SlideShare una empresa de Scribd logo
1 de 26
Chapter 6 How Cells Harvest Chemical Energy 0
Concept Check ,[object Object],[object Object],[object Object],[object Object],[object Object],0
Answer ,[object Object],[object Object],0
Concept Check ,[object Object],[object Object],[object Object],[object Object],[object Object]
Answer ,[object Object],[object Object]
Cytoplasm Glucose FADH 2 Mitochondrion Maximum per glucose: O XIDATIVE P HOSPHORYLATION (Electron Transport and Chemiosmosis) C ITRIC  A CID C YCLE Electron shuttle across membrane 2 NADH 2 NADH 2 NADH 6 NADH 2 (or 2 FADH 2 ) 2 Acetyl CoA G LYCOLYSIS 2 Pyruvate About 38 ATP  about 34 ATP by substrate-level phosphorylation by oxidative phosphorylation  2 ATP by substrate-level phosphorylation  2 ATP
6.13 Fermentation enables cells to produce ATP without oxygen ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
6.13 Fermentation enables cells to produce ATP without oxygen ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc. Animation:  Fermentation Overview
Glucose NADH NAD + 2 2 NADH 2 NAD + 2 2 ADP P ATP 2 2 Pyruvate 2 Lactate GLYCOLYSIS Lactic acid fermentation  2
6.13 Fermentation enables cells to produce ATP without oxygen ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Wine- grapes, water,  yeast Beer- water, malted barley, hops and  yeast Grains make liquors from mashing and  yeast   To Yeast, EtOH is toxic and secreted to the extracellular space. If you ferment too much, the yeast die and this limits the proof of what you are drinking.  2 ADP P ATP 2 GLYCOLYSIS NADH NAD + 2 2 NADH 2 NAD + 2 2 Pyruvate 2 Ethanol Alcohol fermentation Glucose CO 2 2 released  2
Fermentation vats for wine- have one-way valves to release the CO2 but keep out the oxygen.  Fermentation needs to happen without Oxygen.
6.14  EVOLUTION CONNECTION:  Glycolysis evolved early in the history of life on Earth ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
[object Object],Copyright © 2009 Pearson Education, Inc.
6.15 Cells use many kinds of organic molecules as fuel for cellular respiration ,[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Food, such as peanuts Proteins Fats Carbohydrates Glucose O XIDATIVE P HOSPHORYLATION (Electron Transport and Chemiosmosis) CITRIC ACID CYCLE Acetyl CoA GLYCOLYSIS Pyruvate Amino acids Glycerol Sugars Fatty acids Amino  groups G3P ATP
Concept Check ,[object Object],[object Object],[object Object],[object Object],The figure above represents an overview of the different entry pathways to cellular respiration when different macromolecules are digested for energy production.  Why are none of the digestive products entering the electron transport chain, directly?
Answer ,[object Object],The figure above represents an overview of the different entry pathways to cellular respiration when different macromolecules are digested for energy production.  Why are none of the digestive products entering the electron transport chain, directly?
6.16 Food molecules provide raw materials for biosynthesis ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Cells, tissues, organisms Proteins Fats Carbohydrates Glucose ATP needed to drive biosynthesis CITRIC ACID CYCLE Acetyl CoA GLUCOSE SYNTHESIS Pyruvate Amino acids Glycerol Sugars Fatty acids Amino  groups G3P ATP
Cytoplasm Glucose Oxidative phosphorylation (Electron Transport and Chemiosmosis) Citric acid cycle Glycolysis Pyruvate CO 2 ATP CO 2 ATP NADH and FADH 2 Mitochondrion NADH ATP
ATP (a) glucose and organic fuels has three stages produce some generates Cellular respiration uses H +  diffuse through ATP synthase by process called chemiosmosis energy for cellular work uses (b) (d) (c) (f) (e) oxidizes C 6 H 12 O 6 to pull electrons down to uses pumps H +  to create H +  gradient produces many
You should now be able to ,[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
You should now be able to ,[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
You should now be able to ,[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
You should now be able to ,[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.

