs ps (i, i) ds
is a probability measure. As by assumption λ > 0, we obtain that e−λt is directly Riemann
                ¯                   ∞
integrable and U has a finite mean γ 0 sps (i, i)e−λs ds. Hence,
                                                               t
                                     i                                                 i
                    e−λt Ei eγLt = e−λt + γ                        e−λ(t−s) Ei eγLt−s e−λs ps (i, i) ds
                                                           0
is a proper renewal equation. The classical renewal theorem (see for instance page 363 of [F71])
implies that
                                                        ∞ −λs
                                         i                e     ds                                      1
                 lim e−λt Ei eγLt =                  ∞
                                                       0
                                                         −λs p (i, i) ds
                                                                                 =          ∞
                t→∞                             γ    0
                                                       se     s                       λγ    0
                                                                                                se−λs ps (i, i) ds
4                                      ¨
                                 LEIF DORING AND MLADEN SAVOV




              Figure 1. γ → r(γ) for G∞ (i, i) = ∞ and G∞ (i, i) < ∞ respectively

proving the claim.
                           ∞
(2) In the critical case γ 0 ps (i, i) ds = 1, the measure U as defined above indeed is a probability
measure which does not necessarily has a finite mean. Furthermore, the situation is different from
the first case as now the initial condition z ≡ 1 is not directly Riemann integrable. Iterating
Equation (0.3) we obtain the representation
                                                 t
                                         i
                                  Ei eγLt =             ps (i, i)∗n ds,
                                                0 n≥0

where ∗n denotes n-fold convolutions. Note that convergence of the series is justified by bounded-
ness of p. In the case of finite mean, Equation (1.2) of page 358 of [F71] and the renewal theorem
on page 360 now directly imply
                                   i           t                t
                             Ei eγLt ∼     ∞              =            .
                                        γ 0 sps (i, i) ds   γH∞ (i, i)
                                                                                                    i
For renewal measure U with infinite mean we again use the convolution representation of Ei eγLt
to apply Lemma 1 of [E73] showing that the denominator needs to be replaced by the truncated
        t      s
mean 0 1 − 0 γpr (i, i) dr ds.
(3) For γ < G∞ we may directly use the proof of Proposition 3.11 of [AD09] as there no additional
structure was assumed. We repeat the simple argument for completeness. Taking Laplace trans-
form of Equation (0.3) and solving the multiplication equation in Laplace domain (note that under
                                                                                           i
Laplace transform the convolution turns into multiplication) we obtain with f (t) = Ei eγLt
                                        ˆ       1     1
                                        f (λ) =
                                                λ 1 − γ p(λ)
                                                        ˆ
for λ > 0. As by assumption the second factor converges to the constant 1/(1 − γG∞ (i, i)) as λ
tends to zero, Karamata’s Tauberian theorem (see Theorem 1.7.6 of [BGT89]) implies the result.
Note that as f (t) is increasing, the Tauberian condition for that theorem is fulfilled.
Qualitative properties of the exponential growth rate r(κ) have been considered for the simple
random walk (see Section III of [CM94], Theorem 1.4 of [GdH06]) and in the polynomially case
(see Corollary 3.10 of [AD09]). The representation of the growth rate in the previous theorem
directly shows that the qualitative behavior (see Figure 1 for the qualitative behavior of r(γ)
plotted against the identity function) is valid for general Markov processes:
Corollary 1. Suppose (Xt ) is a time-homogeneous Markov process on S started in i. Then for
       t
Li = 0 δi (Xs ) ds the following holds for γ ≥ 0:
 t
    (1) r(γ) ≥ 0 and r(γ) > 0 if and only if γ > 1/G∞ (i, i),
    (2) the function γ → r(γ) is strictly convex for γ > 1/G∞ (i, i),
    (3) r(γ) ≤ γ for all γ, and r(γ)/γ → 1, as γ → ∞.

