SlideShare una empresa de Scribd logo
1 de 31
UNIDAD  6 : ENRUTAMIENTO Prof. Arsenio Pérez ( aperez@delfos.ucla.edu.ve) Prof. Euvis Piña ( epina@delfos.ucla.edu.ve) Prof. Pedro Rodriguez prodrig@delfos.ucla.edu.ve) Prof. Alirio Pérez (ingalirioperez@yahoo.com) Prof. William Polanco (wpolanco@delfos.ucla.edu.ve) Presentación Diplomado 2002
Agenda ,[object Object],[object Object],[object Object]
Qué es Enrutamiento ? www.cisco.com © 1999, Cisco Systems, Inc.
¿Qué es  Enrutamiento? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Routers—Layer 3 Network 192.168.2.0 FDDI Network 192.168.3.0 Frame Relay Localidad  Remota  Network 192.168.1.0 Ethernet Site Principal Tabla  Enrutamiento 192.168.3.0 Frame Relay 192.168.1.0 Ethernet 192.168.2.0 FDDI
[object Object],[object Object],[object Object],Donde usar Enrutadores?
Conectividad LAN-to-LAN ,[object Object],X Y A A B B C C Presentation Data Link Physical Data Link Physical A B C Data Link Physical Data Link Network Transport Session Presentation Application Physical Data Link Network Transport Session Application Physical Network Network Network
LAN-to-LAN Routing Network 1 Network 3 E0 E1 To0 Host 5 Host 4 Network 2 Token Ring 802.3 Routing Table Destination Network Outgoing Interface 1 2 3 E0 To0 E1 Net 2, Host 5
LAN-to-LAN Routing Network 1 Network 3 E0 E1 To0 Host 5 Host 4 Network 2 Token Ring 802.3 Routing Table Net 2, Host 5 802.5 From LAN to LAN Destination Network Outgoing Interface 1 2 3 E0 To0 E1 Net 2, Host 5
LAN-to-WAN Routing 1.3 2.4 Data A A Token Ring 2.4 Token Ring B B 1.3 From LAN Frame Relay To WAN To LAN Data 1.3 2.4 Data
LAN-to-WAN Routing 1.3 2.4 Data A A Token Ring 2.4 Token Ring B B 1.3 From LAN Frame Relay Frame Relay 1.3 2.4 Data To WAN To LAN Data 1.3 2.4 Data 1.3 2.4 Data
LAN-to-WAN Routing 1.3 2.4 Data A A Token Ring 2.4 Token Ring B B 1.3 From LAN Frame Relay Frame Relay 1.3 2.4 Data To WAN Ethernet 1.3 2.4 Data 1.3 2.4 Data To LAN Data 1.3 2.4 Data 1.3 2.4 Data Data 1.3 2.4 Data
Determinación del Camino ,[object Object],[object Object],[object Object],1 2 3 4 5 6 7 8 9 10 11 Which Path?
Enrutamiento Multiprotocolo IP 15.17.132.6 IP 15.16.42.8 IP 15.16.50.3 Tabla de Enrutamiento IP Token Ring Token Ring AppleTalk 200.167 AppleTalk 100.110 Apple IPX 4b.0800.0121.ab13 IPX 3a.0800.5678.12ab Novell DECnet 5.8 DECnet 10.1 DEC VAX VAX
Tablas de Enrutamiento ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Para Alcanzar Enviar la red : a: 27 Nodo A 57  Nodo B 17  Nodo C 24  Nodo B 11  Nodo B 72  Nodo A
Reglas de los Algoritmos de Enrutamiento ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Métricas de Ruteo ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Direccionamiento de Red www.cisco.com © 1999, Cisco Systems, Inc.
Direcciones de Red y Direcciones de Nodos Red Nodo 1 2 1 2 3 1 3 1 1.1 2.1 3.1 1.2 1.3 ,[object Object],[object Object],1 3 2
Ejemplos de Direccionamiento Dirección Dirección Protocolo  de Red  Nodo/Host General 1. 4 TCP/IP 10. 8.2.48 Novell IPX 1aceb0b 0000.0c00.6e25 AppleTalk 10. 1. X.25 DNIC NTN NTN: National Terminal Number
Direccionamiento de SubRed ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],131.108.0.0 INTERNET 131.108.1.0 131.108. 2 .0 131.108. 3 .0 131.108. 4 .0 131.108. 8 .0 131.108. 6 .0 131.108. 7 .0 Manufacturing R&D HR 131.108. 5 .0 131.108. 10 .0 131.108. 9 .0
Tipos de Algoritmos de Enrutamiento ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Enrutamiento Estático   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],“ Stub” Network A B
Ruteo Dinámico La red cambia de un camino bloqueado... A B C D X … y una nueva ruta alterna es encontrada dinamicamente ,[object Object],A B C D X
Vector Distancia versus Link State ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Protocolos de Enrutamiento www.cisco.com © 1999, Cisco Systems, Inc.
Protocolos ruteados versus Protocolos de Enrutamiento ,[object Object],[object Object],1.0 2.0 3.0 1.1 2.1 3.1 Destination Network Network Protocol Protocol name Exit Port to Use ,[object Object]
Evolución de los protocolos de Enrutamiento Distance Vector Link State ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Hybrid
RIP y IGRP RIP Estándar de la Industria que selecciona el camino con el menor número de saltos 19.2 k 64k 64k 64k IGRP Cisco protocol  que seleciona el camino más rápido (usado  carga, distancia, etc.) 19.2 k 64k 64k 64k
OSPF y EIGRP Aspecto OSPF EIGRP Topología Hierarchical Not restricted Requerimientos  Memoria & CPU High Moderate Tamaño Tabla Routing Large Moderate Controlling body Industry standard Cisco proprietary Convergencia Fast Fast Protocolos  Suportados IP IP IPX AppleTalk Configuración Difficult Easy
Resumen ,[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Ccna 1 capitulo 04
Ccna 1 capitulo 04Ccna 1 capitulo 04
Ccna 1 capitulo 04Hack '
 
