SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
DOI:10.5121/ijcsa.2014.4 101 1
Expert System Design for Elastic Scattering
Neutrons Optical Model using BPNN
FADHIL A. ALI
Department of Electrical and Computer Engineering- Oklahoma State University
202 Engineering South Stillwater, OK 74078 USA- Tel:405-714-1084
ABSTRACT
In present paper, a proposed expert system is designed to obtain a trained formulae for the optical model
parameters used in elastic scattering neutrons of light nuclei for (7
Li), at energy range between [(1) to
(20)] MeV. A simple algorithm has used to design this expert system, while a multi-layer backward-
propagation neural network (BPNN) is applied for training and testing the data used in this model. This
group of formulae may get a simple expert system occurring from governing formulae model, and predicts
the critical parameters usually resulted from the complicated computer coding methods. This expert system
may use in nuclear reactions yields in both fission and fusion nature who gives more closely results to the
real model.
KEYWORDS
Expert systems, optical model analysis, software engineering applications, neural networks
1. Introduction
The scattering of a neutron by a nucleus is the result of a very complicated series of interactions
of direct and indirect reactions between the neutron and the nucleons of the target nucleus. It
rather surprising this can be represented only by a simple optical potential, which is called an
optical model. The optical potential which was employed throughout this study is:
V(r) = - Vr f(r, Rr, Ar) + i4Wd Ad f (r, Rd, Ad) + [ Vso f (r, Rso, Aso) ] ( )2
σ.l ………(1)
Where:
f( r, R, A) = [1+exp[(r-R)/A]]-1
…………………..…(2)
Thus the expression (2) is Saxon-Woods form factor which is the first approximation that
considers the optical potential to have a radial variation that follows the nuclear density quite
closely [1]. The numerical values of these parameters are calculated for this investigation, which
observed in equation (1), as follows:
1. Potential parameters:
i- Real potential "Vr "
ii- Volume – imaginary potential "Wv"
iii- Surface – imaginary potential "Ws"
iv- Spin – orbit potential "Vso"
Where:"Wv" and "Ws" can be represented as "Wd".
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
2
2. Radius parameters:
i- Real radius "Rr"
ii- Volume – imaginary radius" Rv"
iii- Surface – imaginary radius" Rs"
iv- Spin – orbit radius "Rso"
Where:"Rv" and "Rs" can be represented as "Rd"
2. Diffuseness parameters:
i- Real diffuseness "Ar"
ii- Volume – imaginary diffuseness "Av"
iii- Surface – imaginary diffuseness "As"
iv- Spin – orbit diffuseness "Aso"
Where:"Av" and "As" can be represented as "Ad". Also, the expression "( )2
" is the square of
the pion Compton wavelength." [1, 2]
2. Proposed system
2.1 Data collection
Perey & Perey Tables [3] have been used to collect the present optical model parameters data
were available for 7
Li nucleus, by scattered neutrons at energy range (1-20) MeV. This study was
extended to provide more data till the end of 2010.
2.2 Program Design (Coding)
An expert system is a software package containing at least a knowledgebase, for reasoning unit
and man–machine interfaces, it is used to create and design the present expert algorithm. Its code
is written to solve the parameters in equations (1) & (2). The C# language is used in coding the
expert system nuggets. Since the potential parameters vary linearly with energy [E] and nuclear
asymmetry [(N-Z)/A]; where N is the number of neutrons and Z is the number of protons.
Similarly, radius parameters and diffuseness parameters are vary with mass number (A1/3
) and
nuclear asymmetry; have analyzed them according to the same routine. This work have included
those parameters by writing: [2]
V = V0 + ϵE + Vi [(N-Z)/A]……..…………….…… (3)
R = R0 + ɣ A1/3
+ Ri [(N-Z)/A] ……….….………… (4)
A = A0 + β A1/3
+ Ai [(N-Z)/A] ……….…………… (5)
Where; V0,Vi, R0, A0, ϵ, ɣ and β are the coefficients of the potential, radius and diffuseness
parameters, respectively. The expert system rules written have a data-driven program, it has taken
procedure in [4], where the facts are the data as (text files) stored in our knowledgebase engine.
This engine decides which rule should be executed. Therefore, the present expert system
automatically performs the optical model parameters, according to the following:
• It has 3 facts being analyzed (potential, radius and diffuseness parameters) equations (3,
4, and 5) respectively.
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
3
• It has 36 rules of dynamic programming procedure codes, which obey the coefficients
(V0,Vi, R0, A0, ϵ, ɣ and β )and constraints (energy [E] ,nuclear asymmetry [(N-Z)/A] and
mass number (A1/3
) equation (1).
