SlideShare a Scribd company logo
1 of 9
Download to read offline
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
43
A NEW APPROACH IN POSITION-BASED ROUTING
PROTOCOL USING LEARNING AUTOMATA FOR
VANETS IN CITY SCENARIO
Fatemeh Teymoori1
,Hamid Nabizadeh1
and Farzaneh Teymoori2
1
Shahid Beheshti University, G. C., Tehran, Iran
{f.teymor, ha.nabizadeh}@mail.sbu.ac.ir
2
Science and Research Branch of Islamic Azad University, Tehran, Iran
farzanehteymoori@yahoo.com
ABSTRACT
One of the main issues in Vehicular Ad-hoc NETworks (VANETs) is providing a reliable and efficient
routing in urban scenarios with regard to the high vehicle mobility and presence of radio obstacle. In this
paper, we propose a Position-Based routing protocol using Learning Automata (PBLA). In addition, PBLA
uses the traffic information for enhancing learning. As we know, a main characteristic of learning is
increasing performance over time. We exploit this characteristic to decreasing use of traffic information.
Initially, PBLA make effort to finding best and shortest path to mobile destination using traffic information.
KEYWORDS
Vehicular Adhoc NETworks, Routing Protocol, Position-Based Routing, Learning Automata
1. INTRODUCTION
Vehicular Ad-hoc Networks (VANETs) is a subclass of Mobile Ad-hoc Networks (MANETs);
Vehicles on the roads use wireless technology to communicate each other without any pre-
deployed infrastructure. More recently, various applications have appeared in the VANETs. The
applications have been classified into two categories: 1. safety applications, which allow the
passengers or drivers to share contents such as road obstacles, traffic flows and accidents that
have occurred, 2. entertainment applications, which allow vehicles to share multimedia or local
information such as MP3 music, videos, sale advertisement or virtual tours of hotel rooms [12].
One of the main issues in VANETs is providing a reliable and efficient routing in urban
scenarios with regard to the challenges (i.e., high vehicle mobility and presence of radio obstacle)
[1-3].
Generally, the ad hoc network routing protocols are divided in three category: unicast, multicast
and broadcast. Unicasts are divided in two parts: topology-based and position-based. Topology-
based routing protocols use links information that exist in the network to perform packet
forwarding. However, in position-based routing protocols, each node needs only know its
neighbors' positions. After using proposed unicast protocols of MANETs in VANETs, it is
obvious that these protocols do not work properly in VANETs and they are weak. In addition,
most of the protocols that exist in MANETs are topology-based and their major problem is the
instability of routes that are caused by link breakages. In topology-based protocols, link
breakages occur repeatedly, consequently, the packet loss rate and the overhead of routing
increase. Therefore, between topology-based and position-based routing protocols, the last one is
more efficient for data delivery in high mobility conditions, such VANETs.
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
44
In position-based routing, each node is aware of the positions of its direct neighbors by
periodically sending out beacon messages that indicate the current position of the node. In
addition, with the aim of sending a packet to a destination node, the sender requires information
on the current geographic position of the destination node. This information is gained via a so-
called location service [5].
In This paper, a position-based routing protocol in urban scenario is proposed that uses the
learning algorithm [11] for decreasing the communication overhead and the number of hops.
Furthermore, this protocol uses the traffic information for enhancing learning. This Improving
learning reduces the communication overhead that is generated by the traffic information.
In order to gain traffic information, we investigated the movement patterns of the vehicles in the
streets in different times of the day and generated several databases for traffic density in different
times and areas. For instance, the traffic density is low in rural areas and during night hours but
very high in the urban area and during rush hours of the day. Then routing decision with high
reliability will be made efficiently.
The rest of this paper is organized as follows: Section 2 describes related work in the field of
unicast routing in VANETs. Section 3 reviews the learning automata. Section 4 describes the
proposed position-based routing protocol. Simulation results are shown in Section 5. Finally,
section 6 concludes the paper and gives directions for future works.
2. RELATED WORK
AODV [4] is a simple sample of topology-based. In [4], the authors presented a route discovery
phase that the route request packets flood to the network for searching the route. High node
mobility leads to disrupted network and the overhead significantly increase due to repairs broken
routes.
A well-known position-based routing algorithm is greedy. In this algorithm, the selected next hop
node in comparison with the current node is closer to the destination. Greedy does not perform
well in urban scenarios because of the radio obstacles, despite the fact that this algorithm has a
good performance in creating stable routes in the highways. Some papers have tried to improve
position-based routings by using the traffic information [5] [8-10], but the problem is that the
traffic information increases the communication overhead.
GPSR [6] is the best-known greedy protocol for ad hoc networks. GPSR uses two methods for
forwarding packets to destination: greedy forwarding and perimeter forwarding. Greedy
forwarding is used whatever possible and perimeter forwarding is used when greedy failed. As
well as, in greedy forwarding, packets are forwarded to nodes that are closer to the destination in
Euclidean distance. GPSR uses the perimeter forwarding when there is not a greedy path in some
regions of the network. In perimeter mode, a packet traverses successively closer faces of a
planar sub-graph of the full radio network connectivity graph, until it reaches a node that is closer
to the destination, where greedy forwarding is resumed. The disadvantage of GPSR is increasing
the possibility of getting a local maximum and link breakage because of two problems of
VANETs. As mentioned, the high mobility of vehicles and specific topological structure of a city
[3].
To deal with these problems, a position-based geographic source routing protocol (GSR) was
proposed [5]. GSR uses Dijkstra algorithm to calculate shortest path consist of sequence
intersections which packet has to traverse.
Forwarding packets is based on greedy forwarding strategy between two successive intersections.
The main disadvantage of this scheme is that the shortest path including intersections does not
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
45
mean the best path since hop count is not proper to be taken as a performance metric in high
dynamic networks.
GPCR (greedy perimeter coordinator routing) [7] is a position-based routing for urban
environment. In highly dynamic environment such as VANETs, GPCR protocol acts well in two
scenarios, city, and highway. Packets in GPCR traverse intersections by a restricted greedy
forwarding procedure. GPCR proposed a repair strategy based on the topology of streets and
intersections for adjusts the routing path.