Ccna 1 examen final
Ccna 1 examen finalCcna 1 examen final
Ccna 1 examen finalHack '
 
Principios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredesPrincipios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredesmarielavargas22
 
Principios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredesPrincipios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredesrosmairychirino
 
Ccna 1 capitulo 08
Ccna 1 capitulo 08Ccna 1 capitulo 08
Ccna 1 capitulo 08Hack '
 
Examen Final De Capitulos 5,6,7 De Cisco
Examen Final De Capitulos 5,6,7 De CiscoExamen Final De Capitulos 5,6,7 De Cisco
Examen Final De Capitulos 5,6,7 De CiscoCarlos Ceballos
 
Principios basicos de enrutamiento y subredes.
Principios basicos de enrutamiento y subredes.Principios basicos de enrutamiento y subredes.
Principios basicos de enrutamiento y subredes.Julia Ramirez
 
Final de prac
Final de pracFinal de prac
Final de pracLiz Lucas
 
Ccna 1 capítulo 11
Ccna 1 capítulo 11Ccna 1 capítulo 11
Ccna 1 capítulo 11Hack '
 
Redes de area local
Redes de area localRedes de area local
Redes de area localJosu Orbe
 
Interconexión de redes lan y wan (networking)
Interconexión de redes lan y wan (networking)Interconexión de redes lan y wan (networking)
Interconexión de redes lan y wan (networking)Koldo Parra
 

La actualidad más candente (15)

Ccna 1 capitulo 04
Ccna 1 capitulo 04Ccna 1 capitulo 04
Ccna 1 capitulo 04
 
Ccna 1 examen final
Ccna 1 examen finalCcna 1 examen final
Ccna 1 examen final
 
Principios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredesPrincipios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredes
 
Principios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredesPrincipios básicos de enrutamiento y subredes
Principios básicos de enrutamiento y subredes
 
Pruebas y diseño de redes
Pruebas y diseño de redesPruebas y diseño de redes
Pruebas y diseño de redes
 
dsddfd
dsddfddsddfd
dsddfd
 
Ccna 1 capitulo 08
Ccna 1 capitulo 08Ccna 1 capitulo 08
Ccna 1 capitulo 08
 
Examen Final De Capitulos 5,6,7 De Cisco
Examen Final De Capitulos 5,6,7 De CiscoExamen Final De Capitulos 5,6,7 De Cisco
Examen Final De Capitulos 5,6,7 De Cisco
 
Principios basicos de enrutamiento y subredes.
Principios basicos de enrutamiento y subredes.Principios basicos de enrutamiento y subredes.
Principios basicos de enrutamiento y subredes.
 
Final de prac
Final de pracFinal de prac
Final de prac
 
Cisco examenes
Cisco examenesCisco examenes
Cisco examenes
 
Ccna 1 capítulo 11
Ccna 1 capítulo 11Ccna 1 capítulo 11
Ccna 1 capítulo 11
 
Redes de area local
Redes de area localRedes de area local
Redes de area local
 
Interconexión de redes lan y wan (networking)
Interconexión de redes lan y wan (networking)Interconexión de redes lan y wan (networking)
Interconexión de redes lan y wan (networking)
 
Enrutamiento dinamico
Enrutamiento dinamicoEnrutamiento dinamico
Enrutamiento dinamico
 

Destacado (20)

Hoja1 correcion
Hoja1 correcionHoja1 correcion
Hoja1 correcion
 
Ud2 hoja2 routers
Ud2 hoja2 routersUd2 hoja2 routers
Ud2 hoja2 routers
 
Switches1a
Switches1aSwitches1a
Switches1a
 
Ud7 hoja1 sol-ejercicio5
Ud7 hoja1 sol-ejercicio5Ud7 hoja1 sol-ejercicio5
Ud7 hoja1 sol-ejercicio5
 
