Fracciones

3.431 visualizaciones

Publicado el

Publicado en: Educación
0 comentarios
6 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
3.431
En SlideShare
0
De insertados
0
Número de insertados
6
Acciones
Compartido
0
Descargas
105
Comentarios
0
Recomendaciones
6
Insertados 0
No insertados

No hay notas en la diapositiva.

Fracciones

  1. 1. Fracciones
  2. 2. introducción           Historia Definición Lectura de fracciones Comparación de fracciones Ubicación en la recta numérica Tipos de fracción Fracciones equivalentes Simplificación de fracciones Suma y resta de fracciones Suma y resta de números mixtos  Multiplicación por un número natural
  3. 3. historia  Se considera que fueron los egipcios quienes usaron por primera vez las 1 fracciones, pero sólo aquellas de la forma 𝑛o las que pueden obtenerse como combinación de ellas.  Por su parte los babilonios desarrollaron un eficaz sistema de notación fraccionaria, que permitió establecer aproximaciones decimales verdaderamente sorprendentes.  Por último, en china antigua se destaca el hecho de que en la división de fracciones se exige la previa reducción de éstas a común denominador.
  4. 4. definición El concepto matemático de fracción corresponde a la idea intuitiva de dividir una totalidad en partes iguales. Una fracción es exactamente eso: una división. Los términos de una fracción son el numerador y el denominador. El denominador indica el número de partes iguales en que se divide la unidad. El numerador indica el número de partes que se toman de la unidad.
  5. 5. lectura de fracciones Para leer una fracción, primero se lee el numerador y a continuación el denominador.  Numerador: uno, dos, tres...catorce, etc.  Denominador: 2 = medio; 3 = tercio; 4 = cuarto; 5 = quinto; 6 = sexto; 7 = séptimo; 8 = octavo; 9 = noveno; 10 = décimo  A partir del 11, al nombre del número se le añade la terminación “- avos”: onceavos, doceavos, treceavos, etc.
  6. 6. comparación de fracciones  Fracciones de igual denominador: de dos fracciones con igual denominador es mayor la que tiene mayor numerador. 2 3 4 < < 6 6 6  Fracciones de igual numerador: de dos fracciones con igual numerador es mayor la que tiene menor denominador. 2 2 2 > > 3 6 12
  7. 7.  Fracciones con diferente denominador: buscamos las fracciones equivalentes con el mismo denominador y después comparamos los numeradores. 3 x 6 = 18 10 x 6 = 60 2 x 10 = 20 6 x 10 = 60 luego <
  8. 8. ubicación en la recta numérica Para ubicar fracciones en la recta numérica dividimos el entero (o los enteros) en tantas partes como indica el denominador, y tomamos las partes que indica el numerador. Por ejemplo: 3 5 La fracción se ubica en la recta en el punto marcado. El segmento de recta que representa al número 1 lo dividimos en cinco partes iguales que están indicadas de color rojo. De esas cinco partes, tomamos las tres que están señaladas con color lila.
  9. 9. tipos de fracción  Fracciones propias Las fracciones propias son aquellas cuyo numerador es menor que el denominador. Su valor está comprendido entre cero y uno.
  10. 10.  Fracciones impropias Las fracciones impropias son aquellas cuyo numerador es mayor que el denominador. Su valor es mayor que 1.
  11. 11.  Fracciones aparentes Las fracciones aparentes son aquellas en las que el numerador es igual al denominador. La fracción es igual a 1, es decir, el entero.
  12. 12.  Números mixtos El número mixto o fracción mixta está compuesto de una parte entera y otra fraccionaria. Todas las fracciones mayores que la unidad (fracciones impropias) se pueden expresar en forma de número mixto. Acá hay un video explicativo que está muy claro… véanlo!! http://www.youtube.com/watch?feature=player_embedded&v=t-DpeWQIVZo
  13. 13.  Pasar de fracción a número mixto 1) Dividimos el numerador por el denominador. 2) El cociente de dicha división es la parte entera del número mixto. 3) El resto de la división es el numerador de la fracción. 4) El denominador se mantiene.
