SlideShare una empresa de Scribd logo
1 de 4
Descargar para leer sin conexión
1
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
B. MENENTUKAN NILAI OPTIMUM
DARI SISTEM PERTIDAKSAMAAN LINIER
Nilai Optimum Fungsi Sasaran dari Daerah Sistem Pertidaksamaan Linier
Hal terpenting dalam masalah program linier adalah mengubah persoalan verbal ke dalam
bentuk model matematika (persamaan atau pertidaksamaan) yang merupakan penyajian
dari bahasa sehari-hari ke dalam bahasa matematika yang lebih sederhana dan mudah
dimengerti.
Pada pembahasan dalam buku ini hanya menyajikan model matematika sederhana yang
hanya melibatkan dua variabel dan penentuan nilai optimum ditempuh dengan
menggunakan uji titik pojok. Langkah-langkah yang ditempuh untuk menentukan nilai
optimum adalah sebagai berikut :
a) Ubahlah persoalan verbal ke dalam model matematika (dalam bentuk sistem
pertidaksamaan linier);
b) Tentukan Himpunan Penyelesaian;
c) Tentukan semua titik pojok pada daerah himpunan penyelesaian tersebut;
d) Hitung nilai dari fungsi objektif untuk setiap titik pojok dalam daerah himpunan
penyelesaian;
e) Dari hasil pada langkah di atas, nilai maksimum atau minimum dapat ditetapkan.
Contoh Soal 1
Tentukan nilai maksimum dan minimum dari yxZ 35 += , dengan syarat :
0
;0
;6
;82
≥
≥
≤+
≤+
y
x
yx
yx
Jawab :
Dengan cara seperti pada bagian sebelumnya (bagian A. Grafik Himpunan Penyelesaian
Sistem Pertidaksamaan Linier), sistem pertidaksamaan tersebut mempunyai himpunan
penyelesaian seperti pada grafik di bawah ini (Tanpa arsiran).
2
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
Himpunan penyelesaian sistem pertidaksamaan berupa segi empat dengan titik pojok O, A,
B, dan C). Titik B yaitu titik potong antara 2 buah garis, yang dapat dicari dengan cara
eliminasi/substitusi antara garis 6=+ yx dan 82 =+ yx , diperoleh nilai x = 4 dan y = 2,
sehingga titik B(4, 2).
Kemudian diuji titik-titik pojoknya yang ditunjukkan pada tabel berikut ini.
Titik Pojok x y yx 35 +
O(0, 0) 0 0 0
A(6, 0) 6 0 30
B(4, 2) 4 2 26
C(0, 4) 0 12 12
Dari tabel di atas, nilai maksimum adalah 30, terjadi untuk x = 6 dan y = 0. Sedangkan
nilai minimum sama dengan 0 untuk x = 0 dan y = 0.
Contoh Soal 2
Tentukan nilai maksimum dan minimum yxZ 32 += dari daerah yang ditunjukkan pada
grafik di bawah ini.
Y
0 8
4
6
6
HP
X
6=+ yx
82 =+ yx●
C
●
●
B(4, 2)
A
2 5
3
Y
X0
(3, 5)
(7, 3)HP
3
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
Jawab :
Dengan menggunakan uji titik pojok, nilai maksimum dan minimum dapat dicari seperti
ditunjukkan pada table di bawah ini :
Titik Pojok x y yx 32 +
(2, 0) 2 0 4
(5, 0) 5 0 10
(7, 3) 7 3 23
(3, 5) 3 5 21
(0, 3) 0 3 9
Dari tabel terlihat bahwa nilai maksimum adalah 23, yang terjadi pada titik (7, 3) dan nilai
minimum adalah 4, yang terjadi pada titik (2, 0).
Contoh Soal 3
Sebuah pesawat terbang mempunyai kapasitas tempat duduk tidak lebih dari 48 orang.
Setiap penumpang kelas utama dapat membawa bagasi seberat 60 kg dan kelas ekonomi
20 kg, sedangkan pesawat tersebut mempunyai kapasitas bagasi tidak lebih dari 1.440 kg.
apabila harga tiket untuk kelas utama dan ekonomi masing-masing adalah Rp. 1.000.000,-
dan Rp. 500.000,- per orang, tentukan banyaknya penumpang setiap kelas agar penjualan
tiket maksimum.
Jawab :
Model matematika disusun dengan memisalkan banyak penumpang kelas utama = x orang
dan banyak penumpang kelas ekonomi = y orang.
Variabel Kelas utama (x) Kelas ekonomi (y) Persediaan
Penumpang x y 48
Bagasi 60 20 1.440
Harga tiket 1.000.000 500.000
4
Recreated by Heri Sudiana &
Published on http://www.matematika-pariwisata.moodlehub.com/
Maksimalkan yxZ 000.500000.000.1 += .
Syarat daya tampung : 48≤+ yx
Syarat kapasitas : 14402060 ≤+ yx
0≥x
0≥y
Dari model matematika di atas dapat dibuat grafik himpunan penyelesaian pertidaksamaan
linier seperti terlihat pada gambar di bawah ini.
Dari model matematika di atas dan grafik yang dihasilkan diperoleh titik pojok daerah
Himpunan Penyelesaian yaitu titik O, A,B, dan C dengan titik B adalah titik potong antara
garis 48=+ yx dan 482060 =+ yx . Titik potong B adapat dicari dengan cara
subsitusi/eliminasi, sehingga diperoleh titik potong B(12, 36).
Uji titik pojok O, A, B, dan C seperti terlihat pada tabel dibawah ini.
Titik Pojok x y y000.500000.000.1 +
O(0, 0) 0 0 0
A(24, 0) 24 0 24.000.000
B(12, 36) 12 36 30.000.000
C(0, 48) 0 48 24.000.000
Nilai maksimum Z adalah Rp. 30.000.000,- dipenuhi oleh x = 12 dan y = 36, atau dengan
kata lain penjualan tiket akan maksimum jika banyaknya penumpang kelas utama
sebanyak 12 orang dan kelas ekonomi sebanyak 36 orang.
0 24 48 X
72
48
Y
HP
14402060 =+ yx
48=+ yx
C B(12, 36)
A
●
●
●

