SlideShare una empresa de Scribd logo
1 de 16
Descargar para leer sin conexión
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
308
FINGERPRINT IDENTIFICATION TECHNIQUE
BASED ON WAVELET-BANDS SELECTION FEATURES (WBSF)
Dr. Mustafa Dhiaa Al-Hassani,
Mustansiriyah University, Baghdad-Iraq
Dr. Abdulkareem A. Kadhim,
Al-Nahrain University, Baghdad-Iraq
Dr. Venus W. Samawi,
Al al-Bayt University, Jordan
ABSTRACT
The paper is concerned with the use of fingerprint (FP)features for protection against
unauthorized access. Wavelet features for both closed and open-set FP recognition are studied
here to verify persons' identity. Fingerprints of 49 persons (32-authorized and 17-unauthorized)
were taken as testing data. Each authorized person is asked to give 10-instances of his right
forefinger print. In the closed-set FP recognition, the obtained recognition rates are below 90%
due to the imperfections in the FP images that negatively affect the recognition rate.
Preprocessing operations such as: noise-removal, segmentation, normalization and binarization
are considered to improve the resulting recognition rates. A method that relies on a new
selection process for wavelet decomposition bands is proposed, which enhance the recognition
rates further to get about 100% in some favorable conditions. The results have shown that the
wavelet descriptors using the proposed Wavelet-Bands Selection Features (WBSF) are efficient
representation that can provide reliable recognition for large input variability. The open-set FP
verification mode is also presented for 290 trials from 29 persons, where the obtained
verification rates are greater than 97% for both Euclidean and city-block distance measures.
Keywords: Fingerprint Recognition, Fingerprint Verification, Biometric, Feature Extraction,
Wavelet Transform, Wavelet-Bands Selection Features.
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING
& TECHNOLOGY (IJCET)
ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 4, Issue 3, May-June (2013), pp. 308-323
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2013): 6.1302 (Calculated by GISI)
www.jifactor.com
IJCET
© I A E M E
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
309
I. INTRODUCTION
Due to the escalating level of security breaches and transactions frauds, the need for
highly secure identification and personal verification technologies becomes essential. The key
task of an automated security system is to verify that the users are in fact those who claim to
be. The use of biometric information has been used widely for both person identification and
security applications. Biometric-based solutions are able to provide confidential financial
transactions and personal data privacy [1]. A biometric can be described as a measurable
physical and/or behavioral trait that can be captured and used to verify the identity of a person
[2].
FP recognition is a rapidly evolving technology that has been widely used in forensics
such as criminal recognition and prison security, and has widely adopted in a broad range of
civilian applications such as national ID card, airport check-in, border control, driver’s-license
authenticity, computer network logon, physical access control, electronic banking, personal
authentication,… etc [3, 4, 5].
The real significance of FP is based mainly on the following principles: 1) People can't
"forget" their fingerprints, 2) It is easy to authenticate, 3) Impossible to deny, 4) It is a physical
characteristic instead of something to be remembered or carried around; it is less susceptible to
misuse than other authentication measures like passwords or credit cards, 5) Unchangeable, 6)
Unforgeable, ... etc [6, 7].
Several researches in the field of FP recognition/verification were developed and
receive a great deal of attention among many researchers using of wavelet transform and other
feature extraction methods: Priti and Priyadarshan [4] introduced a FP verification using Haar
wavelet transform method. The system was tested on a Biolab Database of 2160 FP images.
The obtained verification accuracy is 82.08% even by rotating each FP image from 00
to 3600
.
Eriksson [7] illustrated that silicon FP scanners produce good quality images, this work
presents two main approaches to minutia detection in FP images, binary detection and direct
grayscale detection. The results are tested on 6283 fingerprints collected by the Verdicom
FPS110 silicon FP scanning device and they reported about 92% classification accuracy. Saeed,
Tariq, and Jawaid [8] improved a fingerprint image enhancement technique using Gabor
wavelets. The system was tested on Fingerprint Verification Competition (FVC) 2004 database.
Experimental results show that the proposed algorithm proved to be effective in enhancing the
fingerprint image quality, where the achieved accuracy is 97.14%. In [9] the authors presented
minutiae based approach to FP identification and verification. The technique is based on the
extraction of minutiae from the thinned, binarized and segmented version of a FP image. The
system was tested on the FVC2000 database using low cost capacitative FP scanners, which
contains 800 fingerprints from 110 different fingers. The system was implemented using
Matlab 6.5 and the time taken for processing a single FP is 12 seconds that implies accuracy
92%.
II. AIM OF THE WORK
This work aims to design and build a secure, fast, reliable, and accurate identification
system for access control that is capable of distinguishing the authorized persons from others
(i.e., impostors), and then gives only the authorized persons a privilege or an access right to the
facility that need to be protected from the intrusion of unauthorized persons.
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
310
In this paper, a novel Wavelet feature-set (WBSF) is proposed for representing FP pattern.
FP recognition and verification is also to be investigated for open and closed-set models.
III. THE PROPOSED FP RECOGNITION SYSTEM MODEL
In general, the function of FP systems can be separated into several distinct phases,
which include sensing or reading FP, preprocessing operations, FP registration, feature
extraction followed by a classification search and decision rule [1, 10]. The block diagram for
the proposed FP recognition system model, shown in Fig. (1), illustrates that the input FP
image is passed through four preprocessing operations (noise-removal, segmentation,
normalization and binarization) prior to feature extraction phase [1].
Fig. (1): Block-Diagram of the proposed FP Recognition
System Model
Features are extracted from wavelet domain, using the classical pyramidal Wavelet
transform decomposition followed by the features extracted from the proposed Wavelet-Bands
Selection Features (WBSF), as shown in the design of the proposed system to recognize a
query FP image by comparing it with a training database of F Preferences during a pattern
matching phase. Finally, the distance measures (Euclidean and City-block) are used to calculate
the difference between the feature vector of the query FP with the feature vector of the
potential FP in the database. The next subsections will cover the details of each stage [1].
A. Input FP Image
Figure (2) illustrates some examples of input FP images used for training or testing modes
to our system model from the right forefinger of different persons (P1, P2, …, P6) [1].
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
311
Fig.(2):Example of 6–FP images from different Persons
B. Preprocessing of the FP Images
FP images are rarely of perfect quality. They may be degraded and corrupted with
elements of noise due to many factors including variations in skin and impression conditions. It
must also overcome fingers pressed too hard or too gently to get an acceptable image. Getting
an acceptable image is probably the most important factor in determining fingerprints
genuineness. Bad quality prints can result in unsuccessful recognition attempts or even worse,
erroneous logins. Thus, image enhancement techniques are employed prior to feature extraction
to reduce the noise and enhance the definition of ridges against valleys. A number of
processing techniques adopted in this system model are applied in the following sequence [1]:
Noise-Removal (using Mean or Gaussian filter), Segmentation (foreground/background
separation), Normalization (to reduce the effect of non-uniform intensities and improving
image quality by stretching its histogram), and Binarization (using local mean). Figure (3)
illustrates the effects on a sample FP image [1].
Fig. (3): The sequence of preprocessing steps for FP image sample
P1 P2 P3
P4 P5 P6
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
312
C. Database Construction
FP identification system (both FP recognition and FP verification) depends on FP samples
as input data. In this work, database samples were collected in two modes of operation:
• Closed-set FP recognition mode
• Open-set FP verification mode
In order to evaluate the recognition performance of the proposed system model, each user
of the system (to be considered as authorized one) has been asked to provide his forefinger
print for a maximum of 10 prints from the same forefinger (i.e., 10 instances), as shown in Fig.
(4). The number of repetition R ( 1≤ R ≤ 10 )can be considered as training set during an
enrollment phase to train the fingerprints model of authorized persons, and the other ( 10 – R )
repetitions are considered for testing during a matching phase to classify them with those
training references in the database [1].
Fig. (4): Demonstrates 6-FP instances from the same Person P2
The data were collected from 32 different persons, 18 males and 14 females, in a closed set FP