Proof. Part (1) of Theorem 1 shows that understanding p−1 suffices to understand r(γ). This is
                                                          ˆ
not difficult due to the following observation: as p is bounded by 1, p(λ) is finite for all λ > 0,
                                                                        ˆ
strictly decreasing and convex with p(0) = G∞ (i, i). Hence, p−1 (λ) = 0 if and only if λ ≥ G∞ (i, i).
                                    ˆ                        ˆ
AN APPLICATION OF RENEWAL THEOREMS TO EXPONENTIAL MOMENTS OF LOCAL TIMES                                5


This implies that p−1 (1/γ) = 0 precisely for λ ≤ 1/G∞ (i, i). Hence, parts (1) and (2) are proved
                  ˆ
as r(γ) = p−1 (1/γ).
          ˆ
First note that the first part of (3) is immediate as Li ≤ t. Continuity of p and p0 (i, i) = 1 imply
                                                       t
that for > 0 there is t0 ( ) such that pt (i, i) ≥ 1 − for t ≤ t0 ( ). Hence,
                                             ∞
                      1
                        = p(r(γ)) =
                          ˆ                        e−r(γ)t pt (i, i) dt
                      γ                      0
                                         t0 ( )
                                                                           1
                         ≥ (1 − )                 e−r(γ)t dt = (1 − )          1 − e−r(γ)t0 (   )
                                                                                                    .
                                     0                                    r(γ)
Since r(γ) → ∞ for γ → ∞ we obtain
                                                            r(γ)
                                                  lim inf        ≥ 1.
                                                   k→∞       γ
This combined with the first part of (3) proves the second part.
Let us finish with two remarks on related results for continuous space models.

In their analysis of laws of iterated logarithms for local times of symmetric L´vy processes, moment
                                                                                   e
generating functions of local times were considered in [MR96]. They exploited the renewal equation
(0.3) where now the transition probabilities need to be replaced by transition kernels. Solving in
Laplace domain as we did in part (3) of the proof of Theorem 1 they transformed back via inverse
Laplace transformation to estimate rather delicately the difference
                              i                      1                       ˆ−1
                      Ei eγLt − −1             ∞    −p−1 (1/γ)s p (i, i) ds
                                                      ˆ
                                                                            ep (1/γ)t .
                                   p (1/γ)γ 0 se
                                   ˆ                             s

Their estimate is uniform in t and γ but does not establish convergence as t tends to infinity.
Applying our proofs to the renewal equation representation (see the proof of their Lemma 2.6),
we find the same results as we obtained in discrete space.

Recently, a parabolic Anderson model in R with L´vy driver was consider in [FK1] and [FK2]. As
                                                  e
their results are based on the same renewal equation (see for instance Equation (2.2) of [FK2] or
(4.15) of [FK1]) that we used, one can strengthen their bounds away from the notion of Lyapunov
exponents to strong asymptotics with the same expressions for constants and exponential rates
as in our discrete setting. This is not surprising as also for their L´vy process driven version
                                                                      e
of the parabolic Anderson model the above mentioned correspondence of second moments and
exponential moments of local times of the corresponding L´vy process holds true.
                                                           e

                                                      References
[AA87] Anderson, K. K.; Athreya, K. B. ”A Renewal Theorem in the Infinite Mean Case” Annals of Probability,
    15, (1987), 388-393
[BGT89] Bingham, N. H.; Goldie, C. M.; Teugels, J. L. ”Regular variation” Encyclopedia of Mathematics and its
    Applications, 27, (1989), xx+494
[AD09] Aurzada, F.; D¨ring, L. ”Intermittency and Aging for the Symbiotic Branching Model” submitted
                        o
[CM94] Carmona, R.; Molchanov, S. ”Parabolic Anderson problem and intermittency” Mem. Amer. Math. Soc.,
    108, (1994), viii+125
[DD06] Dembo, A.; Deuschel, J.D. ”Aging for Interacting Diffusion Processes” Ann. Inst. H. Poincar´ Probab.
                                                                                                      e
    Statist., 43(4), (2007), 461-480
[E73] Erickson, B. ”The strong law of large numbers when the mean is undefined ” Trans. Amer. Math. Soc., 54,
    (1973), 371-381
[F71] Feller, W. ”An introduction to probability theory and its applications. Vol. II.” John Wiley & Sons, Inc.,
    New York-London-Sydney, (1971), xxiv+669 pp.
[FK1] Foondun, M.; Khoshnevisan, D. ”Intermittency for nonlinear parabolic stochastic partial differential equa-
    tions” Electr. Journal of Prob., 14, (2009), 548-568
[FK2] Foondun, M.; Khoshnevisan, D. ”On the global maximum of the solution to a stochastic heat equation with
    compact-support initial data” Preprint
[GdH06] G¨rtner, J.; den Hollander, F. ”Intermittency in a catalytic random medium” Annals of Probability, 34
            a
    (6), (2006), 2219-2287.
6                                          ¨
                                     LEIF DORING AND MLADEN SAVOV


