SlideShare una empresa de Scribd logo
1 de 63
Implementation of
Temperature-Based
Phase Change Memory Model
Using Verilog-A
Student : Yi-Bo Liao
Adviser : Meng-Hsueh Chiang Ph.D.

                                    1
Outline                                 LOGO




     Background



          Verilog-A ideal PCM model




          Temperature-based PCM model




     Conclusion prospect




                                           2
LOGO




Background



    Verilog-A ideal PCM model




    Temperature-based PCM model




Conclusion and prospect




                                     3
LOGO




Background


       Phase change memory; PCM



       Introduction of Verilog-A




                                      4
LOGO




Background


       Phase change memory; PCM



       Introduction of Verilog-A




                                      5
Phase change memory (PCM) (1/2)
                             LOGO

 Phase change memory; PCM.
 The material based on Ge2Sb2Te5 (GST).
 The first proposed by S. R. Ovshinsky in
 1968 and is also called Ovonic Unified
 Memory (OUM).

                                                                             Top Electrode
                                                             VIII
                                                             2
     III       IV         V           VI           VII            He   GST
 5         6         7            8            9             10
       B        C             N        O             F            Ne
 13        14        15           16           17            18
      Al        Si            P            S        Cl            Ar
 31
      Ga
           32
                Ge
                     33
                          As
                                  34
                                       Se
                                               35
                                                    Br
                                                             36
                                                                  Kr
                                                                                  Heater
 49
      In
           50
                Sn
                     51
                          Sb
                                  52
                                       Te
                                               53
                                                         I
                                                             54
                                                                  Xe
                                                                       Isolator
 81        82        83           84           85            86
      Tl        Pb        Bi           Po           At            Rn
                                                                            Bottom Electrode

                                                                                               6
Phase change memory (PCM) (2/2)
                             LOGO

 The PCM phase states:
   Amorphous state, Reset
   High resistance (~MΩ)
   Crystalline state, Set
   Low resistance (~kΩ)
   Partial crystalline
   The resistance between amorphous and crystalline.




            Ref. A. Itri et al., “Analysis of phase-transformation dynamics and estimation of amorphous-chalcogenide fraction in phase-
            change memories,” IEEE 42nd Annual International Reliability Physics Symposium, Phoenix, 2004.                                7
Relation of time and temperature LOGO
 The PCM statuses can be altered by current
 pulsing.
   Amorphous state, Reset :
   Heating above the melting point (Tm) and then cooled down to Tx rapidly.
   Crystalline state, Set :
   A lower temperature between Tm and Tx should be kept for a certain
   period of time (TSet).

          Top Electrode
    GST


               Heater
    Isolator

         Bottom Electrode
                                                                   TReset

                                                                     TSet
                Ref. F.Atwood et al., “Current status of Chalcogenide phase change memory,” Device Research Conf. Tech. Dig., vol.1, pp. 29-
                33, 2005.                                                                                                                   8
PCM characteristics                                         LOGO

   Non-linear I-V characteristic.
   (non-linear resistance)
                      Programming region




Read region
                                           ISet        IReset
              I-V curve                    R-I curve

                                                                9
Threshold switching                                                                                                        LOGO

 Threshold voltage, Vth
 Dynamic-on resistance, Ron
 Holding voltage, Vh


                                                             Vth

                   Ron


                                                                                                                          2.5kΩ


                       Vth
                                                      V − VB      dVB                               IP
                                                  IP = A     − CP
                                                         RL        dt
   Vh
         Ref. D. Ielmini et al., “Parasitic reset in the programming transient of PCMs,” IEEE Electron Device Letter, vol.26, No. 11, Nov.
         2005.                                                                                                                           10
LOGO




Background


       Phase change memory; PCM



       Introduction of Verilog-A




                                      11
Introduction                                                                                                    LOGO

 Verilog-Analog and Mixed-Signal
 In HSPICE version of 2006.03, it support
 compiler of Verilog-A.
 The Verilog-A model can be included in
 HSPICE. (seem a sub-circuit)




         Ref. Accellera, “Verilog_AMS language reference manual version2.2. November 2004,” available online:
         http://www.accellera.org/home.                                                                            12
Verilog-A characteristics                                                       LOGO

        Mathematical function (differential, integral)

        Module definition.

                                                                        dV ( p, n )
                                                 C
module       Cap(p,n);
                                                     I ( p, n ) = C ×
inout                    p,n;                                              dt
electrical               p,n;
parameter                real   C=10p;
analog       begin
             I(p,n)      <+     ddt(C*V(p,n));
end
endmodule




                                                                                      13
LOGO




Background



    Verilog-A ideal PCM model




    Temperature-based PCM model




Conclusion and prospect




                                     14
LOGO




Verilog-A ideal PCM model


        Model structure



        Model implementation



        Model simulation results




                                      15
LOGO




Verilog-A ideal PCM model


        Model structure



        Model implementation



        Model simulation results




                                      16
Model structure                                                             LOGO

    Ideal model only considers two states:
            Amorphous state, Reset
            Crystalline state, Set
    The ideal PCM approximated                                  two     types
    non-linear resistance.
      Top Electrode
GST

                             Set I-V curve      ISet , TSet            Set state
                                   or                                     or
           Heater
Isolator

     Bottom Electrode       Reset I-V curve   IReset , TReset         Reset state
                        p
                                PCMR             Decision              Memory
               p                module           module                module
                        n


                                         To vary the state of model
               n

                                                                                    17
LOGO




Verilog-A ideal PCM model


        Model structure



        Model implementation



        Model simulation results




                                      18
PCMR module (1/3)                                                    LOGO

 To describe the I-V characteristic of the PCM
 There are two independent I-V curves

                I




                                     Ron


                                  (Vx,Ix)
                      RSet                   Rsn
                                                     (Vth,Ith)
                                            RReset
                                                                 V
                             Vh


                                                                        19
PCMR module (2/3)                                                                 LOGO

      Amorphous state, Reset




I
                                            if ( I(p,n) <= Ith )   begin

                 Ron                                    V(p,n)     <+      I(p,n)*Rreset;
                                            end
                                            else        begin
                           (Vth, Ith)                   V(p,n)     <+      Vh+I(p,n)*Ron;
Ith
                  RReset                    end
            Vh               Vth
                                        V



                                                                                            20
PCMR module (3/3)                                                        LOGO

     Crystalline state, Set




I
                                    if ( I(p,n) <= Ix )   begin

                          Ron
                                                V(p,n)    <+      I(p,n)*Rset;
                                    end
               (VX, IX)             else        begin
IX
        RSet                                    V(p,n)    <+      Vh+I(p,n)*Ron;
                                    end
                Vh VX
                                V



                                                                                 21
Decision module (1/4)                                  LOGO

    The Set and Reset programming condition
    are determined respectively.
       ISet, TSet
       IReset, TReset
    The QS and QR output to memory module.