The main contribution of the scheme is approaches of how to detect vehicles at the intersections
without digital map. However, this protocol may lead to redundant hops in city environments
because of using right hand rule.
VADD [8] protocol adopted the idea of carry-and-forward for data delivery from a moving
vehicle to a static destination. The most important issue is selecting a forwarding path with the
smallest packet delivery delay. VADD protocol attempts to keep the low data transmission delay
by forwarding packets through wireless channel. In VADD, when a packet needs to carried
through roads, the road with higher speed is chosen. VADD assigns cost to edges between each
two intersections by proposing delay model to estimate data delivery delay in different roads. In
[8] assumes each vehicle is equipped with digital map and traffic statistics such as traffic density
and vehicle speed on roads at different times of the day. According to the information, VADD
protocol proposed a delay model to assign cost to each edge. With these cost, VADD computes
the shortest path from the source to the destination by a naive optimal forwarding path selection
algorithm. Disadvantage of VADD is that cannot freely select the outgoing road to forward the
packet at each intersection.
The Road-Based using Vehicular Traffic (RBVT) routing [9] leverages real-time vehicular traffic
information to create road-based paths. These paths are consisted of successions of road
intersections that are found by the flooded route discovery process. According to recorded
intersections in the source routing header, geographical forwarding transfers packets between
intersections on the path. This protocol increased overhead because of using real-time vehicular
traffic information.
3. REVIEW OF LEARNING AUTOMATA
In the following, we present a brief review of learning automata. A learning automaton (LA) [11]
is an adaptive decision-making unit that improves its performance by learning how to choose the
optimal action from a finite set of allowed actions through repeated interactions with a random
environment. Random environment Inputs called actions and reinforcement signals are responds
the actions to the environments. The action probability vector is brought up to date based on the
received feedback of environment. Figure 1 demonstrates correlation between the learning
automaton and its random environment.
Figure 1. The correlation between the learning automaton and its random environments
ࢻሺ࢔ሻ
ࢼሺ࢔ሻ
Random Environment
Learning Automata
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
46
Variable structure learning automata is a type of learning automata. Variable structure learning
automata are defined by a quaternaryሼߙ, ߚ, ‫,ܮ‬ ‫݌‬ሽ , where ߚ ൌ ሼߚଵ, ߚଶ, … , ߚ௥ሽ is the set of inputs,
ߙ ൌ ൛ߙ1
, ߙ2
, … , ߙ‫ݎ‬
ൟ is the set of actions, and L is learning algorithm. L is a Recursive equation
to modifying action probability vector. Action probability vector is shown by ‫݌‬ ൌ ሼ‫݌‬ଵ, ‫݌‬ଶ, … , ‫݌‬௥ሽ.
Equations (1) and (2) show a linear learning algorithm. Let ߙ௜
be the action chosen by the
automata.
When the selected action is rewarded by the environment (i.e. ߚሺ݊ሻ ൌ 0):
‫݌‬௜ሺ݊ ൅ 1ሻ ൌ ‫݌‬௜ሺ݊ሻ ൅ ܽ ∙ ሺ1 െ ‫݌‬௜ሺ݊ሻሻ (1)
‫݌‬௝ሺ݊ ൅ 1ሻ ൌ ‫݌‬௝ሺ݊ሻ െ ܽ ∙ ‫݌‬௝ሺ݊ሻ						∀݆݆ ് ݅
And, when the selected action is penalized by the environment (i.e. ߚሺ݊ሻ ൌ 1):
‫݌‬௜ሺ݊ ൅ 1ሻ ൌ ሺ1 െ ܾሻ ∙ ‫݌‬௜ሺ݊ሻ (2)
‫݌‬௝ሺ݊ ൅ 1ሻ ൌ
ܾ
‫ݎ‬ െ 1
൅ ሺ1 െ ܾሻ ∙ ‫݌‬௝ሺ݊ሻ			∀݆݆ ് ݅
4. PROPOSED ROUTING APPROACH
As mentioned before, by investigating traffic behaviors in several days and several times during a
day, we concluded that traffic behaviors in street usually repeat unless exceptions happen like the
accidents that block the streets.
Therefore, each vehicle can possess several databases for their decision-makings. For instance,
one database for rural area and during night, one for urban area and during day, or the other one
for exception cases etc. In PBLA we have two phase, Learning and routing phase. When a source
node want to send packet, it find the best path to destination using Dijkstra's algorithm and
adjacent matrix, which this matrix is built in the learning phase. In the following, we describe
two phases of our routing protocols.
4.1. Learning Phase
In PBLA, each vehicle can acquire the number of available vehicle in each street by location
service. In addition, we consider the street map as a planar graph that is pre-loaded in the
vehicles as a text file (intersections as vertexes and streets as edges of this planar graph).
Each vehicle is a Learning Automata (LA) which selects actions by considering inputሺߚሻ and
according to the inputs rewards or penalize them.
Every street will be chosen as an action. The input ሺߚሻfor street ܵଵiscalculated by (3).
ߚ ൌ 0	݂݅	ܰ ൒ ݉݅݊	 (3)
ߚ ൌ 1	݂݅	ܰ ൏ ݉݅݊
In this equation,ܰis number of vehicles in ܵଵ, which is provided by location service.min is the
minimum number of the required vehicles for sending through wireless in the specific street in
worst case. For example, suppose that there is a street with 200 m length. If transmission range is
equal 100 m, then min will be four. When ߚ ൌ 0 by using (1), the chosen action will be
rewarded, and when ߚ ൌ 1by using (2), the chosen action will be penalized.
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
47
Note that ‫݌‬௜ሺ0ሻ ൌ
ଵ
௡௨௠௕௘௥௢௙௦௧௥௘௘௧
. Each vehicle does this for all streets.
As a result, each vehicle has a history of probability in form of a vector and it can conclude that
how is traffic behavior in that chosen street. Then vehiclescalculate cost of each street base on
last probability of that street by (4).
‫ݐݏ݋ܥ‬ ൌ ݊‫ݐ݁݁ݎݐݏ	݂݋	ݎܾ݁݉ݑ‬ െ	
௣೔ሺ௡ାଵሻ
௣೔ሺ଴ሻ
(4)
Whatever the amount of probability is greater, then smaller cost will be assigned to each edge.
Therefore, each vehicle builds the adjacent matrix for streets by these costs.
Figure 2. Decision making flowchart
4.2. Routing Phase
After we got the probability of each action, inthe routing phase as illustrated in Figure 2, adjacent
matrix of graph that intersections are its vertexes and streets are its edges will be updated with
the generated cost in the learning phase.
Start
No
No
Yes End
If located in an
intersection
Yes
Calculate
shortestpath by
Dijkstra'salgorithm
LearningP
hase
Sending packet
withgreedy
forwardingbetween
intersections
If located in
receiverneighbors'
intersections
Consisting
ofsuccessions
ofintersections
Assign cost to
each edge
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
48
5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our scheme. For illustration of our scheme
performance, we compare it with the GPSR [6] and GPCR [7]. For the sake of evaluation, we run
simulations on a discrete event simulator, OMNET++ version 4.2.2 [13].
The experiment is based on a 2 × 2.5 km rectangle street area, which presents a grid layout. The
scenario consists of 150 vehicles (nodes) in 27 streets and 18 intersections as shown in Figure 3.
The street layout is generated by SUMO version 0.15.0 [14]. In addition, we use SUMO for
generating random traffic on the streets and intersections. For connecting OMNET to SUMO, we
use veins framework [15].
Figure 3. Simulation area
In all of simulations, we considered that transmission range for every vehicle equals to 500
meters. Transmission delay set 18Mbps. MAC layer protocol follows IEEE 802.11p. All
experiment parameters are shown in Table 1.
Table 1. Simulation setup
Parameters Values
MAC Protocol IEEE 802.11p
Transmission range 500m
Bitrate 18Mbps