Más contenido relacionado

La actualidad más candente

Respiration biochemistry
Respiration   biochemistryRespiration   biochemistry
Respiration biochemistrysvenwardle
 
Chapter 7 - Cellular Respiration
Chapter 7 - Cellular RespirationChapter 7 - Cellular Respiration
Chapter 7 - Cellular Respirationcavalierem
 
Cellular respiration
Cellular respirationCellular respiration
Cellular respirationKarl Pointer
 
Photosynthesisand cellularrespiration
Photosynthesisand cellularrespirationPhotosynthesisand cellularrespiration
Photosynthesisand cellularrespirationMuhmmad Asif
 
4.4 aerobic respiration
4.4 aerobic respiration4.4 aerobic respiration
4.4 aerobic respirationRebecca Jones
 
8.2 Cell Respiration
8.2 Cell Respiration8.2 Cell Respiration
8.2 Cell Respirationdabagus
 
Cellular respiration 2012
Cellular respiration 2012Cellular respiration 2012
Cellular respiration 2012Carla
 
Cellular respiration introduction for 9th grade biology
Cellular respiration introduction for 9th grade biologyCellular respiration introduction for 9th grade biology
Cellular respiration introduction for 9th grade biologyStephanie Beck
 
Energy Metabolism
Energy MetabolismEnergy Metabolism
Energy MetabolismAlok Kumar
 
Cellular respiration lecture
Cellular respiration lectureCellular respiration lecture
Cellular respiration lectureIBslides
 
03.7 biochemistry - cellular respiration
03.7   biochemistry - cellular respiration03.7   biochemistry - cellular respiration
03.7 biochemistry - cellular respirationmralfordscience
 
Cellular Energy pt.2
Cellular Energy pt.2Cellular Energy pt.2
Cellular Energy pt.2Jolie Yu
 
9 cellular respiration
9 cellular respiration9 cellular respiration
9 cellular respirationbasel magdy
 
cellular respiration
cellular respirationcellular respiration
cellular respirationYang Durana
 
Cellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qsCellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qstas11244
 
Photosynthesis and Cellular Respiration
Photosynthesis and Cellular RespirationPhotosynthesis and Cellular Respiration
Photosynthesis and Cellular RespirationEasyShiksha.Com
 
5. anaerobic respiration
5. anaerobic respiration5. anaerobic respiration
5. anaerobic respirationcircle4biology
 

La actualidad más candente (20)

Respiration biochemistry
Respiration   biochemistryRespiration   biochemistry
Respiration biochemistry
 
Chapter 7 - Cellular Respiration
Chapter 7 - Cellular RespirationChapter 7 - Cellular Respiration
Chapter 7 - Cellular Respiration
 
Cellular respiration
Cellular respirationCellular respiration
Cellular respiration
 
Photosynthesisand cellularrespiration
Photosynthesisand cellularrespirationPhotosynthesisand cellularrespiration
Photosynthesisand cellularrespiration
 
Cell resp
Cell respCell resp
Cell resp
 
4.4 aerobic respiration
4.4 aerobic respiration4.4 aerobic respiration
4.4 aerobic respiration
 
8.2 Cell Respiration
8.2 Cell Respiration8.2 Cell Respiration
8.2 Cell Respiration
 
Cellular respiration 2012
Cellular respiration 2012Cellular respiration 2012
Cellular respiration 2012
 
Cellular respiration introduction for 9th grade biology
Cellular respiration introduction for 9th grade biologyCellular respiration introduction for 9th grade biology
Cellular respiration introduction for 9th grade biology
 
Energy Metabolism
Energy MetabolismEnergy Metabolism
Energy Metabolism
 
Cellular respiration lecture
Cellular respiration lectureCellular respiration lecture
Cellular respiration lecture
 
03.7 biochemistry - cellular respiration
03.7   biochemistry - cellular respiration03.7   biochemistry - cellular respiration
03.7 biochemistry - cellular respiration
 
Cellular Energy pt.2
Cellular Energy pt.2Cellular Energy pt.2
Cellular Energy pt.2
 
Cellular Respiration
Cellular RespirationCellular Respiration
Cellular Respiration
 
Respiration
RespirationRespiration
Respiration
 
9 cellular respiration
9 cellular respiration9 cellular respiration
9 cellular respiration
 
cellular respiration
cellular respirationcellular respiration
cellular respiration
 
Cellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qsCellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qs
 
Photosynthesis and Cellular Respiration
Photosynthesis and Cellular RespirationPhotosynthesis and Cellular Respiration
Photosynthesis and Cellular Respiration
 
5. anaerobic respiration
5. anaerobic respiration5. anaerobic respiration
5. anaerobic respiration
 

Similar a 10 21 09 Lecture

Aerobic Respiration vs Anaerobic Respiration vs Fermentation
Aerobic Respiration vs Anaerobic Respiration vs FermentationAerobic Respiration vs Anaerobic Respiration vs Fermentation
Aerobic Respiration vs Anaerobic Respiration vs FermentationRana Basit
 
Respiration stage 1
Respiration stage 1Respiration stage 1
Respiration stage 1Amy Allen
 
Respiration by Mr. K. S. Sontakke
Respiration by Mr. K. S. SontakkeRespiration by Mr. K. S. Sontakke
Respiration by Mr. K. S. SontakkeKAILASHSONTAKKE
 
Lectures ch06
Lectures ch06Lectures ch06
Lectures ch06merrittl
 
Cellular Respiration Notes for simple explanation of the process
Cellular Respiration Notes for simple explanation of the processCellular Respiration Notes for simple explanation of the process
Cellular Respiration Notes for simple explanation of the process3glambdin
 
Module 6, lesson 2 cell respiration
Module 6, lesson 2 cell respirationModule 6, lesson 2 cell respiration
Module 6, lesson 2 cell respirationCRCourseDev
 
Cell respiration
Cell respirationCell respiration
Cell respirationdawn holt
 
How cells harvest or extract energy - Cell respiration
How cells harvest or extract energy - Cell respirationHow cells harvest or extract energy - Cell respiration
How cells harvest or extract energy - Cell respirationVi Lia
 
Cellular respiration
Cellular respirationCellular respiration
Cellular respirationAmy Allen
 
3.7 cell respiration
3.7 cell respiration3.7 cell respiration
3.7 cell respirationcartlidge
 

Similar a 10 21 09 Lecture (20)

Lab 9
Lab  9Lab  9
Lab 9
 
Cellular Respiration Essay
Cellular Respiration EssayCellular Respiration Essay
Cellular Respiration Essay
 
Aerobic Respiration vs Anaerobic Respiration vs Fermentation
Aerobic Respiration vs Anaerobic Respiration vs FermentationAerobic Respiration vs Anaerobic Respiration vs Fermentation
Aerobic Respiration vs Anaerobic Respiration vs Fermentation
 
cell-respiration (1).ppt
cell-respiration (1).pptcell-respiration (1).ppt
cell-respiration (1).ppt
 
Respiration stage 1
Respiration stage 1Respiration stage 1
Respiration stage 1
 
Respiration by Mr. K. S. Sontakke
Respiration by Mr. K. S. SontakkeRespiration by Mr. K. S. Sontakke
Respiration by Mr. K. S. Sontakke
 
Biological oxidation
Biological oxidationBiological oxidation
Biological oxidation
 
Lectures ch06
Lectures ch06Lectures ch06
Lectures ch06
 
Cellular Respiration Notes for simple explanation of the process
Cellular Respiration Notes for simple explanation of the processCellular Respiration Notes for simple explanation of the process
Cellular Respiration Notes for simple explanation of the process
 
Module 6, lesson 2 cell respiration
Module 6, lesson 2 cell respirationModule 6, lesson 2 cell respiration
Module 6, lesson 2 cell respiration
 
Cell respiration
Cell respirationCell respiration
Cell respiration
 
How cells harvest or extract energy - Cell respiration
How cells harvest or extract energy - Cell respirationHow cells harvest or extract energy - Cell respiration
How cells harvest or extract energy - Cell respiration
 
Chapter 8 3
Chapter 8 3Chapter 8 3
Chapter 8 3
 
Chapter 8 3
Chapter 8 3Chapter 8 3
Chapter 8 3
 
Cellular respiration
Cellular respirationCellular respiration
Cellular respiration
 