  14. 14.  Pasar de número mixto a fracción (una manera) 1) El numerador se obtiene multiplicando el número entero por el denominador y sumando a este resultado el numerador. 2) El denominador se mantiene.
  15. 15.  Fracciones decimales Las fracciones decimales son aquellas que tienen como denominador 10, 100, 1000, etc., es decir una potencia de 10 (la unidad seguida de ceros).
  16. 16.  Pasar de fracción a número decimal Dado que toda fracción es un cociente entre dos enteros, efectuando la división la podemos representar mediante una expresión decimal. Los números fraccionarios se caracterizan por tener un desarrollo decimal cuya expresión puede ser de dos tipos:  Exacta: cuando podemos “terminar” la división con resto cero. La parte decimal tiene un número finito de cifras.  Periódica: cuando los restos se repiten indefinidamente, sin anularse. En la parte decimal hay cifras que se repiten infinitamente.
  17. 17.  Pasar de número decimal a fracción Un número decimal puede expresarse en forma de fracción de la siguiente manera: si la expresión decimal es exacta, la fracción tiene como numerador el número dado sin la coma, y por denominador, la unidad seguida de tantos ceros como cifras decimales tenga.
  18. 18. fracciones equivalentes  Dos fracciones son equivalentes cuando representan la misma cantidad, es decir, misma parte de la unidad.  Para comprobar si dos fracciones son equivalentes multiplicamos sus términos en cruz. Si los resultados obtenidos son iguales, las fracciones son equivalentes.
  19. 19.  Cómo obtener fracciones equivalentes:  Por amplificación: multiplicamos el numerador y el denominador por el mismo número.  Por simplificación: dividimos el numerador y el denominador por el mismo número. El número que elijas para dividir el numerador y el denominador debe dar como resultado una división exacta en ambos casos.
  20. 20. Acá podemos ver algunas fracciones equivalentes ubicadas en la recta numérica.
  21. 21. simplificación de fracciones  Para simplificar fracciones se divide el numerador y el denominador por el mismo número. Siempre que se pueda hay que simplificar.  La fracción es irreducible cuando no se puede simplificar mas. Esto sucede cuando el numerador y el denominador son primos entre sí. A no confundir!! Que sean primos entre sí significa que no tengan divisores en común, no que cada uno sea número primo.
  22. 22. suma y resta de fracciones  Con igual denominador Sumamos o restamos los numeradores y dejamos el mismo denominador. Si el numerador de una fracción es igual al denominador, esa fracción representa la unidad. Por ejemplo: si dividimos una torta en 5 porciones, yjuntamos una 1 2 porción (5), más dos porciones (5), 3 tenemos tres porciones (5).
  23. 23.  Con distinto denominador Tenemos dos formas: o Para sumar o restar dos fracciones de distinto denominador se deben encontrar fracciones equivalentes que tengan igual denominador y luego realizar la operación. o Otra forma es que se reduzca a común denominador. Los pasos a seguir son: 1º Se calcula el m.c.m. de los denominadores. 2º Dividimos el m.c.m. obtenido entre cada uno de los denominadores y lo que nos dé lo multiplicamos por el numerador. 3º Ya tenemos todas las fracciones con el mismo denominador, sumamos o restamos los numeradores y dejamos el mismo denominador. Si podemos simplificamos.
  24. 24. suma y resta de números mixtos Para sumar o restar dos números mixtos se puede reducir los mismos a fracción y efectuar la operación. Otro procedimiento es sumar o restar las partes enteras, por un lado, y las partes fraccionarias, por otro.
  25. 25. Multiplicación de una fracción por un número natural Se multiplica el número natural por el numerador y se deja el mismo denominador.

×