recognition mode (i.e. 320 samples). As a result, the total database size of FP samples for this
mode is [1]:
…… (1)
…… (2)
…… (3)
In the open-set FP verification mode, up to 290 trials from different persons (i.e., authorized
and unauthorized) are taken. This is performed in order to study the system behavior and to
select the optimal threshold for user verification.
D. Feature Extraction
The process of extracting some numerical measurements from raw input patterns by
constructing a new "smaller" set of features from the original feature set of patterns (i.e.
rsonsNo. of PeizeTotal DB S ×= 10
PersonsTrainingofNo of.NoRReferences. ×=
PersonsSamplesTestofNo of.NoR)(10. ×−=
P2,1P2,2 P2,3
P2,4 P2,5 P2,6
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
313
)(
1
(t) ψψ ,
j
kt
jkj
−
=
reducing dimensionality) is referred to as feature extraction[11].In this work, features are
extracted from the spectral properties of the wavelet transform.
Wavelet transform breaks an image down into four sub-sampled images, and then
analyze each component with a resolution matched to its scale. The forward and inverse
continuous wavelet transform ofx(t) with respect to the basis function or wavelet (t)ψ k,j at scale j
(j>0) and time delay k is written as follows [4, 12 –14]:
..…(4)
..…(5)
where
..…(6)
and (t)ψ is the mother wavelet.
After converting the input FP image from its lowest-level of pixel data into higher-level
representation of wavelet coefficients, [1],a set of wavelet features that represent the input FP
image can be extracted by recursively decomposing sub images in the low frequency channels
using Algorithm-1 as shown below:
Algorithm-1:The Classical Pyramidal Wavelet Transform Decomposition [1, 15]
Step1: Decompose a given textured image with 2-D wavelet transform into 4 sub images, as
indicated in Fig. (5) (the image is divided into four sub bands after wavelet transform:
horizontal, vertical, diagonal subimages and low resolution subimage).
Fig. (5): Three-level Wavelet Decomposition
LL3 LH3
LH2
HL3 HH3
LH1
HL2 HH2
HL1 HH1
∫= dt)t()t(x)(W ψ k,jk,j:CWTForward
∫∫=
k j
djdk)t()k,j(W)t(x ψ k,j:CWTInverse
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
314
Step2: 1) Calculate the Mean Absolute Value (M.A.V.) feature for each decomposed image, as
follows [15]:
…… (7)
where
j)x(i, is the decomposed image, with Mi ≤≤1 and Nj ≤≤1 . M is the subimage height
and N is the subimage width.
2) Calculate the Standard Deviation (S.D.) feature for j)x(i, , as shown below [15, 16]:
…… (8)
The size of the smallest subimages should be used as a stopping condition for the iterative
decomposition process. It is also worthwhile to point out that the above pyramidal wavelet
transform decomposition takes no more space to store the wavelet coefficients than it does to
store the original image.
E. Pattern Matching
The resulting test template, which is an N-dimensional feature vector, is compared
against the stored reference templates to find the closest match. The process is to find which
unknown class matches a predefined class or classes. For the FP recognition task, the unknown
FP is compared to all references in the database. This comparison can be done through
Euclidean (E.D.) or city-block (C.D.) distance measures [17], shown below:
…… (9)
….. (10)
where A and B are two vectors, such that A = [a1 a2 … aN]and B = [b1 b2 … bN].
The primary methods for the discrimination process are either to measure the difference
between the two feature vectors or to measure the similarity. In our approach the minimum
distance classifier, by measuring the difference between the two patterns, is used for FP
recognition. This classifier assigns the unknown pattern to the nearest predefined pattern. The
bigger distance between the two vectors, is the greater difference. On the other hand, the
identity of the unknown FP was verified by considering the best matched reference in the
database where their distance is lower than a certain threshold [17, 18].
IV. EXPERIMENTAL RESULTS
The recognition rate (R.R.) is defined as the ratio of correct identified fingerprints to the
total number of test samples which corresponds to a nearest neighbor decision rule.
∑
=
−=
N
i
ii
1
2
)ba(.D.E
∑
=
−=
N
ii
1i
ba.D.C
∑ ∑
= =×
=
M
1i
N
1j
)j,i(xM.A.V.
NM
1
∑ ∑= =
−=
×
M
i
N
j
M.A.V.jix
NM
S.D.
1 1
2
)( ),(
1
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
315
..… (11)
Many experiments and test conditions were accomplished to measure the performance
of the proposed system with different criterions concerning: wavelet decomposition level
selection, FP noise-removal, segmentation, normalization, binarization, the effect of the
proposed WBSF on the overall recognition/verification rates when compared with the classical
pyramidal wavelet transform decomposition method.
A. The Selection of Wavelet Level
In order to select the best level of wavelet decomposition for the system, this test is
performed. Different Daubechies wavelet functions are considered as shown in Table-1.
Table-1: Recognition rates for different levels of wavelet decomposition using (M.A.V.)
feature
The wavelet levels considered for each function is varied from 1 to 5. The number of
wavelet features for the first level is 4, and each progressing in wavelet level by iteratively
decomposing the low resolution sub image will correspond increasing in features length by 3.
For each training or testing, five repetitions for each FP are considered which resulted in 160
samples.
It is clear from Table-1 and its corresponding chart Fig. (6), that Level-4 is the most
appropriate level for feature vector construction where all the recognition ratesare the highest
among almost all Daubechies functions.
%
TestedSamplesNo. ofTotal
FPIdentifiedCorrectlyofNo.
R.R. 100×=
Wavelet
Function
Level-1 Level-2 Level-3 Level-4 Level-5
D2 41.875 55.000 75.000 76.875 76.875
D4 49.375 60.625 79.375 84.375 77.500
D6 46.250 65.000 82.500 84.375 83.750
D8 41.875 64.375 84.375 86.250 83.125
D10 43.125 65.000 84.375 87.500 86.875
D12 45.625 65.000 84.375 89.375 85.000
D14 44.375 63.750 84.375 87.500 85.000
D16 43.750 65.000 82.500 83.750 85.625
D18 44.375 65.000 85.000 86.875 86.250
D20 41.875 66.875 84.375 87.500 82.500
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
316
Fig. (6): Recognition rates for different levels of wavelet decomposition using (M.A.V.)
feature
B. Segmentation of Low-pass Filtered FP images
After determining the appropriate wavelet decomposition level, a number of preprocessing
steps were performed to enhance image quality. The first step is to remove the noise from the
input FP images using the Gaussian-filter, and then separating the foreground regions from the
background regions in a FP image. Figure(7) shows the resulting recognition rates when
Euclidean distance measure and M.A.V. were used.
Fig.(7): Effects of Segmentation on recognition rates for the Gaussian-filtered FP
It is clear from Fig. (7), that the segmentation process enhances all the recognition rates
for the Gaussian-filtered FP images; where about (96%) recognition rate is achieved using D8.
On the other hand, when segmentation is not used, all recognition rates are below 90%.
65
70
75
80
85
90
95
100
D2 D4 D6 D8 D10 D12 D14 D16 D18 D20
Daubechies Wavelet functions
RecognitionRate%
Gaussian Filter with Segmentation
40
50
60
70
80
90
100
D2 D4 D6 D8 D10 D12 D14 D16 D18 D20
Daubechies Wavelet functions
RecognitionRate%
Level1 Level2 Level3
Level4 Level5
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
317
C. Binarization of Normalized FP images
Further improvements in recognition rates can be achieved when converting the
normalized FP images (using histogram stretching) from gray-scale to binary as shown in
Table-2. This increases the contrast among the ridges and valleys of FP.
Table-2: Recognition rates after Binarization of the Normalized FP images using
(M.A.V. and S.D.) features
Wavelet
Function
E. D. C. D.
M.A.V. S.D. M.A.V. S.D.
D2 90.000 96.250 87.500 94.375
D4 95.625 97.500 95.625 97.500
D6 96.250 99.375 96.875 98.750
D8 98.750 100.00 98.750 99.375
D10 95.625 100.00 96.875 98.750
D12 99.375 99.375 97.500 99.375
D14 96.250 99.375 96.875 100.00
D16 98.125 100.00 98.125 100.00
D18 98.750 100.00 98.750 99.375
D20 98.125 99.375 100.00 99.375
The results of Table-2 obviously indicate the highly enhancements in all recognition
rates after applying the binarization step to the normalized FP images for both distance
measures when compared to previous test. Furthermore, one can deduce that the (S.D.) wavelet
feature present better results than (M.A.V.) feature using both distance measures. Figure (8)
display part of this comparison by taking only the (S.D.) wavelet feature using Euclidean
distance measure.
Fig. (8): Recognition rates for wavelet feature (S.D.) after Binarization of Normalized FP
images
76
78
80
82
84
86
88
90
92
94
96
98
100
D2 D4 D6 D8 D10 D12 D14 D16 D18 D20
Daubechies Wavelet functions
RecognitionRate%
Normalization With Binarization
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
318
D. The Proposed Wavelet–Bands Selection Features (WBSF)
This section reviews a novel selection method for the set of wavelet features that are
well suited for recognition of FP images with the aim to improve the recognition rates. In this
method, the wavelet features extracted by means of four wavelet decomposition levels (i.e. 13
features) are combined with another (18 features) extracted from five decomposition levels
wavelet bands as shown in Fig. (9). These provide information about FP image in both
horizontal and vertical directions [1].The added features are the shaded cells shown in Fig.