                          Set part        QS

Input from PCMR module                Output to memory module



                         Reset part       QR




                                                                22
Decision module (2/4)                                                                   LOGO

      Using RC circuit to estimate the pulse width
      (TReset TSet).
      Using CCR (Current Control Resistance) to
      determine the pulse amplitude.
                    ⎡       ⎛ − t ⎞⎤
      VC (t ) = Vrc ⎢1 − exp⎜     ⎟
                            ⎜ R C ⎟⎥
                    ⎢
                    ⎣       ⎝ RC ⎠⎥ ⎦         Current                       Resistance

TReset or TSet
                    ⎡ Vrc           ⎤
       t = RRC C ln ⎢               ⎥
                    ⎣ Vrc − VC (t ) ⎦                            AS




                                                Resistance (Ω)
Fermi-Dirac
                          AS − BS
     R(I ) = BS +
                    1 + exp[(I S − I )× F ]                      BS

                                                                      ISF   Current (A)




                                                                                             23
Decision module (3/4)                                                                           LOGO

      Set part (crystalline)                           <1> Iin<ISet
                                                       Discharge (Do not estimate time)
                   Vrc=1V
                                                       <2> ISet≦Iin<IReset
       CCR_Set-1
Iin                                                    Charge (Estimate time)
                                                       If T≧TSet,QS=1
                     RRC
                                                       <3> Iin>IReset
       CCR_Set-2                                       Discharge (Do not estimate time)

                    RMin                                   R
                                               QS               RMax          RRC             RRC
                                                    CCR_Set-1
       CCR_Set-3            CCR_Set-4

                                                                RMin          RMin            RMax
                    RMin                RMin   CS   CCR_Set-2
                    RMax                RMax
                                                                RMin          RMax            RMax
                                                    CCR_Set-3

                                                                RMax          RMax            RMin
                                                    CCR_Set-4
                                                                       ISet          IReset          I


                                                                                                         24
Decision module (4/4)                                                                  LOGO

 Reset part (amorphous)
                                           <1> Iin<IReset
                      Vrc=1V               Discharge (Do not estimate time)
        CCR_Reset-1
  Iin                                      <2> Iin>IReset
                                           Charge (Estimate time)
                       RRC                 If T≧TReset,QR=1

                               QR
        CCR_Reset-2                          R
                                                  RMax          RMax            RRC
                                    CCR_Reset-1
                       RMin    CR
                       RMax                       RMin          RMin            RMax
                                    CCR_Reset-2
                                                         ISet          IReset           I




                                                                                            25
Memory module                                                                   LOGO

       Using VCR (Voltage Control Resistance) and
       capacitor to record the state.
                                              <1> QR=QS<1
                        VM=3V                 VCR_Reset and VCR_Set are high
            VCR_Reset                         resistance.
       QR
QR=1                                          <2> QR=1
                         RMin
QR=0                                          Charge, Mout is high stage (3V).
                         RMax
                                              <3> QS=1
                                Mout          Discharge, Mout is low stage (0V).
            VCR_Set
       QS
QS=0                            CM
                                               R
                         RMax                         RMax
                                       VCR_Reset                    RMin
QS=1                     RMin
                                                      RMax          RMin
                                        VCR_Set
                                                              1V           V



                                                                                    26
LOGO




Verilog-A ideal PCM model


        Model structure



        Model implementation



        Model simulation results




                                      27
Model simulation                                                                            LOGO

      Ideal source testing
        DC analysis – PCM I-V characteristic
        Transient analysis – PCM R-I characteristic
      Current mirror source testing



                                                                            Current mirror
                                                                                                     Ip
                             R1 = 2k (ohm)

              P                              P            P                                     Vpcm
Iin                Vin                           Iin           Iin
                                                                     Ideal current source
           PCM           +               PCM           PCM                                   PCM
           Model                         Model         Model                                 model
                         -
              N                              N            N




                                                                                                          28
Parameters                                         LOGO




                 Parameters                  Value
Static resistance of Set, RSet           7kΩ
Programming current of Set, ISet         600μA
Programming time of Set, TSet            100ns
Static resistance of Reset, RReset       200kΩ
Programming current of Reset, IReset     1200μA
Programming time of Reset, TReset        100ns
Dynamic-on resistance, Ron               1kΩ
Threshold voltage, Vth                   0.78V
Holding voltage, Vh                      0.45V
Initial condition, IC                    0 or 1
                                       Set   Reset


                                                        29
DC analysis (1/2)                                                                           LOGO


                300
                                                                                                 P
                                                                                      Iin
                            Set state                                                         PCM

                250         Reset state
                                                                                              Model


                                                                                                 N


                200
 Current (μA)




                150

                100

                 50


                  0
                      0   0.1   0.2       0.3    0.4 0.5      0.6   0.7   0.8   0.9
                                                Voltage (V)


                                                                                               30
DC analysis (2/2)                                                                                LOGO

                                                                                               R1 = 2k (ohm)
               300                                                                                              P
                                                                                     Vin
                           Set state                                                       +               PCM

               250         Reset state                                                     -               Model


                                                                                                                N


               200
Current (μA)




               150

               100

               50

                0
                     0   0.1   0.2       0.3    0.4 0.5      0.6   0.7   0.8   0.9
                                               Voltage (V)


                                                                                                               31
Transient analysis (1/2)                                                                                             LOGO

                      Input Reset and Set respectively.
                                                                                                                                            P
                             IReset - 1200μA / 100ns                                                                    Iin

                                                                                                                                      PCM

                             ISet - 600μ A / 100ns                                                                                    Model


                                                                                                                                            N




                          Input pulse                                                       Resistance of PCM model
               1400                                                                   250

               1200
                                                                                      200
               1000

               800
Current (μA)




                                                                    Resistance (kΩ)
                                                                                      150
               600

               400                                                                    100

               200
                                                                                      50
                 0

               -200                                                                    0
                      0        100      200       300   400   500                           0    100    200       300         400     500
                                          Time (ns)                                                       Time (ns)


                                                                                                                                       32
Transient analysis (2/2)                                                                                                 LOGO

                         A series of current pulsing.
                         R-I curve
                                                                                                                                                       P
                                                                                                                                 Iin

                                                                                                                                                  PCM
                                                                                                                                                  Model


                                                                                                                                                       N




               250                                                                      1E+7
                                                                                                                              Real Device-Reset
                                                                                                                              Real Device-Set
               200                                                                                                            Verilog-A Model-Set
                                                                                        1E+6                                  Verilog-A Model-Reset




                                                                       Resistance (Ω)
Current (μA)




               150
                                                                                        1E+5
               100

                                                                                        1E+4
               50


                0                                                                       1E+3
                     0     500   1000     1500    2000   2500   3000                           0   200   400   600     800      1000     1200     1400
                                        Time (ns)                                                              Current (μA)




                                                                                                                                                      33
Current mirror source testing (1/2)
                                 LOGO

               The variation of current pulse.