Ud2 hoja3
Ud2 hoja3Ud2 hoja3
Ud2 hoja3
 
Hoja2 correcion
Hoja2 correcionHoja2 correcion
Hoja2 correcion
 
Bloque i correccion
Bloque i correccionBloque i correccion
Bloque i correccion
 
Ud7 hoja1 sol-ejercicio5
Ud7 hoja1 sol-ejercicio5Ud7 hoja1 sol-ejercicio5
Ud7 hoja1 sol-ejercicio5
 
Hoja2 correcion
Hoja2 correcionHoja2 correcion
Hoja2 correcion
 
Ud2 hoja2
Ud2 hoja2Ud2 hoja2
Ud2 hoja2
 
Ud6 hoja1
Ud6 hoja1Ud6 hoja1
Ud6 hoja1
 
Examen bloque iii_solucion
Examen bloque iii_solucionExamen bloque iii_solucion
Examen bloque iii_solucion
 
Ud6 hoja5 correccion
Ud6 hoja5 correccionUd6 hoja5 correccion
Ud6 hoja5 correccion
 
Ud3
Ud3Ud3
Ud3
 
Clase 5 de Enrutamiento de Redes
Clase 5 de Enrutamiento de RedesClase 5 de Enrutamiento de Redes
Clase 5 de Enrutamiento de Redes
 
Ethernet
EthernetEthernet
Ethernet
 
Ud6 hoja4 correccion
Ud6 hoja4 correccionUd6 hoja4 correccion
Ud6 hoja4 correccion
 
Ud6 router iii
Ud6 router iiiUd6 router iii
Ud6 router iii
 
Ud8 practica1
Ud8 practica1Ud8 practica1
Ud8 practica1
 
Ud6 6 cidr
Ud6 6 cidrUd6 6 cidr
Ud6 6 cidr
 

Similar a 06 routing

Diseño de redes corporativas
Diseño de redes corporativasDiseño de redes corporativas
Diseño de redes corporativasunimag
 
Informe ospf
Informe ospfInforme ospf
Informe ospfEFJJavier
 
Enrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptx
Enrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptxEnrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptx
Enrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptxSoftwys
 
Router
RouterRouter
RouterOscar
 
Archivo recopilatorio
Archivo recopilatorioArchivo recopilatorio
Archivo recopilatorioAkashi Yuurei
 
Taller De Redes2
Taller De Redes2Taller De Redes2
Taller De Redes2mochehc
 
Capítulo 9 - Libro Azúl
Capítulo 9 - Libro AzúlCapítulo 9 - Libro Azúl
Capítulo 9 - Libro Azúlfredur
 
Protocolos de enrutamiento
Protocolos de enrutamientoProtocolos de enrutamiento
Protocolos de enrutamientopedrolozada59
 
Protocolo de Enrrutamiento Diego Loyo
Protocolo de Enrrutamiento Diego Loyo Protocolo de Enrrutamiento Diego Loyo
Protocolo de Enrrutamiento Diego Loyo Diego Loyo Castillo
 
Estado enlace
Estado enlaceEstado enlace
Estado enlacerene1414
 
Técnicas de Ruteo
Técnicas de RuteoTécnicas de Ruteo
Técnicas de Ruteoapereda
 
Semana 14
Semana 14Semana 14
Semana 14keti
 
actividad_1_unidad_6_grupo 2A TIC
actividad_1_unidad_6_grupo 2A TICactividad_1_unidad_6_grupo 2A TIC
actividad_1_unidad_6_grupo 2A TICkira1212
 

Similar a 06 routing (20)

Diseño de redes corporativas
Diseño de redes corporativasDiseño de redes corporativas
Diseño de redes corporativas
 
Redes
RedesRedes
Redes
 
Informe ospf
Informe ospfInforme ospf
Informe ospf
 
Modulo
ModuloModulo
Modulo
 
Enrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptx
Enrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptxEnrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptx
Enrutamiento y Protocolos de enrutamiento - Vector Distancia - RIPv2.pptx
 
Router
RouterRouter
Router
 
Configuracion del router 2
Configuracion del router 2Configuracion del router 2
Configuracion del router 2
 
Archivo recopilatorio
Archivo recopilatorioArchivo recopilatorio
Archivo recopilatorio
 
Taller De Redes2
Taller De Redes2Taller De Redes2
Taller De Redes2
 
Capítulo 9 - Libro Azúl
Capítulo 9 - Libro AzúlCapítulo 9 - Libro Azúl
Capítulo 9 - Libro Azúl
 
Protocolos de enrutamiento
Protocolos de enrutamientoProtocolos de enrutamiento
Protocolos de enrutamiento
 
Protocolo de Enrrutamiento Diego Loyo
Protocolo de Enrrutamiento Diego Loyo Protocolo de Enrrutamiento Diego Loyo
Protocolo de Enrrutamiento Diego Loyo
 