(10).The final calculated 31 features are arranged in a single vector that will represent the FP
feature pattern.
Fig.(9): Demonstrates 5–decomposition levels of the 2-D wavelet transform for a FP
sample
Fig.(10): The proposed wavelet channels decomposition (5-levels) by indicating the
number of each newly selected band
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
319
The experimental results for the proposed WBSF system are shown in Table-3with its
corresponding Figures (11) and (12), which gives better recognition rates when compared to
those in Table-2.This is due to the fact that the proposed WBSF method for feature extraction
provides extra information to assist further in recognition.
Table-3: Recognition rates for WBSF system with different wavelet functions and
distance measures
Wavelet
Function
E. D. C. D.
M.A.V. S.D. M.A.V. S.D.
D2 95.000 98.125 93.125 97.500
D4 97.500 99.375 96.250 98.125
D6 98.125 100.00 98.125 99.375
D8 98.750 100.00 97.500 100.00
D10 100.00 100.00 100.00 99.375
D12 100.00 100.00 100.00 100.00
D14 100.00 100.00 99.375 100.00
D16 98.125 100.00 98.750 100.00
D18 100.00 100.00 100.00 100.00
D20 100.00 100.00 100.00 99.375
Fig. (11): Recognition rates for wavelet feature (M.A.V.) before and after the addition of
the proposed WBSF
88
89
90
91
92
93
94
95
96
97
98
99
100
D2 D 4 D6 D 8 D10 D12 D14 D 16 D18 D20
With Binarization WBSF
Daubechies Wavelet functions
RecognitionRate%
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
320
Fig. (12): Recognition rates for wavelet feature (S.D.) before and after the addition of the
proposed WBSF
In WBSF, the decomposition bands involved are not only the LL bands but also the LH
and HL bands that correspond to horizontal and vertical FP image details, respectively.
E. Fingerprint Verification
The final step requires the verification of user’s identity. This is relies on the best results
obtained from the previous experiments. It is undoubtedly illustrated that (S.D.) based feature,
extracted from different wavelet bands, exhibits better results when compared to(M.A.V.).
Therefore, (S.D.) is selected to be the feature for wavelet extraction method of the FP
verification mode using WBSF features set.
Since different wavelet functions can provide recognition rates close to 100% as illustrated
in Table-3, therefore we select D20 as the wavelet function for the verification tests. A total of
290 query FP samples from 29 persons (authorized and unauthorized) are considered for open-
set FP verification mode. Different threshold values were considered, as shown in Table-4 and
5. The successful decision corresponds to the rate of accepting registered persons and rejecting
non-registered ones for all trials.
Table-4: FP verification rates for D20 using Euclidean distance
Threshold )(θ Successful Decision FAR FRR
2.60 73.4482 0.0 26.5517
2.85 78.2758 0.0 21.7241
3.10 83.1034 0.0 16.8965
3.35 91.7241 0.0 8.2758
3.60 94.1379 0.0 5.8620
3.85 97.2413 0.6896 2.0689
4.10 96.5517 2.4137 1.0344
4.35 95.1724 3.7931 1.0344
4.60 92.4138 6.8965 0.6896
4.85 89.3103 10.0000 0.6896
5.10 86.5517 12.7586 0.6896
5.35 82.4138 16.8965 0.6896
5.60 78.6206 21.0344 0.3448
88
89
90
91
92
93
94
95
96
97
98
99
100
D2 D4 D6 D8 D10 D12 D14 D16 D18 D20
Daubechies Wavelet functions
RecognitionRate%
With Binarization WBSF
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
321
Table-5: FP verification rates for D20 using city-block distance
Threshold )(θ
Successful Decision FAR FRR
12.00 80.6896 0.0 19.3103
12.50 85.1724 0.0 14.8275
13.00 88.2758 0.0 11.7241
13.50 91.7241 0.0 8.2758
14.00 94.1379 0.0 5.8620
14.50 96.5517 0.0 3.4482
15.00 97.9310 0.0 2.0689
15.50 97.9310 0.0 2.0689
16.00 97.5862 0.3448 2.0689
16.50 97.5862 1.3793 1.0344
17.00 95.8620 3.1034 1.0344
17.50 95.1724 4.1379 0.6896
18.00 93.4482 5.8620 0.6896
18.50 92.0689 7.2413 0.6896
19.00 89.6551 9.6551 0.6896
The optimum threshold of Crossover Error Rate (CER) is the point where the False
Rejection Rate (FRR) and the False Acceptance Rate (FAR) curves meet in verifying user's
identity. The variation of FAR and FRR with different threshold values are also shown in Fig.
(13) and (14),where the obtained CER are approximately 4.03 and 16.45 for Euclidean and
city-block distances respectively.
Fig. (13): FAR and FRR Performance Curve for different threshold levels using
Euclidean distance
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
2.6 2.85 3.1 3.35 3.6 3.85 4.1 4.35 4.6 4.85 5.1 5.35 5.6
Threshold values for Euclidean distance
ErrorRate%
F A R F R R
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
322
Fig. (14): FAR and FRR Performance Curve for different threshold levels using city-
block distance
V. CONCLUSIONS
A fingerprint recognition system for 490 FP samples is presented that relies on wavelet
features. It is found that 4-level wavelet decomposition is appropriate for feature vector
construction where all the recognition rates are the highest among almost all Daubechies
functions. In the closed-set FP recognition, the obtained recognition rates are below 90% due to
the imperfections in the FP images. To enhance the recognition rates further, a number of
preprocessing operations are used prior to wavelet transform and more than 96% recognition
rates are achieved in some Daubechies functions.
The results have shown that the proposed WBSF method outperform the conventional
wavelet based recognition method. It seems that, the additionally selected bands provide extra
information and contribute in enhancing the recognition rates to attain 100% for D6, D8, ...,
D20 according to the test conditions considered in the work.
The open-set FP verification mode is also presented for 290 trials from 29 persons. The
obtained verification rates, greater than 97%, using WBSF method are quite acceptable.
REFERENCES
[1] Mustafa D. Al-Hassani, “Identification Techniques using Speech Signals and Fingerprints”,
Ph.D. Thesis, Department of Computer Science, Al-Nahrain University, Baghdad, Iraq,
Sep. 2006.
[2] R. M. Mandi, S. S. Lokhande, "Rotation –Invariant Fingerprint Identification System",
International Journal of Electronics Communication and Computer Technology (IJECCT),
ISSN: 2249-7838, Vol. 2 Issue 4, July 2012.
[3] Rakesh Verma, Anuj Goel, "Wavelet Application in Fingerprint Recognition", International
Journal of Soft Computing and Engineering (IJSCE), ISSN: 2231-2307, Vol. 1, Issue-4,
Sep. 2011.
[4] Priti S. Sanjekar, Priyadarshan S. Dhabe, "Fingerprint Verification using Haar
Wavelet",IEEE 2nd
International Conference on Computer Engineering and Technology,
Vol. 3, pp.361-365, 2010.
0
2
4
6
8
10
12
14
16
18
20
22
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19
Threshold values for City-block distance
ErrorRate%
FAR FRR
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
323
[5] D. Maltoni, D. Maio, A. K. Jain, S. Prabhakar, “Handbook of Fingerprint Recognition”,
Springer Verlag, New York, 2003.
[6] Sagem Morpho Inc.,”Fingerprint Identification Technology in civil Applications”, 1145
Broadway plaza Tacoma, Washington, 1998.
[7] M. Eriksson, “Biometrics Fingerprint based identity verification”, M. Sc. Thesis,
Department of Computer Science, UMEÅUniversity, August 2001.
[8] A. Saeed, A. Tariq, U. Jawaid, "Automated System for Fingerprint Image Enhancement
using Improved Segmentation and Gabor Wavelets", Department of Software Engineering,
Fatima Jinnah University, Rawalpindi, Pakistan, 2008.
[9] F. A. Afsar, M. Arif and M. Hussain, “Fingerprint Identification and Verification System
using Minutiae Matching”, Department of Computer & Information Sciences, Institute of
Engineering & Applied Sciences, Islamabad, Pakistan, 2004.
[10] M. H. Ghassemian,“A Robust Structural Fingerprint Restoration”, Intelligent Signal
Processing Research Center, Department of Electrical Engineering, Tarbiat Modares
University, Iran, 1994.
[11] R. Setiono and H. Liu, ”Neural Network Feature Selector”, IEEE Transactions on
Neural Network, Vol. 8, No.3, May 1997.
[12] A. M. Reza, “From Fourier Transform to Wavelet Transform: Basic Concepts”, White
paper, Spire Lab, UWM, October, 1999.
[13] C. S. Burrus, R. A. Gopinath and H. Guo, “Introduction to Wavelets and Wavelet
Transforms”, Prentice-Hall, Inc., U.S.A, 1998.
[14] Z. Ahmad, “A New Algorithm for Image Compression Based on Wavelet Transform”,
M. Sc. Thesis, Electrical Engineering Department, University of Baghdad, Iraq, 1999.
[15] T. Chang and C.-C. Jay Kuo, “Texture Analysis and Classification with Tree-Structured
Wavelet Transform”, IEEE Transactions on Image Processing, Vol. 2, No. 4, October 1993.
[16] M. P. Dale, M. A. Joshi, "Fingerprint Matching Using Transform Features", MES's
College of Engineering, Pune, India, 2008.
[17] S. E. Umbaugh, “Computer Vision and Image Processing”, Prentice-Hall, Inc.,
U.S.A., 1998.
[18] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing”, Second Edition,
Prentice-Hall, Inc., New Jersey, U.S.A., 2002.
[19] Mane Sameer S. and Dr. Gawade S.S., “Review on Vibration Analysis with Digital
Image Processing”, International Journal of Advanced Research in Engineering &
Technology (IJARET), Volume 4, Issue 3, 2013, pp. 62 - 67, ISSN Print: 0976-6480,
ISSN Online: 0976-6499.
[20] Soukaena H. Hashem, Abeer T. Maolod and Anmar A. Mohammad, “Proposal To
Enhance Fingerprint Recognition System”, International Journal of Computer Engineering
& Technology (IJCET), Volume 4, Issue 3, 2013, pp. 10 - 22, ISSN Print: 0976 – 6367,
ISSN Online: 0976 – 6375.
[21] Shekhar R Suralkar and Prof (Dr) Pradeep M. Patil, “Fingerprint Verification using
Steerable Filters”, International Journal of Electronics and Communication Engineering &
Technology (IJECET), Volume 4, Issue 2, 2013, pp. 264 - 268, ISSN Print: 0976- 6464,
ISSN Online: 0976 –6472