                                                                                        Current mirror
                                                                                                                 Ip
               1800
                                                               Iin
               1600                                                        Iin
                                                                                                            Vpcm
                                                               Ip
               1400                                                              Ideal current source
                                                                                                         PCM
               1200                                                                                      model
Current (μA)




               1000
               800
               600
               400
               200
                 0
                      0   100   200   300     400 500   600   700    800
                                            Time (ns)



                                                                                                                      34
Current mirror source testing (2/2)
                                              LOGO

                     The variation of voltage and PCM
                                                                                                                                      Current mirror
                                                                                                                                                               Ip




                     resistance.
                                                                                                                                                          Vpcm
                                                                                                                         Iin
                                                                                                                               Ideal current source
                                                                                                                                                       PCM
                                                                                                                                                       model




           2.0                                                                   250


                                                                                 200
           1.5

                                                                                 150




                                                                     Rpcm (kΩ)
Vpcm (V)




           1.0
                                                                                 100

           0.5
                                                                                 50


           0.0                                                                    0
                 0   100   200   300     400 500   600   700   800                     0   100   200   300     400       500        600         700        800
                                       Time (ns)                                                             Time (ns)


                                                                                                                                                                35
LOGO




Background



    Verilog-A ideal PCM model




    Temperature-based PCM model




Conclusion and prospect




                                     36
LOGO




Temperature-based PCM model


       Model structure



       Model implementation



       Model simulation results




                                     37
LOGO




Temperature-based PCM model


       Model structure



       Model implementation



       Model simulation results




                                     38
Temperature-based PCM model                    LOGO

 Using temperature to determine the state of
 the PCM.

 Model will consider the partial crystalline




                                                  39
Model structure                                                                    LOGO

 The temperature is constituted with two parts:
   Joule heating (Wj)            t1 W − W
                         TPCM =                           ∫
                                     j   d
                                           dt
   Heat dissipation (Wd)        t0 C × V

                                               TPCM’ TPCM
                   Wj
 p                               Temperature                  Crystalline   VC
      PCMR
                                  Calculation                  Fraction
 n    module                       module                      module
                                                                                 Decision
                                                                                 module

                         Wd         Heat
                                 Dissipation      Feed VC back to calculate
                                                   thermal conductivity (k)
                                   module




                                  Memory
     Deliver VMem to calculate    module
         PCM resistance


                                                                                        40
LOGO




Temperature-based PCM model


       Model structure



       Model implementation



       Model simulation results




                                     41
PCMR module                                                               LOGO

 The PCM resistance based on the crystalline
 fraction (memorized), by a linear relation

           RPCM (VMem ) = RSet + (1 − VMem )(RReset − RSet )
 The threshold voltage                               is   also   varied   by
 crystalline fraction
                                                      (
        Vth (VMem ) = V X + (1 − VMem ) Vth _ Max − V X           )
   I


                        Ron



   IX                   RPCM2
                                RPCM1
        RSet                            RReset



               Vh VX Vth_2 Vth_1 Vth_Max
                                                 V



                                                                               42
Temperature calculation module (1/3)LOGO

 The temperature is constituted with two
 parts:
                                 t1 W − W     C : Heat capacity
                                    ∫
   Joule heating (Wj)    TPCM =
                                     j   d
                                           dt
   Heat dissipation (Wd)        t0 C × V      V : Volume of the
                                                        active region

W j = I PCM × VPCM = I PCM × (Vh + I PCM × Ron )
 Considering the heat dissipation in                          one
 dimension, Wd can be approximated as
         ∂Q
  Wd =
         ∂t
            =∑  k∇TPCM             k : thermal conductivity

         ⎛ ∂TPCM ∂TPCM ∂TPCM    ⎞   TPCM − Troom
      = k⎜
         ⎜ ∂x + ∂y + ∂z         ⎟=k
                                ⎟
         ⎝                      ⎠      d PCM


                                                                    43
Temperature calculation module (2/3)LOGO

 The thermal energy differential equation
 yields
                                      ?
                       d PCM W j ⎡       ⎛ −k                                          ⎞⎤
           TPCM (t ) =           ⎢1 − exp⎜
                                         ⎜d                                          t ⎟⎥ + Troom
                                                                                       ⎟
                           k     ⎢
                                 ⎣       ⎝ PCM CV                                      ⎠⎥⎦
                                                                                   ?
 The thermal conductivity k is a function of
 the crystalline fraction VC, it is approximated
 as
                                                                                                                              kC


  k (VC ) = (kC − k A )×VC + k A
                                                                   kA



               Ref. Y.-T. Kim et al., “Study on cell charateristics of PRAM using the phase-change simulation,” IEEE Simulation of
               Semiconductor Processes and Device Conference, pp.211-214, Sep. 2005.                                                 44
Temperature calculation module (3/3)LOGO

                     d PCM W j ⎡       ⎛ −k         ⎞⎤
         TPCM (t ) =           ⎢1 − exp⎜
                                       ⎜d         t ⎟⎥ + Troom
                                                    ⎟
                         k     ⎢
                               ⎣       ⎝ PCM CV     ⎠⎥⎦

 The dPCM can be approached as

               d PCM =
                             (Tm − Troom )× kC
                         I Reset × (Vh + I Reset Ron )

 Assuming the static temperature is reached
 after about a period of 5 time constants, CV
 is approximated as
                          TReset × k A
                     CV =
                          5 × d PCM

                                                                 45
Crystalline fraction                                                                                                       LOGO

 The crystalline fraction module follows JMA
 equation.

   If Tx≦TPCM<Tm Calculate VC


 Johnson-Mehl-Avrami (JMA) equation
                                  ⎡ ⎛t                     ⎞
                                                              p
                                                                ⎛ − Ea                     ⎞⎤
                     VC = 1 − exp ⎢− ⎜                     ⎟ exp⎜                          ⎟⎥
                                  ⎢ ⎜ t0                   ⎟    ⎜k T                       ⎟⎥
      t : time
                                  ⎣ ⎝                      ⎠    ⎝ b PCM                    ⎠⎦

      p : nucleation rate
      Ea : activation energy
      t0 : scaling factor
      kb : Boltzmann’s constant
      TPCM : temperature

                 Ref. X. Q. Wei et al., “Universal HSPICE model for Chalcogenide based phase change memory elements,” IEEE Non-Volatile
                 Memory Technology Symposium, 15-17, pp.88-91, Nov. 2004.                                                               46
Memory module                                                   LOGO

 The memory module keeps VC unchanged
 unless temperature falls between Tx and Tm
                              Input
                            TPCM , VC




                                 Tx <= TPCM < Tm
                TPCM < Tx                          TPCM >= Tm
                                       &&
                                     dVC
                                         >= 0
                                      dt

            VMem
                            VMem=VC           VMem=0
           Unchange




                             Output
                             VMem


                                                                   47
LOGO




Temperature-based PCM model


       Model structure



       Model implementation



       Model simulation results




                                     48
Model simulation                                                                            LOGO

      Ideal source testing
        DC analysis – PCM I-V characteristic
        Transient analysis – PCM R-I characteristic
      Current mirror source testing



                                                                            Current mirror
                                                                                                     Ip
                             R1 = 2k (ohm)

              P                              P            P                                     Vpcm
Iin                Vin                           Iin           Iin
                                                                     Ideal current source
           PCM           +               PCM           PCM                                   PCM
           Model                         Model         Model                                 model
                         -
              N                              N            N