2.3 Algorithm
Figure (1) is an algorithm of the present expert system, which shows available data, calculated the
optical model parameters.
Figure (1) shows the proposed expert system algorithm
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
4
2.4 The Neural network
For an artificial expert system ANN, reliability and applicability are the two most important
factors to be taken into consideration even at the first stage of development. The backward
propagation neural network (BPNN) model has been applied and reported well in industries [5].
The present parameters are tested using the available Perey & Perey data Tables [3]. The
application of BPN, as shown in Figure 2, involves the calculation of the error between the
network output vector and the target vector. Generally, let the BPN have the input vector x of
length Nin; the network output vector y of length r; and the synaptic weight matrix W [5].
Figure (2) shows schematic diagram of the BPN Architecture
Then a transfer function maps x into y by
y= (WT
x - θ) = ( ) ………………….. (6)
Where θ is the bias that is used to mimic the threshold value of the axon, below which the neuron
would not respond, the output net activity vector.
For BPN with a supervised learning process, there exist two distinct computation passes. The first
one is referred to as the ‘forward pass’ in which the synaptic weight matrix remains unchanged.
In other words, the information inputs pass forward to the output. On the other hand, the second
pass is called the ‘backward pass’ where the error is passing backwards starting from the
outermost layer. Thus, through the recursive computation for each neuron the weight matrix
undergoes modifications. Or, let the (n+1)th change of weight matrix be W(n+1). Then
W (n+1) = W (n) + Δ W (n)……………….. (7)
Where Δ W (n) is the weight adjustment matrix obtained from the last change."[5]
"The learning mechanism of the backward propagation networks is a generalized delta rule that
performs a gradient descent on the error space to minimize the total error between the calculated
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
5
the desired one of an output layer during modification of connection weight. The least mean
square error is carried out to find the values the connection weights that minimize the error
function by resilient backward propagation method. During the process of learning the mean
square error (MSE) is monitored the network instantaneously to achieve better understating of the
network performance. The MSE can be calculated as;
MSE= ( + ) ……………………. (8)
Where, is the actual value, is the predicted value and is the number of values." [6]
This study has collected a selective range of data provided by Perey & Perey Tables [3]; these
data include 100 results of the elastic scattered neutrons of 7
Li for energy range (1-20) MeV.
Among the collected data 75 selected randomly are used as training data, while the remaining 25
are regarded as tested data.
Presently, optical model has three major parameters
• Potential parameters: [Vr, Wv, Ws, Vso]
• Radius parameters [Rr, Rv, Rs, Rso ]
• Diffuseness parameters[ Ar, Av, As, Aso]
Therefore, 12 parameters are used and represented as input layer of the neural network nodes
(units). The output layer includes one neuron representing the ultimate moment capacity of the
elastic scattered neutron beams of 7
Li for energy range (1-20) MeV.
3. Results and discussion
3.1 Training and testing of network
The present network configuration has achieved after watching the performance of different
configurations. Thus, learning parameters and processes were changed and repeated due to the
same procedure. To avoid any over-training, a convergence criterion adopted by present work
depending on whether the MSE of testing data has reached its minimum or not.
The present neural network is trained, therefore the slow rate of learning near the end points of
data range is avoided, the inputs and outputs data were scaled into an interval of [-1,1] by using
the minimum and maximum method. The values of the present network parameters considered
the following;
• Number of hidden layers = 2
• Number of units in first hidden layer = 12
• Number of units in second hidden layer = 10
• Training cycles = 10000
• Initial weights = 0.3
• Learning rate = 0.3
• Momentum = 0.9
The average MSE for training and testing is 0.000287 and 0.00041 respectively. Figure 3 shows
the convergence of network for both training represents as ultimate optical model parameters
data, and testing represents as optical model data.
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
6
Figure (3) shows the convergence of present network
Table (1) shows the MSE values for each optical model parameters data in both training and
testing respectively. Thus, table (2) shows an optical model parameters predicted values resulted
by the proposed expert system. This will get new set formulae represented the optical model, and
table (3) has shown the set formulae depending on the predicted values of the proposed expert
system. Since nuclear asymmetry has fixed value for 7
Li, which equals to (0.14) as well as mass
number 7, the parameters were not affected dynamically rather than energy range dependences.