Map Grid 2 5(2km 2.5km)
Number of streets 27
Number of intersections 18
Number of vehicle 150
Packet size 512 Byte
Simulation time 600s
For each simulation run, we randomly select ten source-destination pairs. Generating and sending
packets is done with uniform distribution by the source nodes. We measured the packet delivery
rate as shown in Figure 4 and number of hops as shown in Figure 5 versus the distance between
the two source-destination pairs.
In Figure 4 and Figure 5 PBLA compared with GPCR [7] and GPSR [6]. As mentioned before,
GPSR has low reliability in urban scenarios due to presence of radio obstacles. For improving
GPSR protocol, GPCR forwards packets in greedy mode between each two intersections. Then,
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
49
whenpackets arrive at intersections, they are forwarded to a node called coordinatorrather than
forwarded across a junction. Therefore, reliability in GPCRhas increased compared to GPSR. As
shown in Figure 4, PBLA in comparison with GPSR has a high reliability and compared to
GPCR has almost same reliability. This similarity is due to packets in PBLA are forwarded
through streets and intersections almost like GPCR.
Figure 4. Packet delivery ratio vs. Communication distance
As mentioned in [7],performance improvement in GPCR comes at the cost of a higher average
number of hops compared to GPSR. This increase of hop counts is mainly caused by those
packets that could not be delivered at all by GPSR and thus did not impact the hop count.
Figure 5. Number of hops vs. Communication distance
As shown in Figure 5,PBLA has minimum average hop count in comparison with two other
protocols. PBLAis different from GPCR in the way choosing next intersection for forwarding
packet. GPCR find shortest path in terms of distance to next intersection to the destination.
However, PBLA using probabilities that gain by learning automata algorithm attempts to find an
optimal path to the destination. Path with high possibility forwarding through wireless channel is
chosen as an optimal path by learning automata. Note that the optimal path is not necessarily
shortest path in terms of distance; nevertheless, the optimal path is a route that packets is sent in
least time through channel.
Accordingly, as can be seen in Figure 5, using optimal path that gain by PBLA caused to
decreasing in number of hops.
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
50
6. CONCLUSION AND FUTURE WORKS
In this paper, we presented a position-based routing protocol using learning automata for
vehicular ad hoc networks in city scenarios. City scenario and high mobility of vehicular nodes
are challenges of VANETs.For covering these challenges, PBLA forwards packets through
streets and intersections.Packets are forwarded in greedy mode between each two intersections
until arrive at intersections. In intersections, PBLA attempts to find an optimal path to the
destination by using probabilities that gain by learning automata algorithm.
At the end, performance of PBLA was evaluated by the simulation and compared with the GPSR
and GPCR. It is shown that, our scheme is able to increase reliability and decrease the number of
hopsby using traffic information in learning phase. Moreover, contrary to topology-based, PBLA
did not need to pre-determined route.
Synchronize the probability vector of all vehicles is one of the issues. We plan to investigate this
issue in the future work. Another future work is scale protocol in big city map which city divided
into different parts and protocol is applied on each part. In addition, learning in long term is not
possible because of the simulator constraints. Whatever more increasing learning and getting
street exceptions, PBLA could do more accurate routing.
REFERENCES
[1] Y. W. Lin, Y. S. Cen, & S. L. Lee, (2010) “Routing protocols in vehicular ad-hoc networks: a
survey and future perspectives”,In Journal of Information Science and Engineering, Vol. 26,No.
3, pp913-932.
[2] Z. Guoqing, M. Dejun, X. Zhong, Y. Weili& C. Xiaoyan, (2008) “A survey on the routing
schemes of urban vehicular ad hoc networks”, In Control Conference, 2008. CCC 2008. 27th
Chinese, pp 338–343.
[3] Si-Ho Cha , Min-Woo Ryu & Kuk-Hyun Cho, (April 2012) “A Survey of Greedy Routing
Protocols for Vehicular Ad Hoc Networks”, In Smart Computing Review, Vol. 2, No. 2.
[4] C. E. Perkins &E. M. Royer, (1999) “Ad hoc on-demand distance-vector routing ,” In
Proceedings of the Mobile Computing Systems and Applications, WMCSA '99, Second IEEE
Workshop on, New Orleans, LA,pp 90-100.
[5] C. Lochert, et. al, (2003) “A Routing Strategy for Vehicular Ad Hoc Networks in City
Environments”, In Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, pp 156-161.
[6] B. Karp&H. T. Kung, (2000) “GPSR: greedy perimeter stateless routing for wireless networks”,
In Proceedings of the 6th annual international conference on Mobile computing and networking,
pp. 243–254.
[7] C. Lochert, et. al, (2005) “Geographic routing in city scenarios”, In ACM, SIGMOBILE
Computing and Communication Review, Vol. 9, No. 1, pp 69-72.
[8] J. Zhao & G. Gao, (2008) “VADD: Vehicle-assisted data delivery in vehicular ad hoc networks”,
In IEEE Transactions on Vehicular Technology, Vol. 27, pp 1910-1922.
[9] J. Nzouonta , et.al, (Sept. 2009) “VANET Routing on City Roads Using Real-Time Vehicular
Traffic Information”,In Vehicular Technology, IEEE Transactions on, Vol. 58 ,pp 3609 - 3626.
[10] Ing-Chau Chang, et. al, (Dec. 2011) “Efficient VANET Unicast Routing using Historical and
Real-Time Traffic Information”, In Parallel and Distributed Systems (ICPADS), IEEE 17th
International Conference on, pp 458 - 464.
[11] K. S. Narendra & K. S. Thathachar (1989)Learning Automata: An Introduction, Printice- Hall,
New York.
International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013
51
[12] N. Ahmadifard, H. Nabizadeh & M. Abbaspour, (2011) “SEFF: A Scalable and Efficient
Distributed File Sharing Technique in Vehicular Adhoc Networks”,In Communications (APCC),
17th Asia-Pacific Conference on, pp 456 - 460.
[13] http://www.omnetpp.org/, Available on 27 Mar. 2012.
[14] http://sourceforge.net/projects/sumo/files/sumo/, Available on 27 Mar. 2012.
[15] http://veins.car2x.org/tutorial/, Available on 27 Mar. 2012.
Authors
Fatemeh Teymoori received the B.Sc. degree in Computer Software
Engineering from Kashan Branch of Islamic Azad University, Kashan,
Iran, in 2009. The M.Sc. degree in Computer Architecture Engineering
from Department of Electrical and Computer Engineering, Shahid
Beheshti University, Tehran, Iran, in 2012. Her research interests
include routing in vehicular ad hoc network.
Hamid Nabizadeh received the B.Sc. degree in Computer Hardware
Engineering from Shahid Rajaee University, Tehran, Iran, in 2009. The
M.Sc. degree in Computer Architecture Engineering from Department
of Electrical and Computer Engineering, Shahid Beheshti University,
Tehran, Iran, in 2011. His research interests include security and
routing in wireless sensor network and the data sharing in vehicular ad
hoc network.
Farzaneh Teymoori received the B.Sc. degree in Computer Software
Engineering from Kashan Branch of Islamic Azad University, Kashan,
Iran, in 2009. She is studying The M.Sc. in Computer Artificial
Intelligent Engineering in Science and Research Branch of Islamic
Azad University, Tehran, Iran. Her research interests include learning
automata in the vehicular ad hoc network and in the image processing.