                                                                                                          49
Parameters                                      LOGO




                  Parameter               Value
Static resistance of Set, RSet         7kΩ
Programming time of Set, TSet          10ns
Static resistance of Reset, RReset     200kΩ
Programming current of Reset, IReset   1200μA
Programming time of Reset, TReset      200ns
Dynamic-on resistance, Ron             1kΩ
Threshold voltage, Vth                 0.78V
Holding voltage, Vh                    0.45V
Initial condition, IC                  0 or 1
Environment temperature, Troom         300°K




                                                     50
DC analysis (1/2)                                                                        LOGO



                300                                                                Iin
                                                                                              P


                           Rpcm=7k , Vc=1                                                  PCM
                                                                                           Model


                250        Rpcm=26.3k , Vc=0.9
                                                                                              N
                           Rpcm=84.2k , Vc=0.6
                           Rpcm=103.5k , Vc=0.5
                200        Rpcm=130.52k , Vc=0.36
 Current (μA)




                           Rpcm=200k , Vc=0
                150

                100

                50

                 0
                      0   0.1   0.2    0.3    0.4   0.5    0.6   0.7   0.8   0.9
                                             Voltage (V)

                                                                                            51
DC analysis (2/2)                                                                              LOGO

                                                                                             R1 = 2k (ohm)


                300                                                                Vin
                                                                                                              P


                            Rpcm=7k , Vc=1                                               +               PCM
                                                                                                         Model
                                                                                         -
                            Rpcm=26.3k , Vc=0.9
                250                                                                                           N
                            Rpcm=84.2k , Vc=0.6
                            Rpcm=103.5k , Vc=0.5
                200         Rpcm=130.52k , Vc=0.36
 Current (μA)




                            Rpcm=200k , Vc=0
                150

                100

                50

                 0
                      0   0.1   0.2    0.3    0.4    0.5   0.6   0.7   0.8   0.9
                                             Voltage (V)

                                                                                                             52
Transient analysis (1/2)                                                                      LOGO

                          Input the same pulse width but different
                          amplitude.
                            Pulse1 - 600μA / 100ns
                            Pulse2 - 900μ A / 100ns
                            Pulse3 - 1200μ A / 100ns
               1400                                                          250
               1200
                                                                             200
               1000

                800
Current (μA)




                                                           Resistance (kΩ)
                                                                             150
                600

                400                                                          100

                200
                                                                              50
                  0

               -200                                                            0
                      0      200     400       600   800                           0   200     400       600     800
                                   Time (ns)                                                 Time (ns)



                                                                                                                  53
Transient analysis (2/2)                                                                                                LOGO


                   1E+6                                                                                                            Iin
                                                                                                                                                              P

                              500ns   300ns
                                                                                                                                                        PCM
                              200ns   100ns                                                                                                             Model
                              80ns    50ns
                                                                                                                                                              N



                   1E+5
Resistance (ohm)




                   1E+4
                                                                                                   1E+6




                                                                                                   1E+5




                                                                                Resistance (ohm)
                   1E+3
                                                                                                   1E+4
                          0     100      200         300      400   500   600
                                               Current (μA)
                                                                                                   1E+3
                                                                                                          0   200   400    600    800    1000   1200   1400

                                                                                                                          Current (μA)




                                                                                                                                                         54
Current mirror source testing (1/2)
                                                  LOGO
               1800                                                                                                           Current mirror

               1600                                        Iin                                                                                         Ip

                                                           Ip                                                                                     Vpcm
               1400                                                                                              Iin
                                                                                                                       Ideal current source
               1200                                                                                                                            PCM
                                                                                                                                               model
               1000
Current (μA)




               800
               600
               400                                                                  250
               200
                 0                                                                  200
                      0   200   400     600       800   1000     1200
                                      Time (ns)                                     150




                                                                        Rpcm (kΩ)
                                                                                    100


                                                                                    50


                                                                                     0
                                                                                          0   200   400     600         800           1000         1200
                                                                                                          Time (ns)


                                                                                                                                                       55
Current mirror source testing (2/2)
                                                  LOGO
           2.0



           1.5
Vpcm (V)




           1.0


                                                                                           2.0                                                250
           0.5
                                                                                                                                 Vpcm
                                                                                           1.5                                   Rpcm         200
           0.0
                 0   200         400           600         800        1000   1200
                                           Time (ns)                                       1.0                                                150



                                                                                Vpcm (V)




                                                                                                                                                    Rpcm (kΩ)
                                        Current mirror
                                                                 Ip                        0.5                                                100
                                                            Vpcm
                           Iin
                                 Ideal current source
                                                         PCM
                                                                                           0.0                                                50
                                                         model



                                                                                           -0.5                                               0
                                                                                                  0   50   100     150     200   250    300
                                                                                                                 Time (ns)


                                                                                                                                                          56
Advanced application (1/3)                                                                                                                               LOGO

                  We for the first time demonstrate that the
                  same programming current amplitude can
                  generate two states (Set and Reset) at only
                  different pulse widths.
                          Single pulse:1mA, 100ns (Amorphous programming)
                          Multiple pulse:1mA, 5ns (Crystalline programming)

               1200                                                                              1200

               1000                                                                              1000

               800                                                                               800
Current (μA)




                                                                                  Current (μA)
               600                                                                               600

               400                                                                               400

               200                                                                               200

                 0                                                                                 0
                      0   20   40   60   80     100 120   140   160   180   200                         0   20   40   60   80      100 120   140   160   180   200
                                              Time (ns)                                                                         Time (ns)



                                                                                                                                                                     57
Advanced application (2/3)                                                                                                                                  LOGO

                      Single pulse                                                                       1050
                                                                                                         950
                          1mA, 100ns                                                                     850




                                                                                  Temperature (°K)
                                                                                                         750
                                                                                                         650
                                                                                                         550
                                                                                                         450
                                                                                                         350
               1200
                                                                                                         250
               1000                                                                                             0   20   40   60   80     100 120   140    160   180   200
                                                                                                                                        Time (ns)
               800
Current (μA)




               600                                                                                       0.10

               400




                                                                                  Crystalline fraction
               200

                 0                                                                                       0.05
                      0   20   40   60   80     100 120   140   160   180   200
                                              Time (ns)
                                                                                                                                                          Amorphous


                                                                                                         0.00
                                                                                                                0   20   40   60   80     100 120   140    160   180   200
                                                                                                                                        Time (ns)



                                                                                                                                                                             58
Advanced application (3/3)                                                                                                                                               LOGO

                      Multiple pulse                                                                    1050
                                                                                                                  950
                           1mA, 5ns                                                                               850




                                                                                   Temperature (°K)
                                                                                                                  750
                                                                                                                  650
                                                                                                                  550
                                                                                                                  450
                                                                                                                  350
               1200
                                                                                                                  250
               1000                                                                                                     0   20   40   60   80     100       120   140    160    180    200
                                                                                                                                                Time (ns)
               800
Current (μA)




               600                                                                                                1.2
                                                                                                                                                                        Crystalline
               400                                                                                                1.0




                                                                                           Crystalline fraction
               200                                                                                                0.8

                 0                                                                                                0.6
                      0   20   40   60   80      100 120   140   160   180   200
                                              Time (ns)                                                           0.4

                                                                                                                  0.2

                                                                                                                  0.0
                                                                                                                        0   20   40   60   80     100 120         140     160    180    200
                                                                                                                                                Time (ns)



                                                                                                                                                                                              59
LOGO




Background



    Verilog-A ideal PCM model




    Temperature-based PCM model




Conclusion and prospect




                                     60
Conclusion and prospect               LOGO

 We have presented a compact       PCM
 model using Verilog-A.
  Ideal PCM model.
  Temperature-based PCM model.