Más contenido relacionado

La actualidad más candente

Program linier SMA
Program linier SMAProgram linier SMA
Program linier SMA
Semara Putra
 
Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)
1724143052
 

La actualidad más candente (17)

Program linier SMA
Program linier SMAProgram linier SMA
Program linier SMA
 
Sistem pertidaksamaanlinear dan model matematika
Sistem pertidaksamaanlinear dan model matematikaSistem pertidaksamaanlinear dan model matematika
Sistem pertidaksamaanlinear dan model matematika
 
Program linear
Program linearProgram linear
Program linear
 
Penyelesaian program linear dalam matriks
Penyelesaian program linear dalam matriksPenyelesaian program linear dalam matriks
Penyelesaian program linear dalam matriks
 
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
NILAI OPTIMUM DARI MASALAH PROGRAM LINIER (hani siska kurnianti)
 
Program linear - Model Matematika
Program linear - Model MatematikaProgram linear - Model Matematika
Program linear - Model Matematika
 
Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)Rumus cepat-matematika-program-linear(2)
Rumus cepat-matematika-program-linear(2)
 
2. linear programming sederhana
2. linear programming sederhana2. linear programming sederhana
2. linear programming sederhana
 
Bab 2 fungsi
Bab 2 fungsiBab 2 fungsi
Bab 2 fungsi
 
Bahan ajar program linear
Bahan ajar program linearBahan ajar program linear
Bahan ajar program linear
 
Pertidaksamaan linier & metode grafik
Pertidaksamaan linier & metode grafikPertidaksamaan linier & metode grafik
Pertidaksamaan linier & metode grafik
 
Ppt singkat materi "bilangan" Nora cantika
Ppt singkat materi "bilangan" Nora cantikaPpt singkat materi "bilangan" Nora cantika
Ppt singkat materi "bilangan" Nora cantika
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
Program liniear
Program liniearProgram liniear
Program liniear
 
Modul sistem pertidaksamaan linear dan permasalahannya
Modul sistem pertidaksamaan linear dan permasalahannyaModul sistem pertidaksamaan linear dan permasalahannya
Modul sistem pertidaksamaan linear dan permasalahannya
 
Menggambar fungsi kuadrat
Menggambar fungsi kuadratMenggambar fungsi kuadrat
Menggambar fungsi kuadrat
 
Materi program linear
Materi program linearMateri program linear
Materi program linear
 

Similar a C. menentukan nilai optimum dari sistem pertidaksamaan linier

C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linier
SMKN 9 Bandung
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
pitrahdewi
 
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptxSISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
JourneyBiasa
 
Kumpulan soal matematika wajib
Kumpulan soal matematika wajibKumpulan soal matematika wajib
Kumpulan soal matematika wajib
wulLansieGokilL
 
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
arditasukma
 

Similar a C. menentukan nilai optimum dari sistem pertidaksamaan linier (20)