Estado enlace
Estado enlaceEstado enlace
Estado enlace
 
Técnicas de Ruteo
Técnicas de RuteoTécnicas de Ruteo
Técnicas de Ruteo
 
Repaso de redes
Repaso de redesRepaso de redes
Repaso de redes
 
Repaso de redes
Repaso de redesRepaso de redes
Repaso de redes
 
Ospf
OspfOspf
Ospf
 
clase2
clase2clase2
clase2
 
Semana 14
Semana 14Semana 14
Semana 14
 
actividad_1_unidad_6_grupo 2A TIC
actividad_1_unidad_6_grupo 2A TICactividad_1_unidad_6_grupo 2A TIC
actividad_1_unidad_6_grupo 2A TIC
 

Más de houseturupial

Más de houseturupial (6)

07 tcpip _2de2
07 tcpip _2de207 tcpip _2de2
07 tcpip _2de2
 
07 tcpip _1de2
07 tcpip _1de207 tcpip _1de2
07 tcpip _1de2
 
05 intro wan
05 intro wan05 intro wan
05 intro wan
 
04 bridg switching
04 bridg switching04 bridg switching
04 bridg switching
 
03 tecn lan_básicas
03 tecn lan_básicas03 tecn lan_básicas
03 tecn lan_básicas
 
01 internetworking
01 internetworking01 internetworking
01 internetworking
 

Último

Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1ivanapaterninar
 
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del PerúRed Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del PerúCEFERINO DELGADO FLORES
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxAlexander López
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxNombre Apellidos
 
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfLa Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfjeondanny1997
 
Presentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia ArtificialPresentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia Artificialcynserafini89
 
certificado de oracle academy cetrificado.pdf
certificado de oracle academy cetrificado.pdfcertificado de oracle academy cetrificado.pdf
certificado de oracle academy cetrificado.pdfFernandoOblitasVivan
 
Documentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos JuridicosDocumentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos JuridicosAlbanyMartinez7
 
Trabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfTrabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfedepmariaperez
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx241522327
 
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptLUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptchaverriemily794
 
CommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 TestcontainersCommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 TestcontainersIván López Martín
 
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOAREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOnarvaezisabella21
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxAlexander López
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx241523733
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA241531640
 
Los Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesLos Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesEdomar AR
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxazmysanros90
 
tarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzztarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzzAlexandergo5
 
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptxModelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptxtjcesar1
 

Último (20)

Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1
 
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del PerúRed Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
 
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfLa Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
 
Presentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia ArtificialPresentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia Artificial
 
certificado de oracle academy cetrificado.pdf
certificado de oracle academy cetrificado.pdfcertificado de oracle academy cetrificado.pdf
certificado de oracle academy cetrificado.pdf
 
Documentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos JuridicosDocumentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos Juridicos
 
Trabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfTrabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdf
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx
 
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptLUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
 
CommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 TestcontainersCommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 Testcontainers
 
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOAREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
 
Los Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesLos Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, Aplicaciones
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptx
 
tarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzztarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzz
 
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptxModelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
 

06 routing

  • 1. UNIDAD 6 : ENRUTAMIENTO Prof. Arsenio Pérez ( aperez@delfos.ucla.edu.ve) Prof. Euvis Piña ( epina@delfos.ucla.edu.ve) Prof. Pedro Rodriguez prodrig@delfos.ucla.edu.ve) Prof. Alirio Pérez (ingalirioperez@yahoo.com) Prof. William Polanco (wpolanco@delfos.ucla.edu.ve) Presentación Diplomado 2002
  • 2.
  • 3. Qué es Enrutamiento ? www.cisco.com © 1999, Cisco Systems, Inc.
  • 4.
  • 5. Routers—Layer 3 Network 192.168.2.0 FDDI Network 192.168.3.0 Frame Relay Localidad Remota Network 192.168.1.0 Ethernet Site Principal Tabla Enrutamiento 192.168.3.0 Frame Relay 192.168.1.0 Ethernet 192.168.2.0 FDDI
  • 6.
  • 7.
  • 8. LAN-to-LAN Routing Network 1 Network 3 E0 E1 To0 Host 5 Host 4 Network 2 Token Ring 802.3 Routing Table Destination Network Outgoing Interface 1 2 3 E0 To0 E1 Net 2, Host 5
  • 9. LAN-to-LAN Routing Network 1 Network 3 E0 E1 To0 Host 5 Host 4 Network 2 Token Ring 802.3 Routing Table Net 2, Host 5 802.5 From LAN to LAN Destination Network Outgoing Interface 1 2 3 E0 To0 E1 Net 2, Host 5
  • 10. LAN-to-WAN Routing 1.3 2.4 Data A A Token Ring 2.4 Token Ring B B 1.3 From LAN Frame Relay To WAN To LAN Data 1.3 2.4 Data
  • 11. LAN-to-WAN Routing 1.3 2.4 Data A A Token Ring 2.4 Token Ring B B 1.3 From LAN Frame Relay Frame Relay 1.3 2.4 Data To WAN To LAN Data 1.3 2.4 Data 1.3 2.4 Data
  • 12. LAN-to-WAN Routing 1.3 2.4 Data A A Token Ring 2.4 Token Ring B B 1.3 From LAN Frame Relay Frame Relay 1.3 2.4 Data To WAN Ethernet 1.3 2.4 Data 1.3 2.4 Data To LAN Data 1.3 2.4 Data 1.3 2.4 Data Data 1.3 2.4 Data
  • 13.
  • 14. Enrutamiento Multiprotocolo IP 15.17.132.6 IP 15.16.42.8 IP 15.16.50.3 Tabla de Enrutamiento IP Token Ring Token Ring AppleTalk 200.167 AppleTalk 100.110 Apple IPX 4b.0800.0121.ab13 IPX 3a.0800.5678.12ab Novell DECnet 5.8 DECnet 10.1 DEC VAX VAX
  • 15.
  • 16.
  • 17.
  • 18. Direccionamiento de Red www.cisco.com © 1999, Cisco Systems, Inc.
  • 19.
  • 20. Ejemplos de Direccionamiento Dirección Dirección Protocolo de Red Nodo/Host General 1. 4 TCP/IP 10. 8.2.48 Novell IPX 1aceb0b 0000.0c00.6e25 AppleTalk 10. 1. X.25 DNIC NTN NTN: National Terminal Number
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26. Protocolos de Enrutamiento www.cisco.com © 1999, Cisco Systems, Inc.
  • 27.
  • 28.
  • 29. RIP y IGRP RIP Estándar de la Industria que selecciona el camino con el menor número de saltos 19.2 k 64k 64k 64k IGRP Cisco protocol que seleciona el camino más rápido (usado carga, distancia, etc.) 19.2 k 64k 64k 64k
  • 30. OSPF y EIGRP Aspecto OSPF EIGRP Topología Hierarchical Not restricted Requerimientos Memoria & CPU High Moderate Tamaño Tabla Routing Large Moderate Controlling body Industry standard Cisco proprietary Convergencia Fast Fast Protocolos Suportados IP IP IPX AppleTalk Configuración Difficult Easy
  • 31.