[MR96] Marcus, M.; Rosen, J. ”Laws of the iterated logarithm for the local times of symmetric L´vy processes and
                                                                                               e
   recurrent random walks” Annals of Probability, 22, (1994), 620-659

Department of Statistics, Universityt of Oxford, 1, South Parks Road, Oxford OX1 3TG, United
Kingdom
E-mail address: leif.doering@googlemail.com

Department of Statistics, Universityt of Oxford, 1, South Parks Road, Oxford OX1 3TG, United
Kingdom
E-mail address: savov@stats.ox.ac.uk

Más contenido relacionado

La actualidad más candente

Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanicsSpringer
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTJiahao Chen
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...Alexander Decker
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605ketanaka
 
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologySEENET-MTP
 
Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Christian Robert
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility usingkkislas
 
Tensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsTensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsKeisuke OTAKI
 
Nonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo MethodNonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo MethodSSA KPI
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis宗翰 謝
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010Christian Robert
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2IJEMM
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...Alexander Decker
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 

La actualidad más candente (20)

Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanics
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFT
 
11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...11.generalized and subset integrated autoregressive moving average bilinear t...
11.generalized and subset integrated autoregressive moving average bilinear t...
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
 
Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
 
Chris Sherlock's slides
Chris Sherlock's slidesChris Sherlock's slides
Chris Sherlock's slides
 
Jere Koskela slides
Jere Koskela slidesJere Koskela slides
Jere Koskela slides
 
BSE and TDDFT at work
BSE and TDDFT at workBSE and TDDFT at work
BSE and TDDFT at work
 
Tensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsTensor Decomposition and its Applications
Tensor Decomposition and its Applications
 
Nonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo MethodNonlinear Stochastic Optimization by the Monte-Carlo Method
Nonlinear Stochastic Optimization by the Monte-Carlo Method
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
 
New version
New versionNew version
New version
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Adc
AdcAdc
Adc
 

Similar a Doering Savov

Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsSpringer
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
Laplace transform
Laplace transformLaplace transform
Laplace transformjoni joy
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...Alexander Decker
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...Alexander Decker
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Alexander Decker
 
A new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditionsA new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditionsAlexander Decker
 
SOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESSOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESgenius98
 
some thoughts on divergent series
some thoughts on divergent seriessome thoughts on divergent series
some thoughts on divergent seriesgenius98
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESTahia ZERIZER
 
Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Alexander Decker
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download Edhole.com
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 

Similar a Doering Savov (20)

Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
11.[104 111]analytical solution for telegraph equation by modified of sumudu ...
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 
A new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditionsA new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditions
 
TLT
TLTTLT
TLT
 
SOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESSOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIES
 
some thoughts on divergent series
some thoughts on divergent seriessome thoughts on divergent series
some thoughts on divergent series
 
Signal Processing Homework Help
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework Help
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
 

Último

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 

Último (20)