Más contenido relacionado

La actualidad más candente

Human Identification Based on Sclera Veins Extraction
Human Identification Based on Sclera Veins ExtractionHuman Identification Based on Sclera Veins Extraction
Human Identification Based on Sclera Veins ExtractionIRJET Journal
 
An Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition RateAn Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition RateIRJET Journal
 
IRJET-Analysis of Face Recognition System for Different Classifier
IRJET-Analysis of Face Recognition System for Different ClassifierIRJET-Analysis of Face Recognition System for Different Classifier
IRJET-Analysis of Face Recognition System for Different ClassifierIRJET Journal
 
Hand Vien Recognotion Using Matlab
Hand Vien Recognotion Using MatlabHand Vien Recognotion Using Matlab
Hand Vien Recognotion Using MatlabIOSR Journals
 
MRI_processing
MRI_processingMRI_processing
MRI_processingLitu Rout
 
IRJET - Facial Recognition based Attendance System with LBPH
IRJET -  	  Facial Recognition based Attendance System with LBPHIRJET -  	  Facial Recognition based Attendance System with LBPH
IRJET - Facial Recognition based Attendance System with LBPHIRJET Journal
 
IRJET- Face Recognition by Additive Block based Feature Extraction
IRJET- Face Recognition by Additive Block based Feature ExtractionIRJET- Face Recognition by Additive Block based Feature Extraction
IRJET- Face Recognition by Additive Block based Feature ExtractionIRJET Journal
 
Recognition of Surgically Altered Face Images
Recognition of Surgically Altered Face ImagesRecognition of Surgically Altered Face Images
Recognition of Surgically Altered Face ImagesIRJET Journal
 
Review on moving vehicle detection in aerial surveillance
Review on moving vehicle detection in aerial surveillanceReview on moving vehicle detection in aerial surveillance
Review on moving vehicle detection in aerial surveillanceeSAT Publishing House
 
A Proposed Framework for Robust Face Identification System
A Proposed Framework for Robust Face Identification SystemA Proposed Framework for Robust Face Identification System
A Proposed Framework for Robust Face Identification SystemAhmed Gad
 
Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...
Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...
Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...CSCJournals
 
(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...
(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...
(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...International Center for Biometric Research
 
Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...
Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...
Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...IJECEIAES
 
Fast Human Detection in Surveillance Video
Fast Human Detection in Surveillance VideoFast Human Detection in Surveillance Video
Fast Human Detection in Surveillance VideoIOSR Journals
 
A Simple Signature Recognition System
A Simple Signature Recognition System A Simple Signature Recognition System
A Simple Signature Recognition System iosrjce
 
FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...
FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...
FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...IAEME Publication
 
Ieee projects 2012 2013 - Datamining
Ieee projects 2012 2013 - DataminingIeee projects 2012 2013 - Datamining
Ieee projects 2012 2013 - DataminingK Sundaresh Ka
 

La actualidad más candente (20)

Human Identification Based on Sclera Veins Extraction
Human Identification Based on Sclera Veins ExtractionHuman Identification Based on Sclera Veins Extraction
Human Identification Based on Sclera Veins Extraction
 
50120130405034
5012013040503450120130405034
50120130405034
 
An Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition RateAn Assimilated Face Recognition System with effective Gender Recognition Rate
An Assimilated Face Recognition System with effective Gender Recognition Rate
 
IRJET-Analysis of Face Recognition System for Different Classifier
IRJET-Analysis of Face Recognition System for Different ClassifierIRJET-Analysis of Face Recognition System for Different Classifier
IRJET-Analysis of Face Recognition System for Different Classifier
 
Hand Vien Recognotion Using Matlab
Hand Vien Recognotion Using MatlabHand Vien Recognotion Using Matlab
Hand Vien Recognotion Using Matlab
 
MRI_processing
MRI_processingMRI_processing
MRI_processing
 
IRJET - Facial Recognition based Attendance System with LBPH
IRJET -  	  Facial Recognition based Attendance System with LBPHIRJET -  	  Facial Recognition based Attendance System with LBPH
IRJET - Facial Recognition based Attendance System with LBPH
 
G0333946
G0333946G0333946
G0333946
 
IRJET- Face Recognition by Additive Block based Feature Extraction
IRJET- Face Recognition by Additive Block based Feature ExtractionIRJET- Face Recognition by Additive Block based Feature Extraction
IRJET- Face Recognition by Additive Block based Feature Extraction
 
Recognition of Surgically Altered Face Images
Recognition of Surgically Altered Face ImagesRecognition of Surgically Altered Face Images
Recognition of Surgically Altered Face Images
 
Review on moving vehicle detection in aerial surveillance
Review on moving vehicle detection in aerial surveillanceReview on moving vehicle detection in aerial surveillance
Review on moving vehicle detection in aerial surveillance
 
A Proposed Framework for Robust Face Identification System
A Proposed Framework for Robust Face Identification SystemA Proposed Framework for Robust Face Identification System
A Proposed Framework for Robust Face Identification System
 
Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...
Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...
Fingerprint Registration Using Zernike Moments : An Approach for a Supervised...
 
(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...
(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...
(2005) Implementation of Hand Geometry at Purdue University's Recreational Ce...
 
23-02-03[1]
23-02-03[1]23-02-03[1]
23-02-03[1]
 
Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...
Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...
Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clus...
 
Fast Human Detection in Surveillance Video
Fast Human Detection in Surveillance VideoFast Human Detection in Surveillance Video
Fast Human Detection in Surveillance Video
 
A Simple Signature Recognition System
A Simple Signature Recognition System A Simple Signature Recognition System
A Simple Signature Recognition System
 
FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...
FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...
FINGERPRINT CLASSIFICATION MODEL BASED ON NEW COMBINATION OF PARTICLE SWARM O...
 
Ieee projects 2012 2013 - Datamining
Ieee projects 2012 2013 - DataminingIeee projects 2012 2013 - Datamining
Ieee projects 2012 2013 - Datamining
 

Destacado

Data Hiding in Audio Signals
Data Hiding in Audio SignalsData Hiding in Audio Signals
Data Hiding in Audio SignalsGufran karim
 
Android Malware Analysis
Android Malware AnalysisAndroid Malware Analysis
Android Malware AnalysisJongWon Kim
 
Semantics aware malware detection ppt
Semantics aware malware detection pptSemantics aware malware detection ppt
Semantics aware malware detection pptManish Yadav
 
Data hiding in audio signals ppt
Data hiding in audio signals pptData hiding in audio signals ppt
Data hiding in audio signals pptjackkhush
 
Android Malware Detection Mechanisms
Android Malware Detection MechanismsAndroid Malware Detection Mechanisms
Android Malware Detection MechanismsTalha Kabakus
 
Silent sound technology
Silent sound technologySilent sound technology
Silent sound technologyJeet Das
 
Silent sound technology
Silent sound technologySilent sound technology
Silent sound technologyKishan Vemula
 
Silent sound-technology ppt final
Silent sound-technology ppt finalSilent sound-technology ppt final
Silent sound-technology ppt finalLohit Dalal
 
silent sound technology
silent sound technologysilent sound technology
silent sound technologykamesh0007
 
Silent sound technology NEW
Silent sound technology NEW Silent sound technology NEW
Silent sound technology NEW Neha Tyagi
 

Destacado (10)

Data Hiding in Audio Signals
Data Hiding in Audio SignalsData Hiding in Audio Signals
Data Hiding in Audio Signals
 
Android Malware Analysis
Android Malware AnalysisAndroid Malware Analysis
Android Malware Analysis
 