Notas del editor

  1. The objective of this module is to explain routing. We’ll start by first defining what routing is. We’ll follow that with a discussion on addressing. There is a section on routing terminology which covers subjects like routed vs. routing protocols and dynamic and static routing. Finally, we’ll talk about routing protocols.
  2. Routing is the process of finding a path to a destination host and of moving information across an internetwork from a source to a destination. Along the way, at least one intermediate node typically is encountered. Routing is very complex in large networks because of the many potential intermediate destinations a packet might traverse before reaching its destination host. A router is a device that forwards packets from one network to another and determines the optimal path along which network traffic should be forwarded. Routers forward packets from one network to another based on network layer information. Routers are occasionally called gateways (although this definition of gateway is becoming increasingly outdated).
  3. A router is a more sophisticated device than a hub or a switch.. It determines the appropriate network path to send the packet along by keeping an up-to-date network topology in memory, its routing table. A router keeps a table of network addresses and knows which path to take to get to each network. Routers keep track of each other’s routes by alternately listening, and periodically sending, route information. When a router hears a routing update, it updates its routing table. Routing is often contrasted with bridging, which might seem to accomplish precisely the same thing to the causal observer. The primary difference between the two is that bridging occurs at Layer 2 (the data link layer) of the OSI reference model, whereas routing occurs at Layer 3 (the network layer). This distinction provides routing and bridging with different information to use in the process of moving information from source to destination, so that the two functions accomplish their tasks in different ways. In addition, bridges can’t block a broadcast (where a data packet is sent to all nodes on a network). Broadcasts can consume a great deal of bandwidth. Routers are able to block broadcasts, so they provide security and assist in bandwidth control. You might ask, if bridging is faster than routing, why do companies move from a bridged/switched network to a routed network? There are many reasons, but LAN segmentation is a key reason. Also, routers increase scalability and control broadcast transmissions.
  4. So, where are routers used? A router can perform LAN-to-LAN routing through its ability to route packet traffic from one network to another. It checks its router table entries to determine the best path to the destination network. A router can perform LAN-to-WAN and remote access routing through its ability to route packet traffic from one network to another while handling different WAN services in between. Popular WAN service options include Integrated Services Digital Network, or ISDN, leased lines, Frame Relay, and X.25. Let’s look at routing in more detail.
  5. This slide illustrates the flow of packets through a routed network using the example of an e-mail message being sent from system X to system Y. The message exits system X and travel through an organization’s internal network until it gets to a point where it needs an Internet service provider. The message will bounce through their network and eventually arrive at system Y’s internet provider. While this example shows three routers, the message could actually travel through many different networks before it arrives at its destination. From the OSI model reference point of view, when the e-mail is converted into packets and sent to a different network, a data-link frame is received on one of a router&apos;s interfaces. The router de-encapsulates and examines the frame to determine what type of network layer data is being carried. The network layer data is sent to the appropriate network layer process, and the frame itself is discarded. The network layer process examines the header to determine the destination network and then references the routing table that associates networks to outgoing interfaces. The packet is again encapsulated in the link frame for the selected interface and sent on. This process occurs each time the packet transfers to another router. At the router connected to the network containing the destination host, the packet is encapsulated in the destination LAN’s data-link frame type for delivery to the protocol stack on the destination host.
  6. The next two examples will bring together many of the concepts we have discussed. The network layer must relate to and interface with various lower layers. Routers must be capable of seamlessly handling packets encapsulated into different lower-level frames without changing the packets’ Layer 3 addressing. Let’s look at an example of this in a LAN-to-LAN routing situation. Packet traffic from source Host 4 on Ethernet network 1 needs a path to destination Host 5 on Token Ring Network 2. The LAN hosts depend on the router and its consistent network addressing to find the best path. When the router checks its router table entries, it discovers that the best path to destination Network 2 uses outgoing port To0, the interface to a Token Ring LAN.
  7. Although the lower-layer framing must change as the router switches packet traffic from the Ethernet on Network 1 to the Token Ring on Network 2, the Layer 3 addressing for source and destination remains the same - in this example it is Net 2, Host 5 despite the different lower-layer encapsulations. The packet is then reframed and sent on to the destination Token Ring network. Now, let’s look at an example using a Wide Area Network.
  8. The network layer must relate to and interface with various lower layers for LAN-to-WAN traffic, as well. As an internetwork grows, the path taken by a packet might encounter several relay points and a variety of data-link types beyond the LANs. For example, in the graphic, a packet from the top workstation at address 1.3 must traverse three data links to reach the file server at address 2.4 shown on the bottom: The workstation sends a packet to the file server by encapsulating the packet in a Token Ring frame addressed to Router A.