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 

Doering Savov

  • 1. AN APPLICATION OF RENEWAL THEOREMS TO EXPONENTIAL MOMENTS OF LOCAL TIMES ¨ LEIF DORING AND MLADEN SAVOV Abstract. In this note we explain two transitions known for moment generating functions of local times by means of properties of the renewal measure of a related renewal equation. The arguments simplify and strengthen results on the asymptotic behavior in the literature. Suppose (Xt ) is a time-homogeneous continuous time Markov process on a countable set S with transition probabilities pt (i, j) = P[Xt = j |X0 = i] for i, j ∈ S. We fix some arbitrary i ∈ S and denote by Li the time (Xt ) spends at i until time t: t t Li = t δi (Xs ) ds. 0 i A quantity that has been studied in different contexts is the moment generating function Ei eγLt , where X0 = i and γ is a positive real number. i To explain the interest in Ei eγLt let us have a brief look at the parabolic Anderson model with Brownian potential, i.e. (0.1) dut (i) = ∆ut (i) dt + γut (i)dBt (i) with homogeneous initial conditions u0 ≡ 1. Here, i ∈ Zd , ∆ denotes the discrete Laplacian ∆f (i) = |i−j|=1 1/(2d)(f (j)−f (i)), and {B(i)}i∈Zd is a family of independent Brownian motions. It is known (see for instance Theorem II.3.2 of [CM94]) that the moments of ut (i) solve discrete- space heat equations with one-point potentials. In particular, E[ut (i)ut (j)] solves d (0.2) w(t, i, j) = ∆w(t, i, j) + γδ0 (i − j)w(t, i, j) dt with homogeneous initial conditions. The discrete Laplacian acts on both spatial variables i and j seperately. Applying the Feynman-Kac formula one reveals that Rt 1 2 δ0 (Xs −Xs ) ds w(t, i, j) = Ei,j eγ 0 where X 1 , X 2 are independent simple random walks. Hence, for Lt corresponding to the difference walk X 1 − X 2 (or equivalently corresponding to a simple random walk with doubled jump rate) 0 E ut (i)2 = w(t, i, i) = E0 eγLt . The notion of weak 2-intermittency, i.e. exponential growth of the second moment E[ut (i)2 ], now explains the interest in the study of the exponential moment of Li for continuous time Markov t processes. Applying the variation of constant formula to solutions of (0.2) one can guess that the following renewal equation holds for fixed γ ≥ 0 and t ≥ 0: t i i (0.3) Ei eγLt = 1 + γ Ei eγLt−s ps (i, i) ds. 0 Indeed, expanding the exponential one can show directly the validity of Equation (0.3) for general time-homogeneous Markov processes on countable state spaces (see Lemma 3.2 of [AD09]). The j same equation holds for Ei eLt with ps (i, i) replaced by ps (i, j). As the analysis does not change 2000 Mathematics Subject Classification. Primary 60J27; Secondary 60J55. Key words and phrases. Renewal Theorem, Local Times. The first author was supported by the EPSRC grant EP/E010989/1. 1
  • 2. 2 ¨ LEIF DORING AND MLADEN SAVOV we restrict ourselves to i = j. In Section III of [CM94] and as well in Lemma 1.3 and Theorem 1.4 of [GdH06] analytic tech- niques were applied to understand the longtime behavior of solutions of (0.2) by means of spectral properties of the discrete Laplacian with one-point potential. They showed that the exponential growth rate 1 1 1 0 r(γ) := lim log E ut (i)2 = lim log w(t, i, i) = lim log E0 eγLt . t→∞ t t→∞ t t→∞ t exists and obeys the following transition in γ: r(γ) > 0 if and only if γ > 1/G∞ (i, i), ∞ where G∞ (i, i) is the Green function 0 ps (i, i) ds of the difference random walk. This first transition in γ can be proved analytically, as identifying r(γ) corresponds to identifying the smallest eigenvalue of the perturbed operator H = ∆+γδ0 . As multiplication with γδ0 is a one-dimensional perturbation and for the discrete Laplacian explicit formulas for eigenfunctions are available, all necessary quantities can be calculated. In particular the exponential growth rate r(γ), in the general case of part (1) our Theorem 1 represented