C. menentukan nilai optimum dari sistem pertidaksamaan linier
C.  menentukan nilai optimum dari sistem pertidaksamaan linierC.  menentukan nilai optimum dari sistem pertidaksamaan linier
C. menentukan nilai optimum dari sistem pertidaksamaan linier
 
Perogram linier
Perogram linier Perogram linier
Perogram linier
 
Kelompok 3 Kapita selekta 4.pptx
Kelompok 3 Kapita selekta 4.pptxKelompok 3 Kapita selekta 4.pptx
Kelompok 3 Kapita selekta 4.pptx
 
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdfINSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
INSTRUMEN PENILAIAN PROGLIN - PPL 1.pdf
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
Kelas xii bab 2
Kelas xii bab 2Kelas xii bab 2
Kelas xii bab 2
 
prog-linear-oke1.ppt
prog-linear-oke1.pptprog-linear-oke1.ppt
prog-linear-oke1.ppt
 
Program linear
Program linearProgram linear
Program linear
 
Program linear
Program linearProgram linear
Program linear
 
PROGRAM_LINEAR.ppt
PROGRAM_LINEAR.pptPROGRAM_LINEAR.ppt
PROGRAM_LINEAR.ppt
 
PROGRAM LINEAR.ppt
PROGRAM LINEAR.pptPROGRAM LINEAR.ppt
PROGRAM LINEAR.ppt
 
P rogram linier
P rogram linierP rogram linier
P rogram linier
 
Materi program linear sederhana
Materi program linear sederhanaMateri program linear sederhana
Materi program linear sederhana
 
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptxSISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
SISTEM PERTIDAKSAMAAN DUA VARIABEL.pptx
 
Kumpulan soal matematika wajib
Kumpulan soal matematika wajibKumpulan soal matematika wajib
Kumpulan soal matematika wajib
 
Fungsi Kuadrat dan Aplikasinya
Fungsi Kuadrat dan AplikasinyaFungsi Kuadrat dan Aplikasinya
Fungsi Kuadrat dan Aplikasinya
 
03 bab 2
03 bab 203 bab 2
03 bab 2
 
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
 
Matdas.pptx
Matdas.pptxMatdas.pptx
Matdas.pptx
 

Más de SMKN 9 Bandung

C.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinusC.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinus
SMKN 9 Bandung
 
B. koordinat kartesius dan kutub
B.  koordinat kartesius dan kutubB.  koordinat kartesius dan kutub
B. koordinat kartesius dan kutub
SMKN 9 Bandung
 
A.4. perbandingan trigonometri sudut di berbagai kuadran
A.4.  perbandingan trigonometri sudut di berbagai kuadranA.4.  perbandingan trigonometri sudut di berbagai kuadran
A.4. perbandingan trigonometri sudut di berbagai kuadran
SMKN 9 Bandung
 
A.3. panjang sisi dan besar sudut segitiga siku siku
A.3.  panjang sisi dan besar sudut segitiga siku sikuA.3.  panjang sisi dan besar sudut segitiga siku siku
A.3. panjang sisi dan besar sudut segitiga siku siku
SMKN 9 Bandung
 
C. 4. deret geometri tak hingga
C. 4. deret geometri tak hinggaC. 4. deret geometri tak hingga
C. 4. deret geometri tak hingga
SMKN 9 Bandung
 
B. 3. barisan aritmetika tingkat banyak
B. 3.  barisan aritmetika tingkat banyakB. 3.  barisan aritmetika tingkat banyak
B. 3. barisan aritmetika tingkat banyak
SMKN 9 Bandung
 
B. 2. suku tengah pada barisan aritmetika
B. 2.  suku tengah pada barisan aritmetikaB. 2.  suku tengah pada barisan aritmetika
B. 2. suku tengah pada barisan aritmetika
SMKN 9 Bandung
 
B. 1. rumus umum suku ke n pada barisan aritmetika
B. 1.  rumus umum suku ke n pada barisan aritmetikaB. 1.  rumus umum suku ke n pada barisan aritmetika
B. 1. rumus umum suku ke n pada barisan aritmetika
SMKN 9 Bandung
 
1. pola barisan bilangan
1.  pola barisan bilangan1.  pola barisan bilangan
1. pola barisan bilangan
SMKN 9 Bandung
 

Más de SMKN 9 Bandung (20)

C.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinusC.1. menurunkan dan menerapkan aturan sinus
C.1. menurunkan dan menerapkan aturan sinus
 
B. koordinat kartesius dan kutub
B.  koordinat kartesius dan kutubB.  koordinat kartesius dan kutub
B. koordinat kartesius dan kutub
 