 The model are predictive, yet simple to
 use and can be implemented in any
 circuit simulators with the Verilog-A
 option.




                                           61
Conclusion and prospect               LOGO

 PCM modeling with Verilog-A is flexible
 and has good convergence based on our
 simulation.

 Due to the physics based nature of the
 model, the model can be applied to non-
 conventional circuit design technique.

 Multi-level application.




                                           62
63

Más contenido relacionado

La actualidad más candente

Protocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 InventoriesProtocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 InventoriesTill Riedel
 
Monitoring and identification of hazardous air pollutants by fast capillar…
Monitoring and identification of hazardous air pollutants by fast capillar…Monitoring and identification of hazardous air pollutants by fast capillar…
Monitoring and identification of hazardous air pollutants by fast capillar…Jennifer Maclachlan
 
Hysys print trabalho 2 rafaela-hélio
Hysys print trabalho 2 rafaela-hélioHysys print trabalho 2 rafaela-hélio
Hysys print trabalho 2 rafaela-hélioHélio Macedo
 
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Sanjay Ram
 

La actualidad más candente (8)

Protocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 InventoriesProtocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 Inventories
 
Flip book
Flip bookFlip book
Flip book
 
Exp5 bani
Exp5 baniExp5 bani
Exp5 bani
 
Final od college
Final od collegeFinal od college
Final od college
 
Morales
MoralesMorales
Morales
 
Monitoring and identification of hazardous air pollutants by fast capillar…
Monitoring and identification of hazardous air pollutants by fast capillar…Monitoring and identification of hazardous air pollutants by fast capillar…
Monitoring and identification of hazardous air pollutants by fast capillar…
 
Hysys print trabalho 2 rafaela-hélio
Hysys print trabalho 2 rafaela-hélioHysys print trabalho 2 rafaela-hélio
Hysys print trabalho 2 rafaela-hélio
 
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
 

Destacado

Heat Energy
Heat EnergyHeat Energy
Heat Energyfurrs
 
Advent 2009 Sample
Advent 2009 SampleAdvent 2009 Sample
Advent 2009 SampleCAFOD
 
Indigenous lives
Indigenous livesIndigenous lives
Indigenous livesCAFOD
 
Glasco, rhonda developing and nurturing a common vision for technology integr...
Glasco, rhonda developing and nurturing a common vision for technology integr...Glasco, rhonda developing and nurturing a common vision for technology integr...
Glasco, rhonda developing and nurturing a common vision for technology integr...William Kritsonis
 
보이스몬DS서비스_Presentation_20100416
보이스몬DS서비스_Presentation_20100416보이스몬DS서비스_Presentation_20100416
보이스몬DS서비스_Presentation_20100416Justin Shin
 
精神分裂症知多少?
精神分裂症知多少?精神分裂症知多少?
精神分裂症知多少?雪筠 林雪筠
 
Practical Puppet: Systems Building Systems
Practical Puppet: Systems Building SystemsPractical Puppet: Systems Building Systems
Practical Puppet: Systems Building SystemsAndrew Shafer
 
Interdisciplinary Programs in a Digital Arts and Technology Alliance
Interdisciplinary Programs in a Digital Arts and Technology AllianceInterdisciplinary Programs in a Digital Arts and Technology Alliance
Interdisciplinary Programs in a Digital Arts and Technology AllianceRandy Malta
 
プロジェクト成果の貨幣的価値評価法としての社内取引制度
プロジェクト成果の貨幣的価値評価法としての社内取引制度プロジェクト成果の貨幣的価値評価法としての社内取引制度
プロジェクト成果の貨幣的価値評価法としての社内取引制度石橋 秀仁
 

Destacado (20)

Heat Energy
Heat EnergyHeat Energy
Heat Energy
 
Ch10 m
Ch10 mCh10 m
Ch10 m
 
Court Case 3
Court  Case 3Court  Case 3
Court Case 3
 
Advent 2009 Sample
Advent 2009 SampleAdvent 2009 Sample
Advent 2009 Sample
 
Court Case 2
Court  Case 2Court  Case 2
Court Case 2
 
Meropr
MeroprMeropr
Meropr
 
Indigenous lives
Indigenous livesIndigenous lives
Indigenous lives
 
Glasco, rhonda developing and nurturing a common vision for technology integr...
Glasco, rhonda developing and nurturing a common vision for technology integr...Glasco, rhonda developing and nurturing a common vision for technology integr...
Glasco, rhonda developing and nurturing a common vision for technology integr...
 
보이스몬DS서비스_Presentation_20100416
보이스몬DS서비스_Presentation_20100416보이스몬DS서비스_Presentation_20100416
보이스몬DS서비스_Presentation_20100416
 
Displaying your results
Displaying your resultsDisplaying your results
Displaying your results
 
精神分裂症知多少?
精神分裂症知多少?精神分裂症知多少?
精神分裂症知多少?
 
Dskp rbt thn 6
Dskp rbt thn 6Dskp rbt thn 6
Dskp rbt thn 6
 
Practical Puppet: Systems Building Systems
Practical Puppet: Systems Building SystemsPractical Puppet: Systems Building Systems
Practical Puppet: Systems Building Systems
 
Biograf
BiografBiograf
Biograf
 
Interdisciplinary Programs in a Digital Arts and Technology Alliance
Interdisciplinary Programs in a Digital Arts and Technology AllianceInterdisciplinary Programs in a Digital Arts and Technology Alliance
Interdisciplinary Programs in a Digital Arts and Technology Alliance
 
プロジェクト成果の貨幣的価値評価法としての社内取引制度
プロジェクト成果の貨幣的価値評価法としての社内取引制度プロジェクト成果の貨幣的価値評価法としての社内取引制度
プロジェクト成果の貨幣的価値評価法としての社内取引制度
 
Student Searches
Student SearchesStudent Searches
Student Searches
 
Persecution
PersecutionPersecution
Persecution
 
Ukazka Automat
Ukazka AutomatUkazka Automat
Ukazka Automat
 
Praga
PragaPraga
Praga
 

Similar a Implementing Temperature-Based Phase Change Memory Model in Verilog-A

Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Sanjay Ram
 
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS BILBAO
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...Sanjay Ram
 
Peec Wr Freq08
Peec Wr Freq08Peec Wr Freq08
Peec Wr Freq08Antonini
 
Chemical Vapor Deposition of Ruthenium
Chemical Vapor Deposition of RutheniumChemical Vapor Deposition of Ruthenium
Chemical Vapor Deposition of Rutheniumteresaspicer
 
Basic electronics #8(2010)
Basic electronics #8(2010)Basic electronics #8(2010)
Basic electronics #8(2010)zaluu_medleg
 

Similar a Implementing Temperature-Based Phase Change Memory Model in Verilog-A (9)

5 l0380r
5 l0380r5 l0380r
5 l0380r
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
 