Semantics aware malware detection ppt
Semantics aware malware detection pptSemantics aware malware detection ppt
Semantics aware malware detection ppt
 
Data hiding in audio signals ppt
Data hiding in audio signals pptData hiding in audio signals ppt
Data hiding in audio signals ppt
 
Android Malware Detection Mechanisms
Android Malware Detection MechanismsAndroid Malware Detection Mechanisms
Android Malware Detection Mechanisms
 
Silent sound technology
Silent sound technologySilent sound technology
Silent sound technology
 
Silent sound technology
Silent sound technologySilent sound technology
Silent sound technology
 
Silent sound-technology ppt final
Silent sound-technology ppt finalSilent sound-technology ppt final
Silent sound-technology ppt final
 
silent sound technology
silent sound technologysilent sound technology
silent sound technology
 
Silent sound technology NEW
Silent sound technology NEW Silent sound technology NEW
Silent sound technology NEW
 

Similar a Fingerprint identification technique

Finger vein identification system using capsule networks with hyperparameter ...
Finger vein identification system using capsule networks with hyperparameter ...Finger vein identification system using capsule networks with hyperparameter ...
Finger vein identification system using capsule networks with hyperparameter ...IAESIJAI
 
Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...
Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...
Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...IRJET Journal
 
An Efficient Fingerprint Identification using Neural Network and BAT Algorithm
An Efficient Fingerprint Identification using Neural Network and BAT Algorithm An Efficient Fingerprint Identification using Neural Network and BAT Algorithm
An Efficient Fingerprint Identification using Neural Network and BAT Algorithm IJECEIAES
 
Improving the accuracy of fingerprinting system using multibiometric approach
Improving the accuracy of fingerprinting system using multibiometric approachImproving the accuracy of fingerprinting system using multibiometric approach
Improving the accuracy of fingerprinting system using multibiometric approachIJERA Editor
 
Automated PCB identification and defect-detection system (APIDS)
Automated PCB identification and defect-detection system (APIDS)Automated PCB identification and defect-detection system (APIDS)
Automated PCB identification and defect-detection system (APIDS)IJECEIAES
 
IRJET - An Enhanced Signature Verification System using KNN
IRJET - An Enhanced Signature Verification System using KNNIRJET - An Enhanced Signature Verification System using KNN
IRJET - An Enhanced Signature Verification System using KNNIRJET Journal
 
Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...
Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...
Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...ijtsrd
 
IRJET- FASSBTR : Fingerprint Authentication System Security using Barcode...
IRJET-  	  FASSBTR : Fingerprint Authentication System Security using Barcode...IRJET-  	  FASSBTR : Fingerprint Authentication System Security using Barcode...
IRJET- FASSBTR : Fingerprint Authentication System Security using Barcode...IRJET Journal
 
ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...
ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...
ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...IJCSEIT Journal
 
IRJET- Secure Online Payment with Facial Recognition using CNN
IRJET-  	  Secure Online Payment with Facial Recognition using CNNIRJET-  	  Secure Online Payment with Facial Recognition using CNN
IRJET- Secure Online Payment with Facial Recognition using CNNIRJET Journal
 
A Review on Feature Extraction Techniques and General Approach for Face Recog...
A Review on Feature Extraction Techniques and General Approach for Face Recog...A Review on Feature Extraction Techniques and General Approach for Face Recog...
A Review on Feature Extraction Techniques and General Approach for Face Recog...Editor IJCATR
 
Distance Based Verification Technique for Online Signature System
Distance Based Verification Technique for Online Signature SystemDistance Based Verification Technique for Online Signature System
Distance Based Verification Technique for Online Signature SystemIRJET Journal
 
Overlapped Fingerprint Separation for Fingerprint Authentication
Overlapped Fingerprint Separation for Fingerprint AuthenticationOverlapped Fingerprint Separation for Fingerprint Authentication
Overlapped Fingerprint Separation for Fingerprint AuthenticationIJERA Editor
 
IRJET- Early Detection of Sensors Failure using IoT
IRJET- Early Detection of Sensors Failure using IoTIRJET- Early Detection of Sensors Failure using IoT
IRJET- Early Detection of Sensors Failure using IoTIRJET Journal
 
A Review of Lie Detection Techniques.pdf
A Review of Lie Detection Techniques.pdfA Review of Lie Detection Techniques.pdf
A Review of Lie Detection Techniques.pdfWhitney Anderson
 
A Review of Lie Detection Techniques
A Review of Lie Detection TechniquesA Review of Lie Detection Techniques
A Review of Lie Detection TechniquesIRJET Journal
 

Similar a Fingerprint identification technique (20)

50120130406045
5012013040604550120130406045
50120130406045
 
50120130406010
5012013040601050120130406010
50120130406010
 
Finger vein identification system using capsule networks with hyperparameter ...
Finger vein identification system using capsule networks with hyperparameter ...Finger vein identification system using capsule networks with hyperparameter ...
Finger vein identification system using capsule networks with hyperparameter ...
 
Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...
Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...
Fingerprint Based Gender Classification by using Fuzzy C- Means and Neural Ne...
 
An Efficient Fingerprint Identification using Neural Network and BAT Algorithm
An Efficient Fingerprint Identification using Neural Network and BAT Algorithm An Efficient Fingerprint Identification using Neural Network and BAT Algorithm
An Efficient Fingerprint Identification using Neural Network and BAT Algorithm
 
Improving the accuracy of fingerprinting system using multibiometric approach
Improving the accuracy of fingerprinting system using multibiometric approachImproving the accuracy of fingerprinting system using multibiometric approach
Improving the accuracy of fingerprinting system using multibiometric approach
 
Automated PCB identification and defect-detection system (APIDS)
Automated PCB identification and defect-detection system (APIDS)Automated PCB identification and defect-detection system (APIDS)
Automated PCB identification and defect-detection system (APIDS)
 
IRJET - An Enhanced Signature Verification System using KNN
IRJET - An Enhanced Signature Verification System using KNNIRJET - An Enhanced Signature Verification System using KNN
IRJET - An Enhanced Signature Verification System using KNN
 
Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...
Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...
Performance of Hasty and Consistent Multi Spectral Iris Segmentation using De...
 
IRJET- FASSBTR : Fingerprint Authentication System Security using Barcode...
IRJET-  	  FASSBTR : Fingerprint Authentication System Security using Barcode...IRJET-  	  FASSBTR : Fingerprint Authentication System Security using Barcode...
IRJET- FASSBTR : Fingerprint Authentication System Security using Barcode...
 
ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...
ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...
ADAPTABLE FINGERPRINT MINUTIAE EXTRACTION ALGORITHM BASED-ON CROSSING NUMBER ...
 
IRJET- Secure Online Payment with Facial Recognition using CNN
IRJET-  	  Secure Online Payment with Facial Recognition using CNNIRJET-  	  Secure Online Payment with Facial Recognition using CNN
IRJET- Secure Online Payment with Facial Recognition using CNN
 
A Review on Feature Extraction Techniques and General Approach for Face Recog...
A Review on Feature Extraction Techniques and General Approach for Face Recog...A Review on Feature Extraction Techniques and General Approach for Face Recog...
A Review on Feature Extraction Techniques and General Approach for Face Recog...
 
40120140507006
4012014050700640120140507006
40120140507006
 
40120140507006
4012014050700640120140507006
40120140507006
 
Distance Based Verification Technique for Online Signature System
Distance Based Verification Technique for Online Signature SystemDistance Based Verification Technique for Online Signature System
Distance Based Verification Technique for Online Signature System
 
Overlapped Fingerprint Separation for Fingerprint Authentication
Overlapped Fingerprint Separation for Fingerprint AuthenticationOverlapped Fingerprint Separation for Fingerprint Authentication
Overlapped Fingerprint Separation for Fingerprint Authentication
 
IRJET- Early Detection of Sensors Failure using IoT
IRJET- Early Detection of Sensors Failure using IoTIRJET- Early Detection of Sensors Failure using IoT
IRJET- Early Detection of Sensors Failure using IoT
 
A Review of Lie Detection Techniques.pdf
A Review of Lie Detection Techniques.pdfA Review of Lie Detection Techniques.pdf
A Review of Lie Detection Techniques.pdf
 
A Review of Lie Detection Techniques
A Review of Lie Detection TechniquesA Review of Lie Detection Techniques
A Review of Lie Detection Techniques
 

Más de IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

Más de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Último

What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 

Último (20)