by the Laplace transform of the transition probabilities, has been described for the simple random walk as the unique solution of 2 1 1 = ds γ (2π)d S2 Φ(s) + r(γ)γ/2 d where S 2 denotes the d-dimensional torus and Φ(s) = 2 i=1 (1 − cos(si )). Compared to this expression, our Laplace transform representation is particularly useful as it immediately provides the qualitative behavior of r(γ) as a function of γ. Replacing the discrete Laplacian by a generator of a finite range random walk, in [DD06] the second moment of solutions of (0.1) were analyzed via a random walk representation. For more general initial conditions this leads to a renewal equation similar to (0.3). The authors analyzed their equation (3.16) directly without appealing to the renewal theorem. In precisely the same way as we do in the proof of our Theorem 1 one can proceed in their case and strengthen the asymptotics of their Equation (3.15). Assuming only that pt (i, i) ∼ ct−α for some α > 0 (by ∼ we denote strong asymptotic equivalence at infinity) a second transition was revealed in Proposition 3.12 of [AD09] by a Laplace transform technique combined with Tauberian theorems: at the critical point γ = 1/G∞ the growth is of linear order if and only if α > 2. As for the simple random walk on Zd the local central limit theorem implies pt (i, i) ∼ ct−d/2 , linear growth occurs for dimensions at least 5. The main goal of the following is to show how the known results easily follow from different renewal theorems utilizing the fact that Equation (0.3) is a renewal equation of the type t (0.4) Z(t) = z(t) + Z(t − s)U (ds) 0 i with Z(t) = Ei eγLt , initial condition z ≡ 1, and renewal measure U (ds) = γps (i, i) ds. This approach is robust as there is no need to assume any properties of the underlying Markov process (neither symmetry to obtain a self-adjoint operator, nor polynomial decay for Tauberian theorems or finite range transitions kernels). The two transitions will now appear in terms of whether or not the renewal measure • is a probability measure, • has a finite mean. In the supercritical case of γ > 1/G∞ (i, i) without any further consideration we obtain the strong i asymptotics of Ei eγLt . This of course is stronger than considering the Lyapunov exponent r(γ)
  • 3. AN APPLICATION OF RENEWAL THEOREMS TO EXPONENTIAL MOMENTS OF LOCAL TIMES 3 that appears in [CM94], [GdH06], and [AD09] as we exclude the possible existence of a subexpo- nential factor. ∞ For the statement of the theorem we denote by H∞ (i, i) = 0 sps (i, i) ds the expected time of hitting of two independent copies of (Xt ). In contrast to the Green function G∞ here we count the hitting time of the entire paths not only of the paths at same time. The Laplace transform in time of pt (i, i) is denoted by p(λ), λ > 0, and weak asymptotic equivalence at infinity by f ≈ g. ˆ Theorem 1. Suppose (Xt ) is a time-homogeneous Markov process on S started in i. Then for t Li = 0 δi (Xs ) ds the following holds: t (1) If γ > 1 G∞ (i,i) , then p−1 (1/γ) > 0 and ˆ i 1 −1 Ei eγLt ∼ ∞ ep ˆ (1/γ)t . p−1 (1/γ)γ ˆ 0 se−p−1 (1/γ)s p ˆ s (i, i) ds 1 (2) If γ = G∞ (i,i) , then i t Ei eγLt ≈ t ∞ , γ 0 s pr (i, i) drds where the asymptotic bounds are 1 and 2. If moreover ∞ H∞ (i, i) = sps (i, i) ds < ∞, 0 then i t Ei eγLt ∼ . γH∞ (i, i) 1 (3) If 0 ≤ γ < G∞ (i,i) , then i 1 lim Ei eγLt = . t→∞ 1 − γG∞ (i, i) Remark 1. In the general case, we only obtained weak convergence in (2) of the previous theorem with asymptotic bounds 1 and 2. Under the stronger assumptions pt (i, i) ∼ ct−α , in Proposition 3.12 of [AD09] strong asymptotics were obtained by Tauberian theorems. The case of α > 2 is contained in the second part of (2), α ≤ 1 is contained in part (1) of our previous theorem and also strong asymptotics for α ∈ (1, 2] can be obtained by extended renewal theorems. Here, we can directly use the infinite mean renewal Theorem 