Cellular Energetics
Cellular EnergeticsCellular Energetics
Cellular Energetics
 
Grade 11 cellular respiration
Grade 11 cellular respiration Grade 11 cellular respiration
Grade 11 cellular respiration
 
3.7 cell respiration
3.7 cell respiration3.7 cell respiration
3.7 cell respiration
 
3 130909221817-
3 130909221817-3 130909221817-
3 130909221817-
 
Cell Respiration APBio
Cell Respiration APBioCell Respiration APBio
Cell Respiration APBio
 

Último

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 

Último (20)

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 

10 21 09 Lecture

  • 1. Chapter 6 How Cells Harvest Chemical Energy 0
  • 2.
  • 3.
  • 4.
  • 5.
  • 6. Cytoplasm Glucose FADH 2 Mitochondrion Maximum per glucose: O XIDATIVE P HOSPHORYLATION (Electron Transport and Chemiosmosis) C ITRIC A CID C YCLE Electron shuttle across membrane 2 NADH 2 NADH 2 NADH 6 NADH 2 (or 2 FADH 2 ) 2 Acetyl CoA G LYCOLYSIS 2 Pyruvate About 38 ATP  about 34 ATP by substrate-level phosphorylation by oxidative phosphorylation  2 ATP by substrate-level phosphorylation  2 ATP
  • 7.
  • 8.
  • 9. Glucose NADH NAD + 2 2 NADH 2 NAD + 2 2 ADP P ATP 2 2 Pyruvate 2 Lactate GLYCOLYSIS Lactic acid fermentation  2
  • 10.
  • 11. Wine- grapes, water, yeast Beer- water, malted barley, hops and yeast Grains make liquors from mashing and yeast To Yeast, EtOH is toxic and secreted to the extracellular space. If you ferment too much, the yeast die and this limits the proof of what you are drinking. 2 ADP P ATP 2 GLYCOLYSIS NADH NAD + 2 2 NADH 2 NAD + 2 2 Pyruvate 2 Ethanol Alcohol fermentation Glucose CO 2 2 released  2
  • 12. Fermentation vats for wine- have one-way valves to release the CO2 but keep out the oxygen. Fermentation needs to happen without Oxygen.
  • 13.
  • 14.
  • 15.
  • 16. Food, such as peanuts Proteins Fats Carbohydrates Glucose O XIDATIVE P HOSPHORYLATION (Electron Transport and Chemiosmosis) CITRIC ACID CYCLE Acetyl CoA GLYCOLYSIS Pyruvate Amino acids Glycerol Sugars Fatty acids Amino groups G3P ATP
  • 17.
  • 18.
  • 19.
  • 20. Cells, tissues, organisms Proteins Fats Carbohydrates Glucose ATP needed to drive biosynthesis CITRIC ACID CYCLE Acetyl CoA GLUCOSE SYNTHESIS Pyruvate Amino acids Glycerol Sugars Fatty acids Amino groups G3P ATP
  • 21. Cytoplasm Glucose Oxidative phosphorylation (Electron Transport and Chemiosmosis) Citric acid cycle Glycolysis Pyruvate CO 2 ATP CO 2 ATP NADH and FADH 2 Mitochondrion NADH ATP
  • 22. ATP (a) glucose and organic fuels has three stages produce some generates Cellular respiration uses H + diffuse through ATP synthase by process called chemiosmosis energy for cellular work uses (b) (d) (c) (f) (e) oxidizes C 6 H 12 O 6 to pull electrons down to uses pumps H + to create H + gradient produces many
  • 23.
  • 24.
  • 25.
  • 26.