What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 

Fingerprint identification technique

  • 1. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 308 FINGERPRINT IDENTIFICATION TECHNIQUE BASED ON WAVELET-BANDS SELECTION FEATURES (WBSF) Dr. Mustafa Dhiaa Al-Hassani, Mustansiriyah University, Baghdad-Iraq Dr. Abdulkareem A. Kadhim, Al-Nahrain University, Baghdad-Iraq Dr. Venus W. Samawi, Al al-Bayt University, Jordan ABSTRACT The paper is concerned with the use of fingerprint (FP)features for protection against unauthorized access. Wavelet features for both closed and open-set FP recognition are studied here to verify persons' identity. Fingerprints of 49 persons (32-authorized and 17-unauthorized) were taken as testing data. Each authorized person is asked to give 10-instances of his right forefinger print. In the closed-set FP recognition, the obtained recognition rates are below 90% due to the imperfections in the FP images that negatively affect the recognition rate. Preprocessing operations such as: noise-removal, segmentation, normalization and binarization are considered to improve the resulting recognition rates. A method that relies on a new selection process for wavelet decomposition bands is proposed, which enhance the recognition rates further to get about 100% in some favorable conditions. The results have shown that the wavelet descriptors using the proposed Wavelet-Bands Selection Features (WBSF) are efficient representation that can provide reliable recognition for large input variability. The open-set FP verification mode is also presented for 290 trials from 29 persons, where the obtained verification rates are greater than 97% for both Euclidean and city-block distance measures. Keywords: Fingerprint Recognition, Fingerprint Verification, Biometric, Feature Extraction, Wavelet Transform, Wavelet-Bands Selection Features. INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 – 6367(Print) ISSN 0976 – 6375(Online) Volume 4, Issue 3, May-June (2013), pp. 308-323 © IAEME: www.iaeme.com/ijcet.asp Journal Impact Factor (2013): 6.1302 (Calculated by GISI) www.jifactor.com IJCET © I A E M E
  • 2. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 309 I. INTRODUCTION Due to the escalating level of security breaches and transactions frauds, the need for highly secure identification and personal verification technologies becomes essential. The key task of an automated security system is to verify that the users are in fact those who claim to be. The use of biometric information has been used widely for both person identification and security applications. Biometric-based solutions are able to provide confidential financial transactions and personal data privacy [1]. A biometric can be described as a measurable physical and/or behavioral trait that can be captured and used to verify the identity of a person [2]. FP recognition is a rapidly evolving technology that has been widely used in forensics such as criminal recognition and prison security, and has widely adopted in a broad range of civilian applications such as national ID card, airport check-in, border control, driver’s-license authenticity, computer network logon, physical access control, electronic banking, personal authentication,… etc [3, 4, 5]. The real significance of FP is based mainly on the following principles: 1) People can't "forget" their fingerprints, 2) It is easy to authenticate, 3) Impossible to deny, 4) It is a physical characteristic instead of something to be remembered or carried around; it is less susceptible to misuse than other authentication measures like passwords or credit cards, 5) Unchangeable, 6) Unforgeable, ... etc [6, 7]. Several researches in the field of FP recognition/verification were developed and receive a great deal of attention among many researchers using of wavelet transform and other feature extraction methods: Priti and Priyadarshan [4] introduced a FP verification using Haar wavelet transform method. The system was tested on a Biolab Database of 2160 FP images. The obtained verification accuracy is 82.08% even by rotating each FP image from 00 to 3600 . Eriksson [7] illustrated that silicon FP scanners produce good quality images, this work presents two main approaches to minutia detection in FP images, binary detection and direct grayscale detection. The results are tested on 6283 fingerprints collected by the Verdicom FPS110 silicon FP scanning device and they reported about 92% classification accuracy. Saeed, Tariq, and Jawaid [8] improved a fingerprint image enhancement technique using Gabor wavelets. The system was tested on Fingerprint Verification Competition (FVC) 2004 database. Experimental results show that the proposed algorithm proved to be effective in enhancing the fingerprint image quality, where the achieved accuracy is 97.14%. In [9] the authors presented minutiae based approach to FP identification and verification. The technique is based on the extraction of minutiae from the thinned, binarized and segmented version of a FP image. The system was tested on the FVC2000 database using low cost capacitative FP scanners, which contains 800 fingerprints from 110 different fingers. The system was implemented using Matlab 6.5 and the time taken for processing a single FP is 12 seconds that implies accuracy 92%. II. AIM OF THE WORK This work aims to design and build a secure, fast, reliable, and accurate identification system for access control that is capable of distinguishing the authorized persons from others (i.e., impostors), and then gives only the authorized persons a privilege or an access right to the facility that need to be protected from the intrusion of unauthorized persons.
  • 3. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 310 In this paper, a novel Wavelet feature-set (WBSF) is proposed for representing FP pattern. FP recognition and verification is also to be investigated for open and closed-set models. III. THE PROPOSED FP RECOGNITION SYSTEM MODEL In general, the function of FP systems can be separated into several distinct phases, which include sensing or reading FP, preprocessing operations, FP registration, feature extraction followed by a classification search and decision rule [1, 10]. The block diagram for the proposed FP recognition system model, shown in Fig. (1), illustrates that the input FP image is passed through four preprocessing operations (noise-removal, segmentation, normalization and binarization) prior to feature extraction phase [1]. Fig. (1): Block-Diagram of the proposed FP Recognition System Model Features are extracted from wavelet domain, using the classical pyramidal Wavelet transform decomposition followed by the features extracted from the proposed Wavelet-Bands Selection Features (WBSF), as shown in the design of the proposed system to recognize a query FP image by comparing it with a training database of F Preferences during a pattern matching phase. Finally, the distance measures (Euclidean and City-block) are used to calculate the difference between the feature vector of the query FP with the feature vector of the potential FP in the database. The next subsections will cover the details of each stage [1]. A. Input FP Image Figure (2) illustrates some examples of input FP images used for training or testing modes to our system model from the right forefinger of different persons (P1, P2, …, P6) [1].
  • 4. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 311 Fig.(2):Example of 6–FP images from different Persons B. Preprocessing of the FP Images FP images are rarely of perfect quality. They may be degraded and corrupted with elements of noise due to many factors including variations in skin and impression conditions. It must also overcome fingers pressed too hard or too gently to get an acceptable image. Getting an acceptable image is probably the most important factor in determining fingerprints genuineness. Bad quality prints can result in unsuccessful recognition attempts or even worse, erroneous logins. Thus, image enhancement techniques are employed prior to feature extraction to reduce the noise and enhance the definition of ridges against valleys. A number of processing techniques adopted in this system model are applied in the following sequence [1]: Noise-Removal (using Mean or Gaussian filter), Segmentation (foreground/background separation), Normalization (to reduce the effect of non-uniform intensities and improving image quality by stretching its histogram), and Binarization (using local mean). Figure (3) illustrates the effects on a sample FP image [1]. Fig. (3): The sequence of preprocessing steps for FP image sample P1 P2 P3 P4 P5 P6
  • 5. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 312 C. Database Construction FP identification system (both FP recognition and FP verification) depends on FP samples as input data. In this work, database samples were collected in two modes of operation: • Closed-set FP recognition mode • Open-set FP verification mode In order to evaluate the recognition performance of the proposed system model, each user of the system (to be considered as authorized one) has been asked to provide his forefinger print for a maximum of 10 prints from the same forefinger (i.e., 10 instances), as shown in Fig. (4). The number of repetition R ( 1≤ R ≤ 10 )can be considered as training set during an enrollment phase to train the fingerprints model of authorized persons, and the other ( 10 – R ) repetitions are considered for testing during a matching phase to classify them with those training references in the database [1]. Fig. (4): Demonstrates 6-FP instances from the same Person P2 The data were collected from 32 different persons, 18 males and 14 females, in a closed set FP recognition mode (i.e. 320 samples). As a result, the total database size of FP samples for this mode is [1]: …… (1) …… (2) …… (3) In the open-set FP verification mode, up to 290 trials from different persons (i.e., authorized and unauthorized) are taken. This is performed in order to study the system behavior and to select the optimal threshold for user verification. D. Feature Extraction The process of extracting some numerical measurements from raw input patterns by constructing a new "smaller" set of features from the original feature set of patterns (i.e. rsonsNo. of PeizeTotal DB S ×= 10 PersonsTrainingofNo of.NoRReferences. ×= PersonsSamplesTestofNo of.NoR)(10. ×−= P2,1P2,2 P2,3 P2,4 P2,5 P2,6