More Related Content

What's hot

A qos adaptive routing scheme (iglar) for highly dynamic
A qos adaptive routing scheme (iglar) for highly dynamicA qos adaptive routing scheme (iglar) for highly dynamic
A qos adaptive routing scheme (iglar) for highly dynamicAlexander Decker
 
Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...IJECEIAES
 
Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...
Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...
Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...IJCSIS Research Publications
 
Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...
Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...
Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...IJCSIS Research Publications
 
QoS Realization for Routing Protocol on VANETs using Combinatorial Optimizations
QoS Realization for Routing Protocol on VANETs using Combinatorial OptimizationsQoS Realization for Routing Protocol on VANETs using Combinatorial Optimizations
QoS Realization for Routing Protocol on VANETs using Combinatorial OptimizationsUday Mane
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) ijceronline
 
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...IOSR Journals
 
INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...
INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...
INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...IJCNCJournal
 
QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...
QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...
QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...ijwmn
 
STUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITS
STUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITSSTUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITS
STUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITSijngnjournal
 
Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...
Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...
Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...IRJET Journal
 
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...IJMER
 
QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...
QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...
QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...ijasuc
 
Analytical average throughput and delay estimations for LTE
Analytical average throughput and delay estimations for LTEAnalytical average throughput and delay estimations for LTE
Analytical average throughput and delay estimations for LTESpiros Louvros
 
Improvement over aodv routing protocol in vanet
Improvement over aodv routing protocol in vanetImprovement over aodv routing protocol in vanet
Improvement over aodv routing protocol in vanetIAEME Publication
 
Multi-Agent System for Secured and Reliable Routing in VANET
Multi-Agent System for Secured and Reliable Routing in VANETMulti-Agent System for Secured and Reliable Routing in VANET
Multi-Agent System for Secured and Reliable Routing in VANETRSIS International
 

What's hot (19)

I021201059064
I021201059064I021201059064
I021201059064
 
A qos adaptive routing scheme (iglar) for highly dynamic
A qos adaptive routing scheme (iglar) for highly dynamicA qos adaptive routing scheme (iglar) for highly dynamic
A qos adaptive routing scheme (iglar) for highly dynamic
 
Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...Design and analysis of routing protocol for cognitive radio ad hoc networks i...
Design and analysis of routing protocol for cognitive radio ad hoc networks i...
 
Bx4201493498
Bx4201493498Bx4201493498
Bx4201493498
 
Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...
Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...
Feasibility Analysis of Directional-Location Aided Routing Protocol for Vehic...
 
Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...
Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...
Cross Layer Based Hybrid Fuzzy Ad-Hoc Rate Based Congestion Control (CLHCC) A...
 
QoS Realization for Routing Protocol on VANETs using Combinatorial Optimizations
QoS Realization for Routing Protocol on VANETs using Combinatorial OptimizationsQoS Realization for Routing Protocol on VANETs using Combinatorial Optimizations
QoS Realization for Routing Protocol on VANETs using Combinatorial Optimizations
 
Multiflow Model for Routing and Policing Traffic in Infocommunication Network
Multiflow Model for Routing and Policing Traffic in  Infocommunication NetworkMultiflow Model for Routing and Policing Traffic in  Infocommunication Network
Multiflow Model for Routing and Policing Traffic in Infocommunication Network
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER)
 
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
A Simulation Based Performance Comparison of Routing Protocols (Reactive and ...
 
INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...
INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...
INVESTIGATING MULTILAYER OMEGA-TYPE NETWORKS OPERATING WITH THE CUT-THROUGH T...
 
QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...
QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...
QUALITY OF SERVICE ROUTING IN MOBILE AD HOC NETWORKS USING LOCATION AND ENERG...
 
STUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITS
STUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITSSTUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITS
STUDY OF THE EFFECT OF VELOCITY ON END-TOEND DELAY FOR V2V COMMUNICATION IN ITS
 
Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...
Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...
Performance Analysis of Optimization Techniques for OLSR Routing Protocol for...
 
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
 
QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...
QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...
QOS ROUTING AND PERFORMANCE EVALUATION FOR MOBILE AD HOC NETWORKS USING OLSR ...
 
Analytical average throughput and delay estimations for LTE
Analytical average throughput and delay estimations for LTEAnalytical average throughput and delay estimations for LTE
Analytical average throughput and delay estimations for LTE
 
Improvement over aodv routing protocol in vanet
Improvement over aodv routing protocol in vanetImprovement over aodv routing protocol in vanet
Improvement over aodv routing protocol in vanet
 
Multi-Agent System for Secured and Reliable Routing in VANET
Multi-Agent System for Secured and Reliable Routing in VANETMulti-Agent System for Secured and Reliable Routing in VANET
Multi-Agent System for Secured and Reliable Routing in VANET
 

Viewers also liked

11.broadcasting routing protocols in vanet
11.broadcasting routing protocols in vanet11.broadcasting routing protocols in vanet
11.broadcasting routing protocols in vanetAlexander Decker
 
Congestion control using vehicular ad hoc network
Congestion control using vehicular ad hoc networkCongestion control using vehicular ad hoc network
Congestion control using vehicular ad hoc networkNarendra Soni
 
Vanet routing protocols issues and challenges
Vanet routing protocols   issues and challengesVanet routing protocols   issues and challenges
Vanet routing protocols issues and challengesBehroz Zarrinfar
 
Vehicular ad hoc network - VANET
Vehicular ad hoc network - VANETVehicular ad hoc network - VANET
Vehicular ad hoc network - VANETSarah Baras
 

Viewers also liked (9)

11.broadcasting routing protocols in vanet
11.broadcasting routing protocols in vanet11.broadcasting routing protocols in vanet
11.broadcasting routing protocols in vanet
 
Congestion control using vehicular ad hoc network
Congestion control using vehicular ad hoc networkCongestion control using vehicular ad hoc network
Congestion control using vehicular ad hoc network
 
14251D6514
14251D651414251D6514
14251D6514
 
Vanet routing protocols issues and challenges
Vanet routing protocols   issues and challengesVanet routing protocols   issues and challenges
Vanet routing protocols issues and challenges
 
Routing in vanet
Routing in vanetRouting in vanet
Routing in vanet
 
Vehicular network
Vehicular networkVehicular network
Vehicular network
 
Introduction to VANET
Introduction to VANETIntroduction to VANET
Introduction to VANET
 
Vanet ppt
Vanet pptVanet ppt
Vanet ppt
 
Vehicular ad hoc network - VANET
Vehicular ad hoc network - VANETVehicular ad hoc network - VANET
Vehicular ad hoc network - VANET
 

Similar to A new approach in position-based routing Protocol using learning automata for Vanets in city scenario

An Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc Network
An Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc NetworkAn Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc Network
An Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc NetworkIJAAS Team
 
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...ijwmn
 
Improved greedy routing protocol for VANET
Improved greedy routing protocol for VANETImproved greedy routing protocol for VANET
Improved greedy routing protocol for VANETEditor IJCATR
 
Improved greedy routing protocol for VANET
Improved greedy routing protocol for VANETImproved greedy routing protocol for VANET
Improved greedy routing protocol for VANETEditor IJCATR
 
PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...
PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...
PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...IJCNCJournal
 
GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)
GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)
GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)graphhoc
 
Performance improvement of vehicular delay tolerant networks using public tra...
Performance improvement of vehicular delay tolerant networks using public tra...Performance improvement of vehicular delay tolerant networks using public tra...
Performance improvement of vehicular delay tolerant networks using public tra...ijmnct
 
Evaluation The Performance of MAODV and AODV Protocols In VANETs Models
Evaluation The Performance of MAODV and AODV Protocols In VANETs ModelsEvaluation The Performance of MAODV and AODV Protocols In VANETs Models
Evaluation The Performance of MAODV and AODV Protocols In VANETs ModelsCSCJournals
 
Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...
Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...
Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...CSCJournals
 
Design of an adaptive sign based routing protocol in vanet for sophisticated ...
Design of an adaptive sign based routing protocol in vanet for sophisticated ...Design of an adaptive sign based routing protocol in vanet for sophisticated ...
Design of an adaptive sign based routing protocol in vanet for sophisticated ...IJARIIT
 