  9. When Router A receives the frame, it removes the packet from the Token Ring frame, encapsulates it in a Frame Relay frame, and forwards the frame to Router B.
  10. Router B removes the packet from the Frame Relay frame and forwards the packet to the file server in a newly created Ethernet frame. When the file server at 2.4 receives the Ethernet frame, it extracts and passes the packet to the appropriate upper-layer process through the process of de- encapsulation. The routers enable LAN-to-WAN packet flow by keeping the end-to-end source and destination addresses constant while encapsulating the packet at the port to a data link that is appropriate for the next hop along the path.
  11. Routing involves two basic activities: determining optimal routing paths and transporting information groups (typically called packets ) through an internetwork. In the context of the routing process, the latter of these is referred to as switching . Although switching is relatively straightforward, path determination can be very complex. During path determination, routers evaluate the available paths to a destination and to establish the preferred handling of a packet. Routing services use internetwork topology information (such as metrics ) when evaluating network paths. This information can be configured by the network administrator or collected through dynamic processes running in the internetwork. After the router determines which path to use, it can proceed with switching the packet: Taking the packet it accepted on one interface and forwarding it to another interface or port that reflects the best path to the packet’s destination.
  12. Routers can support multiple independent routing algorithms and maintain associated routing tables for several routed protocols concurrently. This capability allows a router to interleave packets from several routed protocols over the same data links. The various routed protocols operate separately. Each uses routing tables to determine paths and switches over addressed ports in a “ships in the night” fashion; that is, each protocol operates without knowledge of or coordination with any of the other protocol operations. In the example above, as the router receives packets from the users on the networks using IP, it begins to build a routing table containing the addresses of the network of these IP users. As the router receives packets from Macintosh AppleTalk users. Again, the router adds the AppleTalk addresses. Routing tables can contain address information from multiple protocol networks. This process may continue with IPX traffic from Novell NetWare networks and Digital traffic from VAX minicomputers attached to Ethernet networks.
  13. To aid the process of path determination, routing algorithms initialize and maintain routing tables , which contain route information. Route information varies depending on the routing algorithm used. Routing algorithms fill routing tables with a variety of information. Two examples are destination/next hop associations and path desirability. Destination/next hop associations tell a router that a particular destination is linked to a particular router representing the “next hop” on the way to the final destination. When a router receives an incoming packet, it checks the destination address and attempts to associate this address with a next hop. With path desirability, routers compare metrics to determine optimal routes. Metrics differ depending on the routing algorithm used. A metric is a standard of measurement, such as path length, that is used by routing algorithms to determine the optimal path to a destination. Routers communicate with one another and maintain their routing tables through the transmission of a variety of messages. Routing update messages may include all or a portion of a routing table. By analyzing routing updates from all other routers, a router can build a detailed picture of network topology. Link-state advertisements inform other routers of the state of the sender’s link so that routers can maintain a picture of the network topology and continuously determine optimal routes to network destinations.
  14. Routing tables contain information used by software to select the best route. But how, specifically, are routing tables built? What is the specific nature of the information they contain? How do routing algorithms determine that one route is preferable to others? Routing algorithms often have one or more of the following design goals: Optimality - the capability of the routing algorithm to select the best route, depending on metrics and metric weightings used in the calculation. For example, one algorithm may use a number of hops and delays, but may weight delay more heavily in the calculation. Simplicity and low overhead - efficient routing algorithm functionality with a minimum of software and utilization overhead. Particularly important when routing algorithm software must run on a computer with limited physical resources. Robustness and stability - routing algorithm should perform correctly in the face of unusual or unforeseen circumstances, such as hardware failures, high load conditions, and incorrect implementations. Because of their locations at network junctions, failures can cause extensive problems. Rapid convergence - Convergence is the process of agreement, by all routers, on optimal routes. When a network event causes changes in router availability, recalculations are need to reestablish networks. Routing algorithms that converge slowly can cause routing loops or network outages. Flexibility - routing algorithm should quickly and accurately adapt to a variety of network circumstances. Changes of consequence include router availability, changes in network bandwidth, queue size, and network delay. We’ll talk more about the different types of routing algorithms in a few minutes.