  • 6. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 313 )( 1 (t) ψψ , j kt jkj − = reducing dimensionality) is referred to as feature extraction[11].In this work, features are extracted from the spectral properties of the wavelet transform. Wavelet transform breaks an image down into four sub-sampled images, and then analyze each component with a resolution matched to its scale. The forward and inverse continuous wavelet transform ofx(t) with respect to the basis function or wavelet (t)ψ k,j at scale j (j>0) and time delay k is written as follows [4, 12 –14]: ..…(4) ..…(5) where ..…(6) and (t)ψ is the mother wavelet. After converting the input FP image from its lowest-level of pixel data into higher-level representation of wavelet coefficients, [1],a set of wavelet features that represent the input FP image can be extracted by recursively decomposing sub images in the low frequency channels using Algorithm-1 as shown below: Algorithm-1:The Classical Pyramidal Wavelet Transform Decomposition [1, 15] Step1: Decompose a given textured image with 2-D wavelet transform into 4 sub images, as indicated in Fig. (5) (the image is divided into four sub bands after wavelet transform: horizontal, vertical, diagonal subimages and low resolution subimage). Fig. (5): Three-level Wavelet Decomposition LL3 LH3 LH2 HL3 HH3 LH1 HL2 HH2 HL1 HH1 ∫= dt)t()t(x)(W ψ k,jk,j:CWTForward ∫∫= k j djdk)t()k,j(W)t(x ψ k,j:CWTInverse
  • 7. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 314 Step2: 1) Calculate the Mean Absolute Value (M.A.V.) feature for each decomposed image, as follows [15]: …… (7) where j)x(i, is the decomposed image, with Mi ≤≤1 and Nj ≤≤1 . M is the subimage height and N is the subimage width. 2) Calculate the Standard Deviation (S.D.) feature for j)x(i, , as shown below [15, 16]: …… (8) The size of the smallest subimages should be used as a stopping condition for the iterative decomposition process. It is also worthwhile to point out that the above pyramidal wavelet transform decomposition takes no more space to store the wavelet coefficients than it does to store the original image. E. Pattern Matching The resulting test template, which is an N-dimensional feature vector, is compared against the stored reference templates to find the closest match. The process is to find which unknown class matches a predefined class or classes. For the FP recognition task, the unknown FP is compared to all references in the database. This comparison can be done through Euclidean (E.D.) or city-block (C.D.) distance measures [17], shown below: …… (9) ….. (10) where A and B are two vectors, such that A = [a1 a2 … aN]and B = [b1 b2 … bN]. The primary methods for the discrimination process are either to measure the difference between the two feature vectors or to measure the similarity. In our approach the minimum distance classifier, by measuring the difference between the two patterns, is used for FP recognition. This classifier assigns the unknown pattern to the nearest predefined pattern. The bigger distance between the two vectors, is the greater difference. On the other hand, the identity of the unknown FP was verified by considering the best matched reference in the database where their distance is lower than a certain threshold [17, 18]. IV. EXPERIMENTAL RESULTS The recognition rate (R.R.) is defined as the ratio of correct identified fingerprints to the total number of test samples which corresponds to a nearest neighbor decision rule. ∑ = −= N i ii 1 2 )ba(.D.E ∑ = −= N ii 1i ba.D.C ∑ ∑ = =× = M 1i N 1j )j,i(xM.A.V. NM 1 ∑ ∑= = −= × M i N j M.A.V.jix NM S.D. 1 1 2 )( ),( 1
  • 8. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 315 ..… (11) Many experiments and test conditions were accomplished to measure the performance of the proposed system with different criterions concerning: wavelet decomposition level selection, FP noise-removal, segmentation, normalization, binarization, the effect of the proposed WBSF on the overall recognition/verification rates when compared with the classical pyramidal wavelet transform decomposition method. A. The Selection of Wavelet Level In order to select the best level of wavelet decomposition for the system, this test is performed. Different Daubechies wavelet functions are considered as shown in Table-1. Table-1: Recognition rates for different levels of wavelet decomposition using (M.A.V.) feature The wavelet levels considered for each function is varied from 1 to 5. The number of wavelet features for the first level is 4, and each progressing in wavelet level by iteratively decomposing the low resolution sub image will correspond increasing in features length by 3. For each training or testing, five repetitions for each FP are considered which resulted in 160 samples. It is clear from Table-1 and its corresponding chart Fig. (6), that Level-4 is the most appropriate level for feature vector construction where all the recognition ratesare the highest among almost all Daubechies functions. % TestedSamplesNo. ofTotal FPIdentifiedCorrectlyofNo. R.R. 100×= Wavelet Function Level-1 Level-2 Level-3 Level-4 Level-5 D2 41.875 55.000 75.000 76.875 76.875 D4 49.375 60.625 79.375 84.375 77.500 D6 46.250 65.000 82.500 84.375 83.750 D8 41.875 64.375 84.375 86.250 83.125 D10 43.125 65.000 84.375 87.500 86.875 D12 45.625 65.000 84.375 89.375 85.000 D14 44.375 63.750 84.375 87.500 85.000 D16 43.750 65.000 82.500 83.750 85.625 D18 44.375 65.000 85.000 86.875 86.250 D20 41.875 66.875 84.375 87.500 82.500
  • 9. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 316 Fig. (6): Recognition rates for different levels of wavelet decomposition using (M.A.V.) feature B. Segmentation of Low-pass Filtered FP images After determining the appropriate wavelet decomposition level, a number of preprocessing steps were performed to enhance image quality. The first step is to remove the noise from the input FP images using the Gaussian-filter, and then separating the foreground regions from the background regions in a FP image. Figure(7) shows the resulting recognition rates when Euclidean distance measure and M.A.V. were used. Fig.(7): Effects of Segmentation on recognition rates for the Gaussian-filtered FP It is clear from Fig. (7), that the segmentation process enhances all the recognition rates for the Gaussian-filtered FP images; where about (96%) recognition rate is achieved using D8. On the other hand, when segmentation is not used, all recognition rates are below 90%. 65 70 75 80 85 90 95 100 D2 D4 D6 D8 D10 D12 D14 D16 D18 D20 Daubechies Wavelet functions RecognitionRate% Gaussian Filter with Segmentation 40 50 60 70 80 90 100 D2 D4 D6 D8 D10 D12 D14 D16 D18 D20 Daubechies Wavelet functions RecognitionRate% Level1 Level2 Level3 Level4 Level5
  • 10. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 317 C. Binarization of Normalized FP images Further improvements in recognition rates can be achieved when converting the normalized FP images (using histogram stretching) from gray-scale to binary as shown in Table-2. This increases the contrast among the ridges and valleys of FP. Table-2: Recognition rates after Binarization of the Normalized FP images using (M.A.V. and S.D.) features Wavelet Function E. D. C. D. M.A.V. S.D. M.A.V. S.D. D2 90.000 96.250 87.500 94.375 D4 95.625 97.500 95.625 97.500 D6 96.250 99.375 96.875 98.750 D8 98.750 100.00 98.750 99.375 D10 95.625 100.00 96.875 98.750 D12 99.375 99.375 97.500 99.375 D14 96.250 99.375 96.875 100.00 D16 98.125 100.00 98.125 100.00 D18 98.750 100.00 98.750 99.375 D20 98.125 99.375 100.00 99.375 The results of Table-2 obviously indicate the highly enhancements in all recognition rates after applying the binarization step to the normalized FP images for both distance measures when compared to previous test. Furthermore, one can deduce that the (S.D.) wavelet feature present better results than (M.A.V.) feature using both distance measures. Figure (8) display part of this comparison by taking only the (S.D.) wavelet feature using Euclidean distance measure. Fig. (8): Recognition rates for wavelet feature (S.D.) after Binarization of Normalized FP images 76 78 80 82 84 86 88 90 92 94 96 98 100 D2 D4 D6 D8 D10 D12 D14 D16 D18 D20 Daubechies Wavelet functions RecognitionRate% Normalization With Binarization
  • 11. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 318 D. The Proposed Wavelet–Bands Selection Features (WBSF) This section reviews a novel selection method for the set of wavelet features that are well suited for recognition of FP images with the aim to improve the recognition rates. In this method, the wavelet features extracted by means of four wavelet decomposition levels (i.e. 13 features) are combined with another (18 features) extracted from five decomposition levels wavelet bands as shown in Fig. (9). These provide information about FP image in both horizontal and vertical directions [1].The added features are the shaded cells shown in Fig. (10).The final calculated 31 features are arranged in a single vector that will represent the FP feature pattern. Fig.(9): Demonstrates 5–decomposition levels of the 2-D wavelet transform for a FP sample Fig.(10): The proposed wavelet channels decomposition (5-levels) by indicating the number of each newly selected band