A Systematic Review on Routing Protocols for VANETs
A Systematic Review on Routing Protocols for VANETsA Systematic Review on Routing Protocols for VANETs
A Systematic Review on Routing Protocols for VANETsIRJET Journal
 
Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...
Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...
Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...CSCJournals
 
STUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAY
STUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAYSTUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAY
STUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAYcscpconf
 
Study of vanet routing protocols for end to end delay
Study of vanet routing protocols for end to end delayStudy of vanet routing protocols for end to end delay
Study of vanet routing protocols for end to end delaycsandit
 
Multipath Fault Tolerant Routing Protocol in MANET
Multipath Fault Tolerant Routing Protocol in MANET  Multipath Fault Tolerant Routing Protocol in MANET
Multipath Fault Tolerant Routing Protocol in MANET pijans
 
Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...
Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...
Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...IJCNCJournal
 
Distance’s quantification
Distance’s quantificationDistance’s quantification
Distance’s quantificationcsandit
 
Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992Editor IJARCET
 
Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992Editor IJARCET
 

Similar to A new approach in position-based routing Protocol using learning automata for Vanets in city scenario (20)

An Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc Network
An Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc NetworkAn Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc Network
An Improved Greedy Parameter Stateless Routing in Vehicular Ad Hoc Network
 
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
 
Improved greedy routing protocol for VANET
Improved greedy routing protocol for VANETImproved greedy routing protocol for VANET
Improved greedy routing protocol for VANET
 
Improved greedy routing protocol for VANET
Improved greedy routing protocol for VANETImproved greedy routing protocol for VANET
Improved greedy routing protocol for VANET
 
PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...
PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...
PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS WITH ROADSIDE UNIT INFRASTRUCTURE I...
 
GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)
GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)
GRAPH THEORETIC ROUTING ALGORITHM (GTRA) FOR MOBILE AD-HOC NETWORKS (MANET)
 
Performance improvement of vehicular delay tolerant networks using public tra...
Performance improvement of vehicular delay tolerant networks using public tra...Performance improvement of vehicular delay tolerant networks using public tra...
Performance improvement of vehicular delay tolerant networks using public tra...
 
Evaluation The Performance of MAODV and AODV Protocols In VANETs Models
Evaluation The Performance of MAODV and AODV Protocols In VANETs ModelsEvaluation The Performance of MAODV and AODV Protocols In VANETs Models
Evaluation The Performance of MAODV and AODV Protocols In VANETs Models
 
Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...
Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...
Performance Evaluation of GPSR Routing Protocol for VANETs using Bi-direction...
 
Design of an adaptive sign based routing protocol in vanet for sophisticated ...
Design of an adaptive sign based routing protocol in vanet for sophisticated ...Design of an adaptive sign based routing protocol in vanet for sophisticated ...
Design of an adaptive sign based routing protocol in vanet for sophisticated ...
 
A Systematic Review on Routing Protocols for VANETs
A Systematic Review on Routing Protocols for VANETsA Systematic Review on Routing Protocols for VANETs
A Systematic Review on Routing Protocols for VANETs
 
Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...
Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...
Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge No...
 
STUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAY
STUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAYSTUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAY
STUDY OF VANET ROUTING PROTOCOLS FOR END TO END DELAY
 
Study of vanet routing protocols for end to end delay
Study of vanet routing protocols for end to end delayStudy of vanet routing protocols for end to end delay
Study of vanet routing protocols for end to end delay
 
Survey of mirp for vehicular ad hoc networks in urban environments
Survey of mirp for vehicular ad hoc networks in urban environmentsSurvey of mirp for vehicular ad hoc networks in urban environments
Survey of mirp for vehicular ad hoc networks in urban environments
 
Multipath Fault Tolerant Routing Protocol in MANET
Multipath Fault Tolerant Routing Protocol in MANET  Multipath Fault Tolerant Routing Protocol in MANET
Multipath Fault Tolerant Routing Protocol in MANET
 
Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...
Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...
Performance comparison of aodv and olsr using 802.11 a and dsrc (802.11p) pro...
 
Distance’s quantification
Distance’s quantificationDistance’s quantification
Distance’s quantification
 
Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992
 
Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992Volume 2-issue-6-1987-1992
Volume 2-issue-6-1987-1992
 

More from ijasa

A CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATION
A CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATIONA CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATION
A CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATIONijasa
 
DESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONS
DESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONSDESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONS
DESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONSijasa
 
SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...
SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...
SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...ijasa
 
AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...
AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...
AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...ijasa
 
A STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEM
A STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEMA STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEM
A STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEMijasa
 
SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...
SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...
SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...ijasa
 
COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...
COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...
COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...ijasa
 
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...ijasa
 
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTINGA SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTINGijasa
 
The International Journal of Ambient Systems and Applications (IJASA)
The International Journal of Ambient Systems and Applications (IJASA) The International Journal of Ambient Systems and Applications (IJASA)
The International Journal of Ambient Systems and Applications (IJASA) ijasa
 
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTINGA SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTINGijasa
 
TOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENT
TOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENTTOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENT
TOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENTijasa
 
A STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUE
A STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUEA STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUE
A STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUEijasa
 
A REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGY
A REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGYA REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGY
A REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGYijasa
 
Android based security and home
Android based security and homeAndroid based security and home
Android based security and homeijasa
 
An imperative focus on semantic
An imperative focus on semanticAn imperative focus on semantic
An imperative focus on semanticijasa
 
Selecting number of forwarding reports
Selecting number of forwarding reportsSelecting number of forwarding reports
Selecting number of forwarding reportsijasa
 
Review on classification based on artificial
Review on classification based on artificialReview on classification based on artificial
Review on classification based on artificialijasa
 
Ensf energy efficient next-hop selection
Ensf energy efficient next-hop selectionEnsf energy efficient next-hop selection
Ensf energy efficient next-hop selectionijasa
 
Intelligent soft computing based
Intelligent soft computing basedIntelligent soft computing based
Intelligent soft computing basedijasa
 

More from ijasa (20)

A CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATION
A CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATIONA CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATION
A CONCEPTUAL FRAMEWORK OF A DETECTIVE MODEL FOR SOCIAL BOT CLASSIFICATION
 
DESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONS
DESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONSDESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONS
DESIGN OF A MINIATURE RECTANGULAR PATCH ANTENNA FOR KU BAND APPLICATIONS
 
SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...
SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...
SMART SOUND SYSTEM APPLIED FOR THE EXTENSIVE CARE OF PEOPLE WITH HEARING IMPA...
 
AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...
AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...
AN INTELLIGENT AND DATA-DRIVEN MOBILE VOLUNTEER EVENT MANAGEMENT PLATFORM USI...
 
A STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEM
A STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEMA STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEM
A STUDY OF IOT BASED REAL-TIME SOLAR POWER REMOTE MONITORING SYSTEM
 
SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...
SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...
SENSOR BASED SMART IRRIGATION SYSTEM WITH MONITORING AND CONTROLLING USING IN...
 
COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...
COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...
COMPARISON OF BIT ERROR RATE PERFORMANCE OF VARIOUS DIGITAL MODULATION SCHEME...
 