Notas del editor

  1. Answer: 4
  2. Answer: 2
  3. Figure 6.12 An estimated tally of the ATP produced by substrate-level and oxidative phosphorylation in cellular respiration.
  4. Fermentation captures significantly less energy from a glucose molecule than is captured from glucose through respiration. Student Misconceptions and Concerns 1. Perhaps more than anywhere else in general biology, students studying aerobic metabolism may fail to see the forest for the trees. Students may focus on the details of each stage of aerobic metabolism and devote little attention to the overall process and products. Consider emphasizing the products and energy yields associated with glycolysis, the citric acid cycle, and oxidative phosphorylation before detailing the specifics of each reaction. 2. The location within a cell in which each reaction takes place is often forgotten in the details of the chemical processes, but it is important to emphasize. Consider using Figure 6.12 as a common reference to locate each stage as you discuss the details of cellular respiration. 3. Students frequently think that plants have chloroplasts instead of mitochondria. Take care to point out the need for mitochondria in plants when photosynthesis is not efficient or possible (such as during the night). 4. Students may expect that fermentation will produce alcohol and maybe even carbon dioxide. Take the time to clarify the different possible products of fermentation and correct this general misconception. Teaching Tips 1. The text notes that some microbes are useful in the dairy industry because they produce lactic acid. However, the impact of acids on milk may not be obvious to many students. Consider a simple demonstration mixing about equal portions of milk (skim or 2%) with some acid (vinegar will work). Notice the accumulation of strands of milk curd (protein) on the side of the container and stirring device. 2. Dry wines are produced when the yeast cells use up all or most of the sugar available. Sweet wines result when the alcohol accumulates enough to inhibit fermentation before the sugar is depleted. 3. Exposing fermenting yeast to oxygen will slow or stop the process, because the yeast will switch back to aerobic respiration. When fermentation is rapid, the carbon dioxide produced drives away the oxygen immediately above the wine. However, as fermentation slows down, the wine must be sealed to prevent oxygen exposure and permit the fermentation process to finish.
  5. Fermentations are used by the dairy industry to make cheese and yogurt, while other industries produce soy sauce and sauerkraut through fermentation reactions. Student Misconceptions and Concerns 1. Perhaps more than anywhere else in general biology, students studying aerobic metabolism may fail to see the forest for the trees. Students may focus on the details of each stage of aerobic metabolism and devote little attention to the overall process and products. Consider emphasizing the products and energy yields associated with glycolysis, the citric acid cycle, and oxidative phosphorylation before detailing the specifics of each reaction. 2. The location within a cell in which each reaction takes place is often forgotten in the details of the chemical processes, but it is important to emphasize. Consider using Figure 6.12 as a common reference to locate each stage as you discuss the details of cellular respiration. 3. Students frequently think that plants have chloroplasts instead of mitochondria. Take care to point out the need for mitochondria in plants when photosynthesis is not efficient or possible (such as during the night). 4. Students may expect that fermentation will produce alcohol and maybe even carbon dioxide. Take the time to clarify the different possible products of fermentation and correct this general misconception. Teaching Tips 1. The text notes that some microbes are useful in the dairy industry because they produce lactic acid. However, the impact of acids on milk may not be obvious to many students. Consider a simple demonstration mixing about equal portions of milk (skim or 2%) with some acid (vinegar will work). Notice the accumulation of strands of milk curd (protein) on the side of the container and stirring device. 2. Dry wines are produced when the yeast cells use up all or most of the sugar available. Sweet wines result when the alcohol accumulates enough to inhibit fermentation before the sugar is depleted. 3. Exposing fermenting yeast to oxygen will slow or stop the process, because the yeast will switch back to aerobic respiration. When fermentation is rapid, the carbon dioxide produced drives away the oxygen immediately above the wine. However, as fermentation slows down, the wine must be sealed to prevent oxygen exposure and permit the fermentation process to finish.
  6. Figure 6.13A Lactic acid fermentation oxidizes NADH to NAD + and produces lactate.