  15. Routing algorithms have used many different metrics to determine the best route. Sophisticated routing algorithms can base route selection on multiple metrics, combining them in a single (hybrid) metric. All the following metrics have been used: Path length - The most common metric. The sum of either an assigned cost per network link or hop count, a metric specify the number of passes through network devices between source and destination. Reliability - dependability (bit-error rate) of each network link. Some network links might go down more often than others. Also, some links may be easier or faster to repair after a failure. Delay - The length of time required to move a packet from source to destination through the internetwork. Depends on bandwidth of intermediate links, port queues at each router, network congestion, and physical distance. A common and useful metric. Bandwidth - available traffic capacity of a link. Load - Degree to which a network resource, such as a router, is busy (uses CPU utilization or packets processed per second). Communication cost - operating expenses of network links (private versus public lines). Now let’s talk a little about network addressing.
  16. Each network segment between routers is is identified by a network address. These addresses contain information about the path used by the router to pass packets from a source to a destination. For some network layer protocols, a network administrator assigns network addresses according to some preconceived internetwork addressing plan. For other network layer protocols, assigning addresses is partially or completely dynamic. Most network protocol addressing schemes also use some form of a node address. The node address refers to the device’s port on the network. The figure in this slide shows three nodes sharing network address 1 (Router 1.1, PC 1.2, and PC 1.3). For LANs, this port or device address can reflect the real Media Access Control or MAC address of the device. Unlike a MAC address that has a preestablished and usually fixed relationship to a device, a network address contains a logical relationship within the network topology.. The hierarchy of Layer 3 addresses across the entire internetwork improves the use of bandwidth by preventing unnecessary broadcasts. Broadcasts invoke unnecessary process overhead and waste capacity on any devices or links that do not need to receive the broadcast. By using consistent end-to-end addressing to represent the path of media connections, the network layer can find a path to the destination without unnecessarily burdening the devices or links on the internetwork with broadcasts.
  17. Let’s look at some examples. For TCP/IP, dotted decimal numbers show a network part and a host part. Network 10 uses the first of the four numbers as the network part and the last three numbers—8.2.48-as a host address. The mask is a companion number to the IP address. It communicates to the router the part of the number to interpret as the network number and identifies the remainder available for host addresses inside that network. For Novell IPX, the network address 1aceb0b is a hexadecimal (base 16) number that cannot exceed a fixed maximum number of digits. The host address 0000.0c00.6e25 (also a hexadecimal number) is a fixed 48 bits long. This host address derives automatically from information in the hardware of the specific LAN device.
  18. Subnetworks or subnets are networks arbitrarily segmented by a network administrator in order to provide a multilevel, hierarchical routing structure while shielding the subnetwork from the addressing complexity of attached networks. Subnetting allows single routing entries to refer either to the larger block or to its individual constituents. This permits a single, general routing entry to be used through most of the Internet, more specific routes only being required for routers in the subnetted block. A subnet mask is a 32-bit number that determines how an IP address is split into network and host portions, on a bitwise basis. For example, 131.108.0.0 is a standard Class B subnet mask; the first two bytes identify the network and the last two bytes identify the host. A subnet mask is a 32-bit address mask used in IP to indicate the bits of an IP address that are being used for the subnet address. Sometimes referred to simply as mask. The term mask derives from the fact that the non-host portions of the IP address bits are masked by 0’s to form the subnet mask. Subnetting helps to organize the network, allows rules to be developed and applied to the network, and provides security and shielding. Subnetting also enables scalability by controlling the size of links to a logical grouping of nodes that have reason to communicate with each other (such as within Human Resources, R&amp;D, or Manufacturing).
  19. Routing algorithms can be classified by type. Key differentiators include: Single-path versus multi-path: Multi-path routing algorithms support multiple paths to the same destination and permit traffic multiplexing over multiple lines. Multi-path routing algorithms can provide better throughput and reliability. Flat versus hierarchical: In a flat routing system, the routers are peers of all others. In a hierarchical routing system, some routers form what amounts to a routing backbone. In hierarchical systems, some routers in a given domain can communicate with routers in other domains, while others can communicate only with routers in their own domain. Host-intelligent versus router-intelligent: In host-intelligent routing algorithms, the source end-node determines the entire route and routers act simply as store-and-forward devices. In router-intelligent routing algorithms, host are assumed to know nothing about routes and routers determine the optimal path. Intradomain versus interdomain: Some routing algorithms work only within domains; others work within and between domains. Static versus dynamic - this classification will be discussed in the following two slides. Link state versus distance vector: will be discussed after static versus dynamic routing.