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
 
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTINGA SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
 
The International Journal of Ambient Systems and Applications (IJASA)
The International Journal of Ambient Systems and Applications (IJASA) The International Journal of Ambient Systems and Applications (IJASA)
The International Journal of Ambient Systems and Applications (IJASA)
 
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTINGA SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
A SCRUTINY TO ATTACK ISSUES AND SECURITY CHALLENGES IN CLOUD COMPUTING
 
TOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENT
TOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENTTOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENT
TOWARD ORGANIC COMPUTING APPROACH FOR CYBERNETIC RESPONSIVE ENVIRONMENT
 
A STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUE
A STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUEA STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUE
A STUDY ON DEVELOPING A SMART ENVIRONMENT IN AGRICULTURAL IRRIGATION TECHNIQUE
 
A REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGY
A REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGYA REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGY
A REVIEW ON DDOS PREVENTION AND DETECTION METHODOLOGY
 
Android based security and home
Android based security and homeAndroid based security and home
Android based security and home
 
An imperative focus on semantic
An imperative focus on semanticAn imperative focus on semantic
An imperative focus on semantic
 
Selecting number of forwarding reports
Selecting number of forwarding reportsSelecting number of forwarding reports
Selecting number of forwarding reports
 
Review on classification based on artificial
Review on classification based on artificialReview on classification based on artificial
Review on classification based on artificial
 
Ensf energy efficient next-hop selection
Ensf energy efficient next-hop selectionEnsf energy efficient next-hop selection
Ensf energy efficient next-hop selection
 
Intelligent soft computing based
Intelligent soft computing basedIntelligent soft computing based
Intelligent soft computing based
 

Recently uploaded

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 

A new approach in position-based routing Protocol using learning automata for Vanets in city scenario