A.4. perbandingan trigonometri sudut di berbagai kuadran
A.4.  perbandingan trigonometri sudut di berbagai kuadranA.4.  perbandingan trigonometri sudut di berbagai kuadran
A.4. perbandingan trigonometri sudut di berbagai kuadran
 
A.3. panjang sisi dan besar sudut segitiga siku siku
A.3.  panjang sisi dan besar sudut segitiga siku sikuA.3.  panjang sisi dan besar sudut segitiga siku siku
A.3. panjang sisi dan besar sudut segitiga siku siku
 
A.2. perbandingan trigonometri sudut istimewa
A.2.   perbandingan trigonometri sudut istimewaA.2.   perbandingan trigonometri sudut istimewa
A.2. perbandingan trigonometri sudut istimewa
 
A.1. perbandingan trigonometri
A.1.   perbandingan trigonometriA.1.   perbandingan trigonometri
A.1. perbandingan trigonometri
 
C. 4. deret geometri tak hingga
C. 4. deret geometri tak hinggaC. 4. deret geometri tak hingga
C. 4. deret geometri tak hingga
 
C. 3. deret geomteri
C. 3.  deret geomteriC. 3.  deret geomteri
C. 3. deret geomteri
 
C. 2. suku tengah pada barisan geometri
C. 2. suku tengah pada barisan geometriC. 2. suku tengah pada barisan geometri
C. 2. suku tengah pada barisan geometri
 
C. 1. barisan geometri
C. 1. barisan geometriC. 1. barisan geometri
C. 1. barisan geometri
 
C. 1. barisan geometri
C. 1. barisan geometriC. 1. barisan geometri
C. 1. barisan geometri
 
B. 4. deret aritmetika
B. 4.  deret aritmetikaB. 4.  deret aritmetika
B. 4. deret aritmetika
 
B. 3. barisan aritmetika tingkat banyak
B. 3.  barisan aritmetika tingkat banyakB. 3.  barisan aritmetika tingkat banyak
B. 3. barisan aritmetika tingkat banyak
 
B. 2. suku tengah pada barisan aritmetika
B. 2.  suku tengah pada barisan aritmetikaB. 2.  suku tengah pada barisan aritmetika
B. 2. suku tengah pada barisan aritmetika
 
B. 1. rumus umum suku ke n pada barisan aritmetika
B. 1.  rumus umum suku ke n pada barisan aritmetikaB. 1.  rumus umum suku ke n pada barisan aritmetika
B. 1. rumus umum suku ke n pada barisan aritmetika
 
3. notasi sigma
3. notasi sigma3. notasi sigma
3. notasi sigma
 
2. deret bilangan
2. deret bilangan2. deret bilangan
2. deret bilangan
 
1. pola barisan bilangan
1.  pola barisan bilangan1.  pola barisan bilangan
1. pola barisan bilangan
 
1. pola barisan bilangan
1.  pola barisan bilangan1.  pola barisan bilangan
1. pola barisan bilangan
 