  • 12. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 319 The experimental results for the proposed WBSF system are shown in Table-3with its corresponding Figures (11) and (12), which gives better recognition rates when compared to those in Table-2.This is due to the fact that the proposed WBSF method for feature extraction provides extra information to assist further in recognition. Table-3: Recognition rates for WBSF system with different wavelet functions and distance measures Wavelet Function E. D. C. D. M.A.V. S.D. M.A.V. S.D. D2 95.000 98.125 93.125 97.500 D4 97.500 99.375 96.250 98.125 D6 98.125 100.00 98.125 99.375 D8 98.750 100.00 97.500 100.00 D10 100.00 100.00 100.00 99.375 D12 100.00 100.00 100.00 100.00 D14 100.00 100.00 99.375 100.00 D16 98.125 100.00 98.750 100.00 D18 100.00 100.00 100.00 100.00 D20 100.00 100.00 100.00 99.375 Fig. (11): Recognition rates for wavelet feature (M.A.V.) before and after the addition of the proposed WBSF 88 89 90 91 92 93 94 95 96 97 98 99 100 D2 D 4 D6 D 8 D10 D12 D14 D 16 D18 D20 With Binarization WBSF Daubechies Wavelet functions RecognitionRate%
  • 13. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 320 Fig. (12): Recognition rates for wavelet feature (S.D.) before and after the addition of the proposed WBSF In WBSF, the decomposition bands involved are not only the LL bands but also the LH and HL bands that correspond to horizontal and vertical FP image details, respectively. E. Fingerprint Verification The final step requires the verification of user’s identity. This is relies on the best results obtained from the previous experiments. It is undoubtedly illustrated that (S.D.) based feature, extracted from different wavelet bands, exhibits better results when compared to(M.A.V.). Therefore, (S.D.) is selected to be the feature for wavelet extraction method of the FP verification mode using WBSF features set. Since different wavelet functions can provide recognition rates close to 100% as illustrated in Table-3, therefore we select D20 as the wavelet function for the verification tests. A total of 290 query FP samples from 29 persons (authorized and unauthorized) are considered for open- set FP verification mode. Different threshold values were considered, as shown in Table-4 and 5. The successful decision corresponds to the rate of accepting registered persons and rejecting non-registered ones for all trials. Table-4: FP verification rates for D20 using Euclidean distance Threshold )(θ Successful Decision FAR FRR 2.60 73.4482 0.0 26.5517 2.85 78.2758 0.0 21.7241 3.10 83.1034 0.0 16.8965 3.35 91.7241 0.0 8.2758 3.60 94.1379 0.0 5.8620 3.85 97.2413 0.6896 2.0689 4.10 96.5517 2.4137 1.0344 4.35 95.1724 3.7931 1.0344 4.60 92.4138 6.8965 0.6896 4.85 89.3103 10.0000 0.6896 5.10 86.5517 12.7586 0.6896 5.35 82.4138 16.8965 0.6896 5.60 78.6206 21.0344 0.3448 88 89 90 91 92 93 94 95 96 97 98 99 100 D2 D4 D6 D8 D10 D12 D14 D16 D18 D20 Daubechies Wavelet functions RecognitionRate% With Binarization WBSF
  • 14. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 321 Table-5: FP verification rates for D20 using city-block distance Threshold )(θ Successful Decision FAR FRR 12.00 80.6896 0.0 19.3103 12.50 85.1724 0.0 14.8275 13.00 88.2758 0.0 11.7241 13.50 91.7241 0.0 8.2758 14.00 94.1379 0.0 5.8620 14.50 96.5517 0.0 3.4482 15.00 97.9310 0.0 2.0689 15.50 97.9310 0.0 2.0689 16.00 97.5862 0.3448 2.0689 16.50 97.5862 1.3793 1.0344 17.00 95.8620 3.1034 1.0344 17.50 95.1724 4.1379 0.6896 18.00 93.4482 5.8620 0.6896 18.50 92.0689 7.2413 0.6896 19.00 89.6551 9.6551 0.6896 The optimum threshold of Crossover Error Rate (CER) is the point where the False Rejection Rate (FRR) and the False Acceptance Rate (FAR) curves meet in verifying user's identity. The variation of FAR and FRR with different threshold values are also shown in Fig. (13) and (14),where the obtained CER are approximately 4.03 and 16.45 for Euclidean and city-block distances respectively. Fig. (13): FAR and FRR Performance Curve for different threshold levels using Euclidean distance 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 2.6 2.85 3.1 3.35 3.6 3.85 4.1 4.35 4.6 4.85 5.1 5.35 5.6 Threshold values for Euclidean distance ErrorRate% F A R F R R
  • 15. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 322 Fig. (14): FAR and FRR Performance Curve for different threshold levels using city- block distance V. CONCLUSIONS A fingerprint recognition system for 490 FP samples is presented that relies on wavelet features. It is found that 4-level wavelet decomposition is appropriate for feature vector construction where all the recognition rates are the highest among almost all Daubechies functions. In the closed-set FP recognition, the obtained recognition rates are below 90% due to the imperfections in the FP images. To enhance the recognition rates further, a number of preprocessing operations are used prior to wavelet transform and more than 96% recognition rates are achieved in some Daubechies functions. The results have shown that the proposed WBSF method outperform the conventional wavelet based recognition method. It seems that, the additionally selected bands provide extra information and contribute in enhancing the recognition rates to attain 100% for D6, D8, ..., D20 according to the test conditions considered in the work. The open-set FP verification mode is also presented for 290 trials from 29 persons. The obtained verification rates, greater than 97%, using WBSF method are quite acceptable. REFERENCES [1] Mustafa D. Al-Hassani, “Identification Techniques using Speech Signals and Fingerprints”, Ph.D. Thesis, Department of Computer Science, Al-Nahrain University, Baghdad, Iraq, Sep. 2006. [2] R. M. Mandi, S. S. Lokhande, "Rotation –Invariant Fingerprint Identification System", International Journal of Electronics Communication and Computer Technology (IJECCT), ISSN: 2249-7838, Vol. 2 Issue 4, July 2012. [3] Rakesh Verma, Anuj Goel, "Wavelet Application in Fingerprint Recognition", International Journal of Soft Computing and Engineering (IJSCE), ISSN: 2231-2307, Vol. 1, Issue-4, Sep. 2011. [4] Priti S. Sanjekar, Priyadarshan S. Dhabe, "Fingerprint Verification using Haar Wavelet",IEEE 2nd International Conference on Computer Engineering and Technology, Vol. 3, pp.361-365, 2010. 0 2 4 6 8 10 12 14 16 18 20 22 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 Threshold values for City-block distance ErrorRate% FAR FRR
  • 16. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 323 [5] D. Maltoni, D. Maio, A. K. Jain, S. Prabhakar, “Handbook of Fingerprint Recognition”, Springer Verlag, New York, 2003. [6] Sagem Morpho Inc.,”Fingerprint Identification Technology in civil Applications”, 1145 Broadway plaza Tacoma, Washington, 1998. [7] M. Eriksson, “Biometrics Fingerprint based identity verification”, M. Sc. Thesis, Department of Computer Science, UMEÅUniversity, August 2001. [8] A. Saeed, A. Tariq, U. Jawaid, "Automated System for Fingerprint Image Enhancement using Improved Segmentation and Gabor Wavelets", Department of Software Engineering, Fatima Jinnah University, Rawalpindi, Pakistan, 2008. [9] F. A. Afsar, M. Arif and M. Hussain, “Fingerprint Identification and Verification System using Minutiae Matching”, Department of Computer & Information Sciences, Institute of Engineering & Applied Sciences, Islamabad, Pakistan, 2004. [10] M. H. Ghassemian,“A Robust Structural Fingerprint Restoration”, Intelligent Signal Processing Research Center, Department of Electrical Engineering, Tarbiat Modares University, Iran, 1994. [11] R. Setiono and H. Liu, ”Neural Network Feature Selector”, IEEE Transactions on Neural Network, Vol. 8, No.3, May 1997. [12] A. M. Reza, “From Fourier Transform to Wavelet Transform: Basic Concepts”, White paper, Spire Lab, UWM, October, 1999. [13] C. S. Burrus, R. A. Gopinath and H. Guo, “Introduction to Wavelets and Wavelet Transforms”, Prentice-Hall, Inc., U.S.A, 1998. [14] Z. Ahmad, “A New Algorithm for Image Compression Based on Wavelet Transform”, M. Sc. Thesis, Electrical Engineering Department, University of Baghdad, Iraq, 1999. [15] T. Chang and C.-C. Jay Kuo, “Texture Analysis and Classification with Tree-Structured Wavelet Transform”, IEEE Transactions on Image Processing, Vol. 2, No. 4, October 1993. [16] M. P. Dale, M. A. Joshi, "Fingerprint Matching Using Transform Features", MES's College of Engineering, Pune, India, 2008. [17] S. E. Umbaugh, “Computer Vision and Image Processing”, Prentice-Hall, Inc., U.S.A., 1998. [18] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing”, Second Edition, Prentice-Hall, Inc., New Jersey, U.S.A., 2002. [19] Mane Sameer S. and Dr. Gawade S.S., “Review on Vibration Analysis with Digital Image Processing”, International Journal of Advanced Research in Engineering & Technology (IJARET), Volume 4, Issue 3, 2013, pp. 62 - 67, ISSN Print: 0976-6480, ISSN Online: 0976-6499. [20] Soukaena H. Hashem, Abeer T. Maolod and Anmar A. Mohammad, “Proposal To Enhance Fingerprint Recognition System”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 3, 2013, pp. 10 - 22, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. [21] Shekhar R Suralkar and Prof (Dr) Pradeep M. Patil, “Fingerprint Verification using Steerable Filters”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 4, Issue 2, 2013, pp. 264 - 268, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472