  • 1. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 43 A NEW APPROACH IN POSITION-BASED ROUTING PROTOCOL USING LEARNING AUTOMATA FOR VANETS IN CITY SCENARIO Fatemeh Teymoori1 ,Hamid Nabizadeh1 and Farzaneh Teymoori2 1 Shahid Beheshti University, G. C., Tehran, Iran {f.teymor, ha.nabizadeh}@mail.sbu.ac.ir 2 Science and Research Branch of Islamic Azad University, Tehran, Iran farzanehteymoori@yahoo.com ABSTRACT One of the main issues in Vehicular Ad-hoc NETworks (VANETs) is providing a reliable and efficient routing in urban scenarios with regard to the high vehicle mobility and presence of radio obstacle. In this paper, we propose a Position-Based routing protocol using Learning Automata (PBLA). In addition, PBLA uses the traffic information for enhancing learning. As we know, a main characteristic of learning is increasing performance over time. We exploit this characteristic to decreasing use of traffic information. Initially, PBLA make effort to finding best and shortest path to mobile destination using traffic information. KEYWORDS Vehicular Adhoc NETworks, Routing Protocol, Position-Based Routing, Learning Automata 1. INTRODUCTION Vehicular Ad-hoc Networks (VANETs) is a subclass of Mobile Ad-hoc Networks (MANETs); Vehicles on the roads use wireless technology to communicate each other without any pre- deployed infrastructure. More recently, various applications have appeared in the VANETs. The applications have been classified into two categories: 1. safety applications, which allow the passengers or drivers to share contents such as road obstacles, traffic flows and accidents that have occurred, 2. entertainment applications, which allow vehicles to share multimedia or local information such as MP3 music, videos, sale advertisement or virtual tours of hotel rooms [12]. One of the main issues in VANETs is providing a reliable and efficient routing in urban scenarios with regard to the challenges (i.e., high vehicle mobility and presence of radio obstacle) [1-3]. Generally, the ad hoc network routing protocols are divided in three category: unicast, multicast and broadcast. Unicasts are divided in two parts: topology-based and position-based. Topology- based routing protocols use links information that exist in the network to perform packet forwarding. However, in position-based routing protocols, each node needs only know its neighbors' positions. After using proposed unicast protocols of MANETs in VANETs, it is obvious that these protocols do not work properly in VANETs and they are weak. In addition, most of the protocols that exist in MANETs are topology-based and their major problem is the instability of routes that are caused by link breakages. In topology-based protocols, link breakages occur repeatedly, consequently, the packet loss rate and the overhead of routing increase. Therefore, between topology-based and position-based routing protocols, the last one is more efficient for data delivery in high mobility conditions, such VANETs.
  • 2. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 44 In position-based routing, each node is aware of the positions of its direct neighbors by periodically sending out beacon messages that indicate the current position of the node. In addition, with the aim of sending a packet to a destination node, the sender requires information on the current geographic position of the destination node. This information is gained via a so- called location service [5]. In This paper, a position-based routing protocol in urban scenario is proposed that uses the learning algorithm [11] for decreasing the communication overhead and the number of hops. Furthermore, this protocol uses the traffic information for enhancing learning. This Improving learning reduces the communication overhead that is generated by the traffic information. In order to gain traffic information, we investigated the movement patterns of the vehicles in the streets in different times of the day and generated several databases for traffic density in different times and areas. For instance, the traffic density is low in rural areas and during night hours but very high in the urban area and during rush hours of the day. Then routing decision with high reliability will be made efficiently. The rest of this paper is organized as follows: Section 2 describes related work in the field of unicast routing in VANETs. Section 3 reviews the learning automata. Section 4 describes the proposed position-based routing protocol. Simulation results are shown in Section 5. Finally, section 6 concludes the paper and gives directions for future works. 2. RELATED WORK AODV [4] is a simple sample of topology-based. In [4], the authors presented a route discovery phase that the route request packets flood to the network for searching the route. High node mobility leads to disrupted network and the overhead significantly increase due to repairs broken routes. A well-known position-based routing algorithm is greedy. In this algorithm, the selected next hop node in comparison with the current node is closer to the destination. Greedy does not perform well in urban scenarios because of the radio obstacles, despite the fact that this algorithm has a good performance in creating stable routes in the highways. Some papers have tried to improve position-based routings by using the traffic information [5] [8-10], but the problem is that the traffic information increases the communication overhead. GPSR [6] is the best-known greedy protocol for ad hoc networks. GPSR uses two methods for forwarding packets to destination: greedy forwarding and perimeter forwarding. Greedy forwarding is used whatever possible and perimeter forwarding is used when greedy failed. As well as, in greedy forwarding, packets are forwarded to nodes that are closer to the destination in Euclidean distance. GPSR uses the perimeter forwarding when there is not a greedy path in some regions of the network. In perimeter mode, a packet traverses successively closer faces of a planar sub-graph of the full radio network connectivity graph, until it reaches a node that is closer to the destination, where greedy forwarding is resumed. The disadvantage of GPSR is increasing the possibility of getting a local maximum and link breakage because of two problems of VANETs. As mentioned, the high mobility of vehicles and specific topological structure of a city [3]. To deal with these problems, a position-based geographic source routing protocol (GSR) was proposed [5]. GSR uses Dijkstra algorithm to calculate shortest path consist of sequence intersections which packet has to traverse. Forwarding packets is based on greedy forwarding strategy between two successive intersections. The main disadvantage of this scheme is that the shortest path including intersections does not
  • 3. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 45 mean the best path since hop count is not proper to be taken as a performance metric in high dynamic networks. GPCR (greedy perimeter coordinator routing) [7] is a position-based routing for urban environment. In highly dynamic environment such as VANETs, GPCR protocol acts well in two scenarios, city, and highway. Packets in GPCR traverse intersections by a restricted greedy forwarding procedure. GPCR proposed a repair strategy based on the topology of streets and intersections for adjusts the routing path. The main contribution of the scheme is approaches of how to detect vehicles at the intersections without digital map. However, this protocol may lead to redundant hops in city environments because of using right hand rule. VADD [8] protocol adopted the idea of carry-and-forward for data delivery from a moving vehicle to a static destination. The most important issue is selecting a forwarding path with the smallest packet delivery delay. VADD protocol attempts to keep the low data transmission delay by forwarding packets through wireless channel. In VADD, when a packet needs to carried through roads, the road with higher speed is chosen. VADD assigns cost to edges between each two intersections by proposing delay model to estimate data delivery delay in different roads. In [8] assumes each vehicle is equipped with digital map and traffic statistics such as traffic density and vehicle speed on roads at different times of the day. According to the information, VADD protocol proposed a delay model to assign cost to each edge. With these cost, VADD computes the shortest path from the source to the destination by a naive optimal forwarding path selection algorithm. Disadvantage of VADD is that cannot freely select the outgoing road to forward the packet at each intersection. The Road-Based using Vehicular Traffic (RBVT) routing [9] leverages real-time vehicular traffic information to create road-based paths. These paths are consisted of successions of road intersections that are found by the flooded route discovery process. According to recorded intersections in the source routing header, geographical forwarding transfers packets between intersections on the path. This protocol increased overhead because of using real-time vehicular traffic information. 3. REVIEW OF LEARNING AUTOMATA In the following, we present a brief review of learning automata. A learning automaton (LA) [11] is an adaptive decision-making unit that improves its performance by learning how to choose the optimal action from a finite set of allowed actions through repeated interactions with a random environment. Random environment Inputs called actions and reinforcement signals are responds the actions to the environments. The action probability vector is brought up to date based on the received feedback of environment. Figure 1 demonstrates correlation between the learning automaton and its random environment. Figure 1. The correlation between the learning automaton and its random environments ࢻሺ࢔ሻ ࢼሺ࢔ሻ Random Environment Learning Automata