Transformasi
TransformasiTransformasi
Transformasi
 

C. menentukan nilai optimum dari sistem pertidaksamaan linier

  • 1. 1 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ B. MENENTUKAN NILAI OPTIMUM DARI SISTEM PERTIDAKSAMAAN LINIER Nilai Optimum Fungsi Sasaran dari Daerah Sistem Pertidaksamaan Linier Hal terpenting dalam masalah program linier adalah mengubah persoalan verbal ke dalam bentuk model matematika (persamaan atau pertidaksamaan) yang merupakan penyajian dari bahasa sehari-hari ke dalam bahasa matematika yang lebih sederhana dan mudah dimengerti. Pada pembahasan dalam buku ini hanya menyajikan model matematika sederhana yang hanya melibatkan dua variabel dan penentuan nilai optimum ditempuh dengan menggunakan uji titik pojok. Langkah-langkah yang ditempuh untuk menentukan nilai optimum adalah sebagai berikut : a) Ubahlah persoalan verbal ke dalam model matematika (dalam bentuk sistem pertidaksamaan linier); b) Tentukan Himpunan Penyelesaian; c) Tentukan semua titik pojok pada daerah himpunan penyelesaian tersebut; d) Hitung nilai dari fungsi objektif untuk setiap titik pojok dalam daerah himpunan penyelesaian; e) Dari hasil pada langkah di atas, nilai maksimum atau minimum dapat ditetapkan. Contoh Soal 1 Tentukan nilai maksimum dan minimum dari yxZ 35 += , dengan syarat : 0 ;0 ;6 ;82 ≥ ≥ ≤+ ≤+ y x yx yx Jawab : Dengan cara seperti pada bagian sebelumnya (bagian A. Grafik Himpunan Penyelesaian Sistem Pertidaksamaan Linier), sistem pertidaksamaan tersebut mempunyai himpunan penyelesaian seperti pada grafik di bawah ini (Tanpa arsiran).
  • 2. 2 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Himpunan penyelesaian sistem pertidaksamaan berupa segi empat dengan titik pojok O, A, B, dan C). Titik B yaitu titik potong antara 2 buah garis, yang dapat dicari dengan cara eliminasi/substitusi antara garis 6=+ yx dan 82 =+ yx , diperoleh nilai x = 4 dan y = 2, sehingga titik B(4, 2). Kemudian diuji titik-titik pojoknya yang ditunjukkan pada tabel berikut ini. Titik Pojok x y yx 35 + O(0, 0) 0 0 0 A(6, 0) 6 0 30 B(4, 2) 4 2 26 C(0, 4) 0 12 12 Dari tabel di atas, nilai maksimum adalah 30, terjadi untuk x = 6 dan y = 0. Sedangkan nilai minimum sama dengan 0 untuk x = 0 dan y = 0. Contoh Soal 2 Tentukan nilai maksimum dan minimum yxZ 32 += dari daerah yang ditunjukkan pada grafik di bawah ini. Y 0 8 4 6 6 HP X 6=+ yx 82 =+ yx● C ● ● B(4, 2) A 2 5 3 Y X0 (3, 5) (7, 3)HP
  • 3. 3 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Jawab : Dengan menggunakan uji titik pojok, nilai maksimum dan minimum dapat dicari seperti ditunjukkan pada table di bawah ini : Titik Pojok x y yx 32 + (2, 0) 2 0 4 (5, 0) 5 0 10 (7, 3) 7 3 23 (3, 5) 3 5 21 (0, 3) 0 3 9 Dari tabel terlihat bahwa nilai maksimum adalah 23, yang terjadi pada titik (7, 3) dan nilai minimum adalah 4, yang terjadi pada titik (2, 0). Contoh Soal 3 Sebuah pesawat terbang mempunyai kapasitas tempat duduk tidak lebih dari 48 orang. Setiap penumpang kelas utama dapat membawa bagasi seberat 60 kg dan kelas ekonomi 20 kg, sedangkan pesawat tersebut mempunyai kapasitas bagasi tidak lebih dari 1.440 kg. apabila harga tiket untuk kelas utama dan ekonomi masing-masing adalah Rp. 1.000.000,- dan Rp. 500.000,- per orang, tentukan banyaknya penumpang setiap kelas agar penjualan tiket maksimum. Jawab : Model matematika disusun dengan memisalkan banyak penumpang kelas utama = x orang dan banyak penumpang kelas ekonomi = y orang. Variabel Kelas utama (x) Kelas ekonomi (y) Persediaan Penumpang x y 48 Bagasi 60 20 1.440 Harga tiket 1.000.000 500.000
  • 4. 4 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Maksimalkan yxZ 000.500000.000.1 += . Syarat daya tampung : 48≤+ yx Syarat kapasitas : 14402060 ≤+ yx 0≥x 0≥y Dari model matematika di atas dapat dibuat grafik himpunan penyelesaian pertidaksamaan linier seperti terlihat pada gambar di bawah ini. Dari model matematika di atas dan grafik yang dihasilkan diperoleh titik pojok daerah Himpunan Penyelesaian yaitu titik O, A,B, dan C dengan titik B adalah titik potong antara garis 48=+ yx dan 482060 =+ yx . Titik potong B adapat dicari dengan cara subsitusi/eliminasi, sehingga diperoleh titik potong B(12, 36). Uji titik pojok O, A, B, dan C seperti terlihat pada tabel dibawah ini. Titik Pojok x y y000.500000.000.1 + O(0, 0) 0 0 0 A(24, 0) 24 0 24.000.000 B(12, 36) 12 36 30.000.000 C(0, 48) 0 48 24.000.000 Nilai maksimum Z adalah Rp. 30.000.000,- dipenuhi oleh x = 12 dan y = 36, atau dengan kata lain penjualan tiket akan maksimum jika banyaknya penumpang kelas utama sebanyak 12 orang dan kelas ekonomi sebanyak 36 orang. 0 24 48 X 72 48 Y HP 14402060 =+ yx 48=+ yx C B(12, 36) A ● ● ●