1 of [AA87] to obtain precisely the same strong asymptotics as of Proposition 3.12 of [AD09]. Proof. The proof of Theorem 1 is based on the renewal equation (0.4) setting z ≡ 1, Z(t) = i Ei eγLt , and U (ds) = γps (i, i) ds. (1) The assumptions of the theorem directly imply that in this case U is not a probability measure. Either the measure is infinite (with density bounded by γ) or it is finite with total mass strictly larger than 1. From the definition of the Laplace transform we obtain for λ = p−1 (1/γ) that ˆ ¯ U (ds) = γe−λs ps (i, i) ds is a probability measure. As by assumption λ > 0, we obtain that e−λt is directly Riemann ¯ ∞ integrable and U has a finite mean γ 0 sps (i, i)e−λs ds. Hence, t i i e−λt Ei eγLt = e−λt + γ e−λ(t−s) Ei eγLt−s e−λs ps (i, i) ds 0 is a proper renewal equation. The classical renewal theorem (see for instance page 363 of [F71]) implies that ∞ −λs i e ds 1 lim e−λt Ei eγLt = ∞ 0 −λs p (i, i) ds = ∞ t→∞ γ 0 se s λγ 0 se−λs ps (i, i) ds
  • 4. 4 ¨ LEIF DORING AND MLADEN SAVOV Figure 1. γ → r(γ) for G∞ (i, i) = ∞ and G∞ (i, i) < ∞ respectively proving the claim. ∞ (2) In the critical case γ 0 ps (i, i) ds = 1, the measure U as defined above indeed is a probability measure which does not necessarily has a finite mean. Furthermore, the situation is different from the first case as now the initial condition z ≡ 1 is not directly Riemann integrable. Iterating Equation (0.3) we obtain the representation t i Ei eγLt = ps (i, i)∗n ds, 0 n≥0 where ∗n denotes n-fold convolutions. Note that convergence of the series is justified by bounded- ness of p. In the case of finite mean, Equation (1.2) of page 358 of [F71] and the renewal theorem on page 360 now directly imply i t t Ei eγLt ∼ ∞ = . γ 0 sps (i, i) ds γH∞ (i, i) i For renewal measure U with infinite mean we again use the convolution representation of Ei eγLt to apply Lemma 1 of [E73] showing that the denominator needs to be replaced by the truncated t s mean 0 1 − 0 γpr (i, i) dr ds. (3) For γ < G∞ we may directly use the proof of Proposition 3.11 of [AD09] as there no additional structure was assumed. We repeat the simple argument for completeness. Taking Laplace trans- form of Equation (0.3) and solving the multiplication equation in Laplace domain (note that under i Laplace transform the convolution turns into multiplication) we obtain with f (t) = Ei eγLt ˆ 1 1 f (λ) = λ 1 − γ p(λ) ˆ for λ > 0. As by assumption the second factor converges to the constant 1/(1 − γG∞ (i, i)) as λ tends to zero, Karamata’s Tauberian theorem (see Theorem 1.7.6 of [BGT89]) implies the result. Note that as f (t) is increasing, the Tauberian condition for that theorem is fulfilled. Qualitative properties of the exponential growth rate r(κ) have been considered for the simple random walk (see Section III of [CM94], Theorem 1.4 of [GdH06]) and in the polynomially case (see Corollary 3.10 of [AD09]). The representation of the growth rate in the previous theorem directly shows that the qualitative behavior (see Figure 1 for the qualitative behavior of r(γ) plotted against the identity function) is valid for general Markov processes: Corollary 1. Suppose (Xt ) is a time-homogeneous Markov process on S started in i. Then for t Li = 0 δi (Xs ) ds the following holds for γ ≥ 0: t (1) r(γ) ≥ 0 and r(γ) > 0 if and only if γ > 1/G∞ (i, i), (2) the function γ → r(γ) is strictly convex for γ > 1/G∞ (i, i), (3) r(γ) ≤ γ for all γ, and r(γ)/γ → 1, as γ → ∞. Proof. Part (1) of Theorem 1 shows that understanding p−1 suffices to understand r(γ). This is ˆ not difficult due to the following observation: as p is bounded by 1, p(λ) is finite for all λ > 0, ˆ strictly decreasing and convex with p(0) = G∞ (i, i). Hence, p−1 (λ) = 0 if and only if λ ≥ G∞ (i, i). ˆ ˆ