  • 4. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 46 Variable structure learning automata is a type of learning automata. Variable structure learning automata are defined by a quaternaryሼߙ, ߚ, ‫,ܮ‬ ‫݌‬ሽ , where ߚ ൌ ሼߚଵ, ߚଶ, … , ߚ௥ሽ is the set of inputs, ߙ ൌ ൛ߙ1 , ߙ2 , … , ߙ‫ݎ‬ ൟ is the set of actions, and L is learning algorithm. L is a Recursive equation to modifying action probability vector. Action probability vector is shown by ‫݌‬ ൌ ሼ‫݌‬ଵ, ‫݌‬ଶ, … , ‫݌‬௥ሽ. Equations (1) and (2) show a linear learning algorithm. Let ߙ௜ be the action chosen by the automata. When the selected action is rewarded by the environment (i.e. ߚሺ݊ሻ ൌ 0): ‫݌‬௜ሺ݊ ൅ 1ሻ ൌ ‫݌‬௜ሺ݊ሻ ൅ ܽ ∙ ሺ1 െ ‫݌‬௜ሺ݊ሻሻ (1) ‫݌‬௝ሺ݊ ൅ 1ሻ ൌ ‫݌‬௝ሺ݊ሻ െ ܽ ∙ ‫݌‬௝ሺ݊ሻ ∀݆݆ ് ݅ And, when the selected action is penalized by the environment (i.e. ߚሺ݊ሻ ൌ 1): ‫݌‬௜ሺ݊ ൅ 1ሻ ൌ ሺ1 െ ܾሻ ∙ ‫݌‬௜ሺ݊ሻ (2) ‫݌‬௝ሺ݊ ൅ 1ሻ ൌ ܾ ‫ݎ‬ െ 1 ൅ ሺ1 െ ܾሻ ∙ ‫݌‬௝ሺ݊ሻ ∀݆݆ ് ݅ 4. PROPOSED ROUTING APPROACH As mentioned before, by investigating traffic behaviors in several days and several times during a day, we concluded that traffic behaviors in street usually repeat unless exceptions happen like the accidents that block the streets. Therefore, each vehicle can possess several databases for their decision-makings. For instance, one database for rural area and during night, one for urban area and during day, or the other one for exception cases etc. In PBLA we have two phase, Learning and routing phase. When a source node want to send packet, it find the best path to destination using Dijkstra's algorithm and adjacent matrix, which this matrix is built in the learning phase. In the following, we describe two phases of our routing protocols. 4.1. Learning Phase In PBLA, each vehicle can acquire the number of available vehicle in each street by location service. In addition, we consider the street map as a planar graph that is pre-loaded in the vehicles as a text file (intersections as vertexes and streets as edges of this planar graph). Each vehicle is a Learning Automata (LA) which selects actions by considering inputሺߚሻ and according to the inputs rewards or penalize them. Every street will be chosen as an action. The input ሺߚሻfor street ܵଵiscalculated by (3). ߚ ൌ 0 ݂݅ ܰ ൒ ݉݅݊ (3) ߚ ൌ 1 ݂݅ ܰ ൏ ݉݅݊ In this equation,ܰis number of vehicles in ܵଵ, which is provided by location service.min is the minimum number of the required vehicles for sending through wireless in the specific street in worst case. For example, suppose that there is a street with 200 m length. If transmission range is equal 100 m, then min will be four. When ߚ ൌ 0 by using (1), the chosen action will be rewarded, and when ߚ ൌ 1by using (2), the chosen action will be penalized.
  • 5. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 47 Note that ‫݌‬௜ሺ0ሻ ൌ ଵ ௡௨௠௕௘௥௢௙௦௧௥௘௘௧ . Each vehicle does this for all streets. As a result, each vehicle has a history of probability in form of a vector and it can conclude that how is traffic behavior in that chosen street. Then vehiclescalculate cost of each street base on last probability of that street by (4). ‫ݐݏ݋ܥ‬ ൌ ݊‫ݐ݁݁ݎݐݏ ݂݋ ݎܾ݁݉ݑ‬ െ ௣೔ሺ௡ାଵሻ ௣೔ሺ଴ሻ (4) Whatever the amount of probability is greater, then smaller cost will be assigned to each edge. Therefore, each vehicle builds the adjacent matrix for streets by these costs. Figure 2. Decision making flowchart 4.2. Routing Phase After we got the probability of each action, inthe routing phase as illustrated in Figure 2, adjacent matrix of graph that intersections are its vertexes and streets are its edges will be updated with the generated cost in the learning phase. Start No No Yes End If located in an intersection Yes Calculate shortestpath by Dijkstra'salgorithm LearningP hase Sending packet withgreedy forwardingbetween intersections If located in receiverneighbors' intersections Consisting ofsuccessions ofintersections Assign cost to each edge
  • 6. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 48 5. PERFORMANCE EVALUATION In this section, we evaluate the performance of our scheme. For illustration of our scheme performance, we compare it with the GPSR [6] and GPCR [7]. For the sake of evaluation, we run simulations on a discrete event simulator, OMNET++ version 4.2.2 [13]. The experiment is based on a 2 × 2.5 km rectangle street area, which presents a grid layout. The scenario consists of 150 vehicles (nodes) in 27 streets and 18 intersections as shown in Figure 3. The street layout is generated by SUMO version 0.15.0 [14]. In addition, we use SUMO for generating random traffic on the streets and intersections. For connecting OMNET to SUMO, we use veins framework [15]. Figure 3. Simulation area In all of simulations, we considered that transmission range for every vehicle equals to 500 meters. Transmission delay set 18Mbps. MAC layer protocol follows IEEE 802.11p. All experiment parameters are shown in Table 1. Table 1. Simulation setup Parameters Values MAC Protocol IEEE 802.11p Transmission range 500m Bitrate 18Mbps Map Grid 2 5(2km 2.5km) Number of streets 27 Number of intersections 18 Number of vehicle 150 Packet size 512 Byte Simulation time 600s For each simulation run, we randomly select ten source-destination pairs. Generating and sending packets is done with uniform distribution by the source nodes. We measured the packet delivery rate as shown in Figure 4 and number of hops as shown in Figure 5 versus the distance between the two source-destination pairs. In Figure 4 and Figure 5 PBLA compared with GPCR [7] and GPSR [6]. As mentioned before, GPSR has low reliability in urban scenarios due to presence of radio obstacles. For improving GPSR protocol, GPCR forwards packets in greedy mode between each two intersections. Then,
  • 7. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 49 whenpackets arrive at intersections, they are forwarded to a node called coordinatorrather than forwarded across a junction. Therefore, reliability in GPCRhas increased compared to GPSR. As shown in Figure 4, PBLA in comparison with GPSR has a high reliability and compared to GPCR has almost same reliability. This similarity is due to packets in PBLA are forwarded through streets and intersections almost like GPCR. Figure 4. Packet delivery ratio vs. Communication distance As mentioned in [7],performance improvement in GPCR comes at the cost of a higher average number of hops compared to GPSR. This increase of hop counts is mainly caused by those packets that could not be delivered at all by GPSR and thus did not impact the hop count. Figure 5. Number of hops vs. Communication distance As shown in Figure 5,PBLA has minimum average hop count in comparison with two other protocols. PBLAis different from GPCR in the way choosing next intersection for forwarding packet. GPCR find shortest path in terms of distance to next intersection to the destination. However, PBLA using probabilities that gain by learning automata algorithm attempts to find an optimal path to the destination. Path with high possibility forwarding through wireless channel is chosen as an optimal path by learning automata. Note that the optimal path is not necessarily shortest path in terms of distance; nevertheless, the optimal path is a route that packets is sent in least time through channel. Accordingly, as can be seen in Figure 5, using optimal path that gain by PBLA caused to decreasing in number of hops.
  • 8. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 50 6. CONCLUSION AND FUTURE WORKS In this paper, we presented a position-based routing protocol using learning automata for vehicular ad hoc networks in city scenarios. City scenario and high mobility of vehicular nodes are challenges of VANETs.For covering these challenges, PBLA forwards packets through streets and intersections.Packets are forwarded in greedy mode between each two intersections until arrive at intersections. In intersections, PBLA attempts to find an optimal path to the destination by using probabilities that gain by learning automata algorithm. At the end, performance of PBLA was evaluated by the simulation and compared with the GPSR and GPCR. It is shown that, our scheme is able to increase reliability and decrease the number of hopsby using traffic information in learning phase. Moreover, contrary to topology-based, PBLA did not need to pre-determined route. Synchronize the probability vector of all vehicles is one of the issues. We plan to investigate this issue in the future work. Another future work is scale protocol in big city map which city divided into different parts and protocol is applied on each part. In addition, learning in long term is not possible because of the simulator constraints. Whatever more increasing learning and getting street exceptions, PBLA could do more accurate routing. REFERENCES [1] Y. W. Lin, Y. S. Cen, & S. L. Lee, (2010) “Routing protocols in vehicular ad-hoc networks: a survey and future perspectives”,In Journal of Information Science and Engineering, Vol. 26,No. 3, pp913-932. [2] Z. Guoqing, M. Dejun, X. Zhong, Y. Weili& C. Xiaoyan, (2008) “A survey on the routing schemes of urban vehicular ad hoc networks”, In Control Conference, 2008. CCC 2008. 27th Chinese, pp 338–343. [3] Si-Ho Cha , Min-Woo Ryu & Kuk-Hyun Cho, (April 2012) “A Survey of Greedy Routing Protocols for Vehicular Ad Hoc Networks”, In Smart Computing Review, Vol. 2, No. 2. [4] C. E. Perkins &E. M. Royer, (1999) “Ad hoc on-demand distance-vector routing ,” In Proceedings of the Mobile Computing Systems and Applications, WMCSA '99, Second IEEE Workshop on, New Orleans, LA,pp 90-100. [5] C. Lochert, et. al, (2003) “A Routing Strategy for Vehicular Ad Hoc Networks in City Environments”, In Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, pp 156-161. [6] B. Karp&H. T. Kung, (2000) “GPSR: greedy perimeter stateless routing for wireless networks”, In Proceedings of the 6th annual international conference on Mobile computing and networking, pp. 243–254. [7] C. Lochert, et. al, (2005) “Geographic routing in city scenarios”, In ACM, SIGMOBILE Computing and Communication Review, Vol. 9, No. 1, pp 69-72. [8] J. Zhao & G. Gao, (2008) “VADD: Vehicle-assisted data delivery in vehicular ad hoc networks”, In IEEE Transactions on Vehicular Technology, Vol. 27, pp 1910-1922. [9] J. Nzouonta , et.al, (Sept. 2009) “VANET Routing on City Roads Using Real-Time Vehicular Traffic Information”,In Vehicular Technology, IEEE Transactions on, Vol. 58 ,pp 3609 - 3626. [10] Ing-Chau Chang, et. al, (Dec. 2011) “Efficient VANET Unicast Routing using Historical and Real-Time Traffic Information”, In Parallel and Distributed Systems (ICPADS), IEEE 17th International Conference on, pp 458 - 464. [11] K. S. Narendra & K. S. Thathachar (1989)Learning Automata: An Introduction, Printice- Hall, New York.
  • 9. International Journal of Ambient Systems and Applications (IJASA) Vol.1, No.2, June 2013 51 [12] N. Ahmadifard, H. Nabizadeh & M. Abbaspour, (2011) “SEFF: A Scalable and Efficient Distributed File Sharing Technique in Vehicular Adhoc Networks”,In Communications (APCC), 17th Asia-Pacific Conference on, pp 456 - 460. [13] http://www.omnetpp.org/, Available on 27 Mar. 2012. [14] http://sourceforge.net/projects/sumo/files/sumo/, Available on 27 Mar. 2012. [15] http://veins.car2x.org/tutorial/, Available on 27 Mar. 2012. Authors Fatemeh Teymoori received the B.Sc. degree in Computer Software Engineering from Kashan Branch of Islamic Azad University, Kashan, Iran, in 2009. The M.Sc. degree in Computer Architecture Engineering from Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran, in 2012. Her research interests include routing in vehicular ad hoc network. Hamid Nabizadeh received the B.Sc. degree in Computer Hardware Engineering from Shahid Rajaee University, Tehran, Iran, in 2009. The M.Sc. degree in Computer Architecture Engineering from Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran, in 2011. His research interests include security and routing in wireless sensor network and the data sharing in vehicular ad hoc network. Farzaneh Teymoori received the B.Sc. degree in Computer Software Engineering from Kashan Branch of Islamic Azad University, Kashan, Iran, in 2009. She is studying The M.Sc. in Computer Artificial Intelligent Engineering in Science and Research Branch of Islamic Azad University, Tehran, Iran. Her research interests include learning automata in the vehicular ad hoc network and in the image processing.