  7. The carbon dioxide provides the bubbles in beer and champagne and also the bubbles in dough that cause bread to rise. Student Misconceptions and Concerns 1. Perhaps more than anywhere else in general biology, students studying aerobic metabolism may fail to see the forest for the trees. Students may focus on the details of each stage of aerobic metabolism and devote little attention to the overall process and products. Consider emphasizing the products and energy yields associated with glycolysis, the citric acid cycle, and oxidative phosphorylation before detailing the specifics of each reaction. 2. The location within a cell in which each reaction takes place is often forgotten in the details of the chemical processes, but it is important to emphasize. Consider using Figure 6.12 as a common reference to locate each stage as you discuss the details of cellular respiration. 3. Students frequently think that plants have chloroplasts instead of mitochondria. Take care to point out the need for mitochondria in plants when photosynthesis is not efficient or possible (such as during the night). 4. Students may expect that fermentation will produce alcohol and maybe even carbon dioxide. Take the time to clarify the different possible products of fermentation and correct this general misconception. Teaching Tips 1. The text notes that some microbes are useful in the dairy industry because they produce lactic acid. However, the impact of acids on milk may not be obvious to many students. Consider a simple demonstration mixing about equal portions of milk (skim or 2%) with some acid (vinegar will work). Notice the accumulation of strands of milk curd (protein) on the side of the container and stirring device. 2. Dry wines are produced when the yeast cells use up all or most of the sugar available. Sweet wines result when the alcohol accumulates enough to inhibit fermentation before the sugar is depleted. 3. Exposing fermenting yeast to oxygen will slow or stop the process, because the yeast will switch back to aerobic respiration. When fermentation is rapid, the carbon dioxide produced drives away the oxygen immediately above the wine. However, as fermentation slows down, the wine must be sealed to prevent oxygen exposure and permit the fermentation process to finish.
  8. Figure 6.13B Alcohol fermentation oxidizes NADH to NAD + and produces ethanol and CO 2 .
  9. Figure 6.13C Fermentation vats for wine.
  10. Ancient prokaryotes probably used glycolysis to make ATP long before oxygen was present in Earth’s atmosphere. Student Misconceptions and Concerns 1. Perhaps more than anywhere else in general biology, students studying aerobic metabolism may fail to see the forest for the trees. Students may focus on the details of each stage of aerobic metabolism and devote little attention to the overall process and products. Consider emphasizing the products and energy yields associated with glycolysis, the citric acid cycle, and oxidative phosphorylation before detailing the specifics of each reaction. 2. The location within a cell in which each reaction takes place is often forgotten in the details of the chemical processes, but it is important to emphasize. Consider using Figure 6.12 as a common reference to locate each stage as you discuss the details of cellular respiration. 3. Students frequently think that plants have chloroplasts instead of mitochondria. Take care to point out the need for mitochondria in plants when photosynthesis is not efficient or possible (such as during the night). Teaching Tips 1. The widespread occurrence of glycolysis, which takes place in the cytosol and independent of organelles, suggests that this process had an early evolutionary origin. Since atmospheric oxygen was not available in significant amounts during the early stages of Earth’s history, and glycolysis does not require oxygen, it is likely that this chemical pathway was used by the prokaryotes in existence at that time. Students focused on the evolution of large, readily apparent structures such as wings and teeth may have never considered the evolution of cellular chemistry.
  11. Teaching Tips 1. The same mass of fat stores nearly twice as many calories (about 9 kcal per gram) as an equivalent mass of protein or carbohydrates (about 4.5–5 kcal per gram). Fat is therefore an efficient way to store energy in animals and many plants. To store an equivalent amount of energy in the form of carbohydrates or proteins would require about twice the mass, adding a significant burden to the organism’s structure. (For example, if you were 20 lbs overweight, you would be nearly 40 lbs overweight if the same energy were stored as carbohydrates or proteins instead of fat). 2. Figure 6.15 is an important visual synthesis of the diverse fuels that can enter into cellular respiration and the various stages of this process. Figures such as this can serve as a visual anchor to integrate the many aspects of this chapter. 3. The final modules in this chapter may raise questions about obesity and proper diet. The Centers for Disease Control and Prevention website, www.cdc.gov/nccdphp/dnpa/, discusses many aspects of nutrition, obesity, and general physical fitness and is a useful reference for teachers and students.
  12. Figure 6.15 Pathways that break down various food molecules.
  13. Answer: 2
  14. For BLAST Animation Building a Protein, go to Animation and Video Files. Student Misconceptions and Concerns 1. Many students may only view nutrients as sources of calories. As noted in Module 6.16, the monomers of many nutrients are recycled into synthetic pathways of organic molecules. Teaching Tips 1. The final modules in this chapter may raise questions about obesity and proper diet. The Centers for Disease Control and Prevention website, www.cdc.gov/nccdphp/dnpa/, discusses many aspects of nutrition, obesity, and general physical fitness and is a useful reference for teachers and students.
  15. Figure 6.16 Biosynthesis of large organic molecules from intermediates of cellular respiration.