  • 5. AN APPLICATION OF RENEWAL THEOREMS TO EXPONENTIAL MOMENTS OF LOCAL TIMES 5 This implies that p−1 (1/γ) = 0 precisely for λ ≤ 1/G∞ (i, i). Hence, parts (1) and (2) are proved ˆ as r(γ) = p−1 (1/γ). ˆ First note that the first part of (3) is immediate as Li ≤ t. Continuity of p and p0 (i, i) = 1 imply t that for > 0 there is t0 ( ) such that pt (i, i) ≥ 1 − for t ≤ t0 ( ). Hence, ∞ 1 = p(r(γ)) = ˆ e−r(γ)t pt (i, i) dt γ 0 t0 ( ) 1 ≥ (1 − ) e−r(γ)t dt = (1 − ) 1 − e−r(γ)t0 ( ) . 0 r(γ) Since r(γ) → ∞ for γ → ∞ we obtain r(γ) lim inf ≥ 1. k→∞ γ This combined with the first part of (3) proves the second part. Let us finish with two remarks on related results for continuous space models. In their analysis of laws of iterated logarithms for local times of symmetric L´vy processes, moment e generating functions of local times were considered in [MR96]. They exploited the renewal equation (0.3) where now the transition probabilities need to be replaced by transition kernels. Solving in Laplace domain as we did in part (3) of the proof of Theorem 1 they transformed back via inverse Laplace transformation to estimate rather delicately the difference i 1 ˆ−1 Ei eγLt − −1 ∞ −p−1 (1/γ)s p (i, i) ds ˆ ep (1/γ)t . p (1/γ)γ 0 se ˆ s Their estimate is uniform in t and γ but does not establish convergence as t tends to infinity. Applying our proofs to the renewal equation representation (see the proof of their Lemma 2.6), we find the same results as we obtained in discrete space. Recently, a parabolic Anderson model in R with L´vy driver was consider in [FK1] and [FK2]. As e their results are based on the same renewal equation (see for instance Equation (2.2) of [FK2] or (4.15) of [FK1]) that we used, one can strengthen their bounds away from the notion of Lyapunov exponents to strong asymptotics with the same expressions for constants and exponential rates as in our discrete setting. This is not surprising as also for their L´vy process driven version e of the parabolic Anderson model the above mentioned correspondence of second moments and exponential moments of local times of the corresponding L´vy process holds true. e References [AA87] Anderson, K. K.; Athreya, K. B. ”A Renewal Theorem in the Infinite Mean Case” Annals of Probability, 15, (1987), 388-393 [BGT89] Bingham, N. H.; Goldie, C. M.; Teugels, J. L. ”Regular variation” Encyclopedia of Mathematics and its Applications, 27, (1989), xx+494 [AD09] Aurzada, F.; D¨ring, L. ”Intermittency and Aging for the Symbiotic Branching Model” submitted o [CM94] Carmona, R.; Molchanov, S. ”Parabolic Anderson problem and intermittency” Mem. Amer. Math. Soc., 108, (1994), viii+125 [DD06] Dembo, A.; Deuschel, J.D. ”Aging for Interacting Diffusion Processes” Ann. Inst. H. Poincar´ Probab. e Statist., 43(4), (2007), 461-480 [E73] Erickson, B. ”The strong law of large numbers when the mean is undefined ” Trans. Amer. Math. Soc., 54, (1973), 371-381 [F71] Feller, W. ”An introduction to probability theory and its applications. Vol. II.” John Wiley & Sons, Inc., New York-London-Sydney, (1971), xxiv+669 pp. [FK1] Foondun, M.; Khoshnevisan, D. ”Intermittency for nonlinear parabolic stochastic partial differential equa- tions” Electr. Journal of Prob., 14, (2009), 548-568 [FK2] Foondun, M.; Khoshnevisan, D. ”On the global maximum of the solution to a stochastic heat equation with compact-support initial data” Preprint [GdH06] G¨rtner, J.; den Hollander, F. ”Intermittency in a catalytic random medium” Annals of Probability, 34 a (6), (2006), 2219-2287.
  • 6. 6 ¨ LEIF DORING AND MLADEN SAVOV [MR96] Marcus, M.; Rosen, J. ”Laws of the iterated logarithm for the local times of symmetric L´vy processes and e recurrent random walks” Annals of Probability, 22, (1994), 620-659 Department of Statistics, Universityt of Oxford, 1, South Parks Road, Oxford OX1 3TG, United Kingdom E-mail address: leif.doering@googlemail.com Department of Statistics, Universityt of Oxford, 1, South Parks Road, Oxford OX1 3TG, United Kingdom E-mail address: savov@stats.ox.ac.uk