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
 
Peec Wr Freq08
Peec Wr Freq08Peec Wr Freq08
Peec Wr Freq08
 
Chemical Vapor Deposition of Ruthenium
Chemical Vapor Deposition of RutheniumChemical Vapor Deposition of Ruthenium
Chemical Vapor Deposition of Ruthenium
 
Nanoscale Vacuum Tubes
Nanoscale Vacuum Tubes Nanoscale Vacuum Tubes
Nanoscale Vacuum Tubes
 
Basic electronics #8(2010)
Basic electronics #8(2010)Basic electronics #8(2010)
Basic electronics #8(2010)
 
Test Requirements for Microprocessor Relays
Test Requirements for Microprocessor RelaysTest Requirements for Microprocessor Relays
Test Requirements for Microprocessor Relays
 

Último

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfSeasiaInfotech2
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 

Último (20)

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdf
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 

Implementing Temperature-Based Phase Change Memory Model in Verilog-A

  • 1. Implementation of Temperature-Based Phase Change Memory Model Using Verilog-A Student : Yi-Bo Liao Adviser : Meng-Hsueh Chiang Ph.D. 1
  • 2. Outline LOGO Background Verilog-A ideal PCM model Temperature-based PCM model Conclusion prospect 2
  • 3. LOGO Background Verilog-A ideal PCM model Temperature-based PCM model Conclusion and prospect 3
  • 4. LOGO Background Phase change memory; PCM Introduction of Verilog-A 4
  • 5. LOGO Background Phase change memory; PCM Introduction of Verilog-A 5
  • 6. Phase change memory (PCM) (1/2) LOGO Phase change memory; PCM. The material based on Ge2Sb2Te5 (GST). The first proposed by S. R. Ovshinsky in 1968 and is also called Ovonic Unified Memory (OUM). Top Electrode VIII 2 III IV V VI VII He GST 5 6 7 8 9 10 B C N O F Ne 13 14 15 16 17 18 Al Si P S Cl Ar 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr Heater 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe Isolator 81 82 83 84 85 86 Tl Pb Bi Po At Rn Bottom Electrode 6
  • 7. Phase change memory (PCM) (2/2) LOGO The PCM phase states: Amorphous state, Reset High resistance (~MΩ) Crystalline state, Set Low resistance (~kΩ) Partial crystalline The resistance between amorphous and crystalline. Ref. A. Itri et al., “Analysis of phase-transformation dynamics and estimation of amorphous-chalcogenide fraction in phase- change memories,” IEEE 42nd Annual International Reliability Physics Symposium, Phoenix, 2004. 7
  • 8. Relation of time and temperature LOGO The PCM statuses can be altered by current pulsing. Amorphous state, Reset : Heating above the melting point (Tm) and then cooled down to Tx rapidly. Crystalline state, Set : A lower temperature between Tm and Tx should be kept for a certain period of time (TSet). Top Electrode GST Heater Isolator Bottom Electrode TReset TSet Ref. F.Atwood et al., “Current status of Chalcogenide phase change memory,” Device Research Conf. Tech. Dig., vol.1, pp. 29- 33, 2005. 8
  • 9. PCM characteristics LOGO Non-linear I-V characteristic. (non-linear resistance) Programming region Read region ISet IReset I-V curve R-I curve 9
  • 10. Threshold switching LOGO Threshold voltage, Vth Dynamic-on resistance, Ron Holding voltage, Vh Vth Ron 2.5kΩ Vth V − VB dVB IP IP = A − CP RL dt Vh Ref. D. Ielmini et al., “Parasitic reset in the programming transient of PCMs,” IEEE Electron Device Letter, vol.26, No. 11, Nov. 2005. 10
  • 11. LOGO Background Phase change memory; PCM Introduction of Verilog-A 11
  • 12. Introduction LOGO Verilog-Analog and Mixed-Signal In HSPICE version of 2006.03, it support compiler of Verilog-A. The Verilog-A model can be included in HSPICE. (seem a sub-circuit) Ref. Accellera, “Verilog_AMS language reference manual version2.2. November 2004,” available online: http://www.accellera.org/home. 12
  • 13. Verilog-A characteristics LOGO Mathematical function (differential, integral) Module definition. dV ( p, n ) C module Cap(p,n); I ( p, n ) = C × inout p,n; dt electrical p,n; parameter real C=10p; analog begin I(p,n) <+ ddt(C*V(p,n)); end endmodule 13
  • 14. LOGO Background Verilog-A ideal PCM model Temperature-based PCM model Conclusion and prospect 14
  • 15. LOGO Verilog-A ideal PCM model Model structure Model implementation Model simulation results 15
  • 16. LOGO Verilog-A ideal PCM model Model structure Model implementation Model simulation results 16
  • 17. Model structure LOGO Ideal model only considers two states: Amorphous state, Reset Crystalline state, Set The ideal PCM approximated two types non-linear resistance. Top Electrode GST Set I-V curve ISet , TSet Set state or or Heater Isolator Bottom Electrode Reset I-V curve IReset , TReset Reset state p PCMR Decision Memory p module module module n To vary the state of model n 17
  • 18. LOGO Verilog-A ideal PCM model Model structure Model implementation Model simulation results 18
  • 19. PCMR module (1/3) LOGO To describe the I-V characteristic of the PCM There are two independent I-V curves I Ron (Vx,Ix) RSet Rsn (Vth,Ith) RReset V Vh 19
  • 20. PCMR module (2/3) LOGO Amorphous state, Reset I if ( I(p,n) <= Ith ) begin Ron V(p,n) <+ I(p,n)*Rreset; end else begin (Vth, Ith) V(p,n) <+ Vh+I(p,n)*Ron; Ith RReset end Vh Vth V 20
  • 21. PCMR module (3/3) LOGO Crystalline state, Set I if ( I(p,n) <= Ix ) begin Ron V(p,n) <+ I(p,n)*Rset; end (VX, IX) else begin IX RSet V(p,n) <+ Vh+I(p,n)*Ron; end Vh VX V 21
  • 22. Decision module (1/4) LOGO The Set and Reset programming condition are determined respectively. ISet, TSet IReset, TReset The QS and QR output to memory module. Set part QS Input from PCMR module Output to memory module Reset part QR 22