  20. Static routing knowledge is administered manually: a network administrator enters it into the router’s configuration. The administrator must manually update this static route entry whenever an internetwork topology change requires an update. Static knowledge is private—it is not conveyed to other routers as part of an update process. Static routing has several useful applications when it reflects a network administrator’s special knowledge about network topology. When an internetwork partition is accessible by only one path, a static route to the partition can be sufficient. This type of partition is called a stub network. Configuring static routing to a stub network avoids the overhead of dynamic routing.
  21. After the network administrator enters configuration commands to start dynamic routing, route knowledge is updated automatically by a routing process whenever new topology information is received from the internetwork. Changes in dynamic knowledge are exchanged between routers as part of the update process. Dynamic routing tends to reveal everything known about an internetwork. For security reasons, it might be appropriate to conceal parts of an internetwork. Static routing allows an internetwork administrator to specify what is advertised about restricted partitions. In the illustration above, the preferred path between routers A and C is through router D. If the path between Router A and Router D fails, dynamic routing determines an alternate path from A to C. According to the routing table generated by Router A, a packet can reach its destination over the preferred route through Router D. However, a second path to the destination is available by way of Router B. When Router A recognizes that the link to Router D is down, it adjusts its routing table, making the path through Router B the preferred path to the destination. The routers continue sending packets over this link. When the path between Routers A and D is restored to service, Router A can once again change its routing table to indicate a preference for the counterclockwise path through Routers D and C to the destination network.
  22. Distance vector versus link state is another possible routing algorithm classification. Link state algorithms (also known as shortest path first algorithms) flood routing information about its own link to all network nodes. The link-state (also called shortest path first) approach recreates the exact topology of the entire internetwork (or at least the partition in which the router is situated). Distance vector algorithms send all or some portion of their routing table only to neighbors. The distance vector routing approach determines the direction (vector) and distance to any link in the internetwork. A third classification in this course, called hybrid, combines aspects of these two basic algorithms. There is no single best routing algorithm for all internetworks. Network administrators must weigh technical and non-technical aspects of their network to determine what’s best.
  23. Confusion often exists between the similar terms routing protocol and routed protocol. Routed protocols are any network protocol suite that provides enough information in its network layer address to allow a packet to direct user traffic. Routed protocols define the format and use of the fields within a packet. Packets generally are conveyed from end system to end system. The Internet IP protocol and Novell’s IPX are examples of routed protocols. Other examples include DECnet, AppleTalk, Novell NetWare, Open Systems Interconnect (OSI), Banyan VINES, and Xerox Network System (XNS). A routing protocol supports a routed protocol by providing mechanisms for sharing routing information. Routing protocol messages move between the routers. A routing protocol allows the routers to communicate with other routers to update and maintain tables. Routing protocol messages do not carry end-user traffic from network to network. A routing protocol uses the routed protocol to pass information between routers. TCP/IP examples of routing protocols are the Routing Information Protocol (RIP), Interior Gateway Routing Protocol (IGRP), Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), and Enhanced IGRP (EIGRP).
  24. Distance Vector RIP - Routing Information Protocol. The most common IGP in the Internet. RIP uses hop count as a routing metric. IGRP - Interior Gateway Routing Protocol. IGP developed by Cisco to address the issues associated with routing in large, heterogeneous networks. Link State OSPF - Open Shortest Path First. Link-state, hierarchical IGP routing algorithm proposed as a successor to RIP in the Internet community. OSPF features include least-cost routing, multipath routing, and load balancing. OSPF was derived from an early version of the IS-IS protocol. NLSP - NetWare Link Services Protocol. Link-state routing protocol based on IS-IS. IS-IS - Intermediate System-to-Intermediate System. OSI link-state hierarchical routing protocol based on DECnet Phase V routing, whereby ISs (routers) exchange routing information based on a single metric, to determine network topology. Hybrid EIGRP - Enhanced Interior Gateway Routing Protocol. Advanced version of IGRP developed by Cisco. Provides superior convergence properties and operating efficiency, and combines the advantages of link state protocols with those of distance vector protocols.
  25. RIP takes the path with the least number of hops, but does not account for the speed of the links. It only counts hops. The limitation of RIP is about 15 hops. This creates a scalability issue when routing in large, heterogeneous networks. IGRP was developed by Cisco and works only with Cisco products (although it has been licensed to some other vendors). It accounts for the varying speeds of each link. Additionally, IRGP can handle 224 to 252 hops, depending on the IOS version. However, IGRP only supports IP.
  26. OSPF - Open Shortest Path First. Link-state, hierarchical IGP routing algorithm proposed as a successor to RIP in the Internet community. OSPF features include least-cost routing, multipath routing, and load balancing. OSPF was derived from an early version of the IS-IS protocol. EIGRP - Enhanced Interior Gateway Routing Protocol. Advanced version of IGRP developed by Cisco. Provides superior convergence properties and operating efficiency, and combines the advantages of link state protocols with those of distance vector protocols.