  • 23. Decision module (2/4) LOGO Using RC circuit to estimate the pulse width (TReset TSet). Using CCR (Current Control Resistance) to determine the pulse amplitude. ⎡ ⎛ − t ⎞⎤ VC (t ) = Vrc ⎢1 − exp⎜ ⎟ ⎜ R C ⎟⎥ ⎢ ⎣ ⎝ RC ⎠⎥ ⎦ Current Resistance TReset or TSet ⎡ Vrc ⎤ t = RRC C ln ⎢ ⎥ ⎣ Vrc − VC (t ) ⎦ AS Resistance (Ω) Fermi-Dirac AS − BS R(I ) = BS + 1 + exp[(I S − I )× F ] BS ISF Current (A) 23
  • 24. Decision module (3/4) LOGO Set part (crystalline) <1> Iin<ISet Discharge (Do not estimate time) Vrc=1V <2> ISet≦Iin<IReset CCR_Set-1 Iin Charge (Estimate time) If T≧TSet,QS=1 RRC <3> Iin>IReset CCR_Set-2 Discharge (Do not estimate time) RMin R QS RMax RRC RRC CCR_Set-1 CCR_Set-3 CCR_Set-4 RMin RMin RMax RMin RMin CS CCR_Set-2 RMax RMax RMin RMax RMax CCR_Set-3 RMax RMax RMin CCR_Set-4 ISet IReset I 24
  • 25. Decision module (4/4) LOGO Reset part (amorphous) <1> Iin<IReset Vrc=1V Discharge (Do not estimate time) CCR_Reset-1 Iin <2> Iin>IReset Charge (Estimate time) RRC If T≧TReset,QR=1 QR CCR_Reset-2 R RMax RMax RRC CCR_Reset-1 RMin CR RMax RMin RMin RMax CCR_Reset-2 ISet IReset I 25
  • 26. Memory module LOGO Using VCR (Voltage Control Resistance) and capacitor to record the state. <1> QR=QS<1 VM=3V VCR_Reset and VCR_Set are high VCR_Reset resistance. QR QR=1 <2> QR=1 RMin QR=0 Charge, Mout is high stage (3V). RMax <3> QS=1 Mout Discharge, Mout is low stage (0V). VCR_Set QS QS=0 CM R RMax RMax VCR_Reset RMin QS=1 RMin RMax RMin VCR_Set 1V V 26
  • 27. LOGO Verilog-A ideal PCM model Model structure Model implementation Model simulation results 27
  • 28. Model simulation LOGO Ideal source testing DC analysis – PCM I-V characteristic Transient analysis – PCM R-I characteristic Current mirror source testing Current mirror Ip R1 = 2k (ohm) P P P Vpcm Iin Vin Iin Iin Ideal current source PCM + PCM PCM PCM Model Model Model model - N N N 28
  • 29. Parameters LOGO Parameters Value Static resistance of Set, RSet 7kΩ Programming current of Set, ISet 600μA Programming time of Set, TSet 100ns Static resistance of Reset, RReset 200kΩ Programming current of Reset, IReset 1200μA Programming time of Reset, TReset 100ns Dynamic-on resistance, Ron 1kΩ Threshold voltage, Vth 0.78V Holding voltage, Vh 0.45V Initial condition, IC 0 or 1 Set Reset 29
  • 30. DC analysis (1/2) LOGO 300 P Iin Set state PCM 250 Reset state Model N 200 Current (μA) 150 100 50 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Voltage (V) 30
  • 31. DC analysis (2/2) LOGO R1 = 2k (ohm) 300 P Vin Set state + PCM 250 Reset state - Model N 200 Current (μA) 150 100 50 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Voltage (V) 31
  • 32. Transient analysis (1/2) LOGO Input Reset and Set respectively. P IReset - 1200μA / 100ns Iin PCM ISet - 600μ A / 100ns Model N Input pulse Resistance of PCM model 1400 250 1200 200 1000 800 Current (μA) Resistance (kΩ) 150 600 400 100 200 50 0 -200 0 0 100 200 300 400 500 0 100 200 300 400 500 Time (ns) Time (ns) 32
  • 33. Transient analysis (2/2) LOGO A series of current pulsing. R-I curve P Iin PCM Model N 250 1E+7 Real Device-Reset Real Device-Set 200 Verilog-A Model-Set 1E+6 Verilog-A Model-Reset Resistance (Ω) Current (μA) 150 1E+5 100 1E+4 50 0 1E+3 0 500 1000 1500 2000 2500 3000 0 200 400 600 800 1000 1200 1400 Time (ns) Current (μA) 33
  • 34. Current mirror source testing (1/2) LOGO The variation of current pulse. Current mirror Ip 1800 Iin 1600 Iin Vpcm Ip 1400 Ideal current source PCM 1200 model Current (μA) 1000 800 600 400 200 0 0 100 200 300 400 500 600 700 800 Time (ns) 34
  • 35. Current mirror source testing (2/2) LOGO The variation of voltage and PCM Current mirror Ip resistance. Vpcm Iin Ideal current source PCM model 2.0 250 200 1.5 150 Rpcm (kΩ) Vpcm (V) 1.0 100 0.5 50 0.0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 Time (ns) Time (ns) 35
  • 36. LOGO Background Verilog-A ideal PCM model Temperature-based PCM model Conclusion and prospect 36
  • 37. LOGO Temperature-based PCM model Model structure Model implementation Model simulation results 37
  • 38. LOGO Temperature-based PCM model Model structure Model implementation Model simulation results 38
  • 39. Temperature-based PCM model LOGO Using temperature to determine the state of the PCM. Model will consider the partial crystalline 39
  • 40. Model structure LOGO The temperature is constituted with two parts: Joule heating (Wj) t1 W − W TPCM = ∫ j d dt Heat dissipation (Wd) t0 C × V TPCM’ TPCM Wj p Temperature Crystalline VC PCMR Calculation Fraction n module module module Decision module Wd Heat Dissipation Feed VC back to calculate thermal conductivity (k) module Memory Deliver VMem to calculate module PCM resistance 40
  • 41. LOGO Temperature-based PCM model Model structure Model implementation Model simulation results 41
  • 42. PCMR module LOGO The PCM resistance based on the crystalline fraction (memorized), by a linear relation RPCM (VMem ) = RSet + (1 − VMem )(RReset − RSet ) The threshold voltage is also varied by crystalline fraction ( Vth (VMem ) = V X + (1 − VMem ) Vth _ Max − V X ) I Ron IX RPCM2 RPCM1 RSet RReset Vh VX Vth_2 Vth_1 Vth_Max V 42
  • 43. Temperature calculation module (1/3)LOGO The temperature is constituted with two parts: t1 W − W C : Heat capacity ∫ Joule heating (Wj) TPCM = j d dt Heat dissipation (Wd) t0 C × V V : Volume of the active region W j = I PCM × VPCM = I PCM × (Vh + I PCM × Ron ) Considering the heat dissipation in one dimension, Wd can be approximated as ∂Q Wd = ∂t =∑ k∇TPCM k : thermal conductivity ⎛ ∂TPCM ∂TPCM ∂TPCM ⎞ TPCM − Troom = k⎜ ⎜ ∂x + ∂y + ∂z ⎟=k ⎟ ⎝ ⎠ d PCM 43
  • 44. Temperature calculation module (2/3)LOGO The thermal energy differential equation yields ? d PCM W j ⎡ ⎛ −k ⎞⎤ TPCM (t ) = ⎢1 − exp⎜ ⎜d t ⎟⎥ + Troom ⎟ k ⎢ ⎣ ⎝ PCM CV ⎠⎥⎦ ? The thermal conductivity k is a function of the crystalline fraction VC, it is approximated as kC k (VC ) = (kC − k A )×VC + k A kA Ref. Y.-T. Kim et al., “Study on cell charateristics of PRAM using the phase-change simulation,” IEEE Simulation of Semiconductor Processes and Device Conference, pp.211-214, Sep. 2005. 44
  • 45. Temperature calculation module (3/3)LOGO d PCM W j ⎡ ⎛ −k ⎞⎤ TPCM (t ) = ⎢1 − exp⎜ ⎜d t ⎟⎥ + Troom ⎟ k ⎢ ⎣ ⎝ PCM CV ⎠⎥⎦ The dPCM can be approached as d PCM = (Tm − Troom )× kC I Reset × (Vh + I Reset Ron ) Assuming the static temperature is reached after about a period of 5 time constants, CV is approximated as TReset × k A CV = 5 × d PCM 45
  • 46. Crystalline fraction LOGO The crystalline fraction module follows JMA equation. If Tx≦TPCM<Tm Calculate VC Johnson-Mehl-Avrami (JMA) equation ⎡ ⎛t ⎞ p ⎛ − Ea ⎞⎤ VC = 1 − exp ⎢− ⎜ ⎟ exp⎜ ⎟⎥ ⎢ ⎜ t0 ⎟ ⎜k T ⎟⎥ t : time ⎣ ⎝ ⎠ ⎝ b PCM ⎠⎦ p : nucleation rate Ea : activation energy t0 : scaling factor kb : Boltzmann’s constant TPCM : temperature Ref. X. Q. Wei et al., “Universal HSPICE model for Chalcogenide based phase change memory elements,” IEEE Non-Volatile Memory Technology Symposium, 15-17, pp.88-91, Nov. 2004. 46
  • 47. Memory module LOGO The memory module keeps VC unchanged unless temperature falls between Tx and Tm Input TPCM , VC Tx <= TPCM < Tm TPCM < Tx TPCM >= Tm && dVC >= 0 dt VMem VMem=VC VMem=0 Unchange Output VMem 47
  • 48. LOGO Temperature-based PCM model Model structure Model implementation Model simulation results 48
  • 49. Model simulation LOGO Ideal source testing DC analysis – PCM I-V characteristic Transient analysis – PCM R-I characteristic Current mirror source testing Current mirror Ip R1 = 2k (ohm) P P P Vpcm Iin Vin Iin Iin Ideal current source PCM + PCM PCM PCM Model Model Model model - N N N 49
  • 50. Parameters LOGO Parameter Value Static resistance of Set, RSet 7kΩ Programming time of Set, TSet 10ns Static resistance of Reset, RReset 200kΩ Programming current of Reset, IReset 1200μA Programming time of Reset, TReset 200ns Dynamic-on resistance, Ron 1kΩ Threshold voltage, Vth 0.78V Holding voltage, Vh 0.45V Initial condition, IC 0 or 1 Environment temperature, Troom 300°K 50
  • 51. DC analysis (1/2) LOGO 300 Iin P Rpcm=7k , Vc=1 PCM Model 250 Rpcm=26.3k , Vc=0.9 N Rpcm=84.2k , Vc=0.6 Rpcm=103.5k , Vc=0.5 200 Rpcm=130.52k , Vc=0.36 Current (μA) Rpcm=200k , Vc=0 150 100 50 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Voltage (V) 51
  • 52. DC analysis (2/2) LOGO R1 = 2k (ohm) 300 Vin P Rpcm=7k , Vc=1 + PCM Model - Rpcm=26.3k , Vc=0.9 250 N Rpcm=84.2k , Vc=0.6 Rpcm=103.5k , Vc=0.5 200 Rpcm=130.52k , Vc=0.36 Current (μA) Rpcm=200k , Vc=0 150 100 50 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Voltage (V) 52
  • 53. Transient analysis (1/2) LOGO Input the same pulse width but different amplitude. Pulse1 - 600μA / 100ns Pulse2 - 900μ A / 100ns Pulse3 - 1200μ A / 100ns 1400 250 1200 200 1000 800 Current (μA) Resistance (kΩ) 150 600 400 100 200 50 0 -200 0 0 200 400 600 800 0 200 400 600 800 Time (ns) Time (ns) 53
  • 54. Transient analysis (2/2) LOGO 1E+6 Iin P 500ns 300ns PCM 200ns 100ns Model 80ns 50ns N 1E+5 Resistance (ohm) 1E+4 1E+6 1E+5 Resistance (ohm) 1E+3 1E+4 0 100 200 300 400 500 600 Current (μA) 1E+3 0 200 400 600 800 1000 1200 1400 Current (μA) 54
  • 55. Current mirror source testing (1/2) LOGO 1800 Current mirror 1600 Iin Ip Ip Vpcm 1400 Iin Ideal current source 1200 PCM model 1000 Current (μA) 800 600 400 250 200 0 200 0 200 400 600 800 1000 1200 Time (ns) 150 Rpcm (kΩ) 100 50 0 0 200 400 600 800 1000 1200 Time (ns) 55
  • 56. Current mirror source testing (2/2) LOGO 2.0 1.5 Vpcm (V) 1.0 2.0 250 0.5 Vpcm 1.5 Rpcm 200 0.0 0 200 400 600 800 1000 1200 Time (ns) 1.0 150 Vpcm (V) Rpcm (kΩ) Current mirror Ip 0.5 100 Vpcm Iin Ideal current source PCM 0.0 50 model -0.5 0 0 50 100 150 200 250 300 Time (ns) 56
  • 57. Advanced application (1/3) LOGO We for the first time demonstrate that the same programming current amplitude can generate two states (Set and Reset) at only different pulse widths. Single pulse:1mA, 100ns (Amorphous programming) Multiple pulse:1mA, 5ns (Crystalline programming) 1200 1200 1000 1000 800 800 Current (μA) Current (μA) 600 600 400 400 200 200 0 0 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 Time (ns) Time (ns) 57
  • 58. Advanced application (2/3) LOGO Single pulse 1050 950 1mA, 100ns 850 Temperature (°K) 750 650 550 450 350 1200 250 1000 0 20 40 60 80 100 120 140 160 180 200 Time (ns) 800 Current (μA) 600 0.10 400 Crystalline fraction 200 0 0.05 0 20 40 60 80 100 120 140 160 180 200 Time (ns) Amorphous 0.00 0 20 40 60 80 100 120 140 160 180 200 Time (ns) 58
  • 59. Advanced application (3/3) LOGO Multiple pulse 1050 950 1mA, 5ns 850 Temperature (°K) 750 650 550 450 350 1200 250 1000 0 20 40 60 80 100 120 140 160 180 200 Time (ns) 800 Current (μA) 600 1.2 Crystalline 400 1.0 Crystalline fraction 200 0.8 0 0.6 0 20 40 60 80 100 120 140 160 180 200 Time (ns) 0.4 0.2 0.0 0 20 40 60 80 100 120 140 160 180 200 Time (ns) 59
  • 60. LOGO Background Verilog-A ideal PCM model Temperature-based PCM model Conclusion and prospect 60
  • 61. Conclusion and prospect LOGO We have presented a compact PCM model using Verilog-A. Ideal PCM model. Temperature-based PCM model. The model are predictive, yet simple to use and can be implemented in any circuit simulators with the Verilog-A option. 61
  • 62. Conclusion and prospect LOGO PCM modeling with Verilog-A is flexible and has good convergence based on our simulation. Due to the physics based nature of the model, the model can be applied to non- conventional circuit design technique. Multi-level application. 62
  • 63. 63