Table (1) shows the MSE values for each optical model parameters data
Optical
Parameters
MSE of
Training
Data
MSE of
Testing Data
Vr 0.00013 0.00015
Rr 0.00040 0.000143
Ar 0.00030 0.000409
Wv 0.000433 0.001436
Rv 0.000450 0.000108
Av 0.00080 0.000525
Ws 0.00090 0.000744
Rs 0.000006 0.000130
As 0.000150 0.000510
Vso 0.000194 0.003260
Rso 0.000093 0.000162
Aso 0.000310 0.000248
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
7
Table (2) shows parameters predicted values
Present
Optical
Model1
Predicted Values
Potential Parameters
Energy
(MeV)
Vr Wv Ws Vso
1 47.24 5.25 9.60 9.26
2 47.27 4.98 9.80 9.07
3 47.29 4.71 9.99 8.88
4 47.31 4.44 10.19 8.69
5 47.34 4.17 10.38 8.50
6 47.36 3.90 10.57 8.31
7 47.38 3.63 10.77 8.12
8 47.41 3.36 10.96 7.93
9 47.43 3.09 11.16 7.74
10 47.45 2.82 11.35 7.55
11 47.47 2.55 11.54 7.36
12 47.50 2.28 11.74 7.17
13 47.52 2.01 11.93 6.98
14 47.54 1.74 12.13 6.79
15 47.57 1.47 12.32 6.60
16 47.59 1.20 12.51 6.41
17 47.61 0.93 12.71 6.22
19 47.64 0.66 12.90 6.03
20 47.66 0.39 13.10 5.84
Present
Optical
Model2
Radius Parameters
Rr Rv Rs Rso
1.27 1.26 1.21 1.11
Present
Optical
Model3
Diffuseness Parameters
Ar Av As Aso
0.55 0.58 0.38 0.88
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
8
Table (3) shows the new empirical set formulae of the present optical model compact expert system
Optical
Parameters
Predicted empirical formula
E: Energy (MeV), A: Mass Number and α : Nuclear Asymmetry (N-Z)/A
Vr 47.24+0.023E-0.13α
Rr 1.198+0.01A1/3
+0.38α
Ar 0.5+0.036 A1/3
-0.164α
Wv 5.58-0.27E-0.41α
Rv 1.27-0.007 A1/3
+0.003α
Av 0.09+0.195 A1/3
+0.8α
Ws 5.66+0.194E+26.79α
Rs 1.17+0.019 A1/3
As 0.69-2.25α
Vso 8.7-0.19E+5.34α
Rso 1.21-0.75α
Aso 0.58+2.12α
In compare the present formulae resulted with others, table (4) shows both present results and
Dave et al [7] in order to give the global representation of this proposed expert system.
Table 4 shows the empirical set formulae of Dave et al
Optical
Parameters
Dave et al Formulae
Vr 54.14-0.02E-23.48α
Rr 1.508-0.013A
Ar 0.5
Wv 11.32+0.237E-16.08α
Rv 1.353
Av 0.2
Ws 11.32+0.237E-16.08α
Rs 1.353
As 0.2
Vso 5.5
Rso 1.15
Aso 0.5
3.2 Discussions
For the light nucleus of 7
Li, the nuclear asymmetry (N-Z)/A has value equals to 0.14, that might
give both radius and diffuseness parameters fixed values depending on the empirical formulae as
in table 2. These parameters are depended on mass number A and nuclear asymmetry α. Incident
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014
9
neutrons energy (1-20) MeV does not affect the values of such parameters. Potential parameters
have functions depending on incident neutron energy and nuclear asymmetry.
It can be seen that BPN gives the smallest MSE values for both training and testing data. And it is
clear that all optical parameters are functions of energy, mass number and nuclear asymmetry.
While it cannot be seen these factors in Dave et al formulae set.
The 36 rules written in comparison to the predictions of the BPN results, and it give the expert
system to show the ability for taken the map of decisions made. As fit all results that BPN gets
strong and precise model for nuclear reactions used as in [8].
4. Conclusion
In this study, it is found that backward propagation neural network embedded model with 36 rules
and 3 facts are effective way for analyze of an optical model for elastic scattered neutrons. The
configuration of 12-10 nodes in the first and second hidden layer is proved to be very efficient for
predicting the ultimate optical parameters. In addition, MSE has acceptable values in both
training and testing data of the network.
Mass number A1/3
, incident neutron energy E and nuclear asymmetry (N-Z)/A are found by
predictions to have large influence on optical model parameters.
Potential parameters (Vr,Wv,Ws and Vso) are found to be energy E and nuclear asymmetry
dependent, while radius and diffuseness parameters (Rr,Ar,Rv, and Av) are mass number A and
nuclear asymmetry dependent. Except for Rs which is mass number dependent only, similarly
(As,Rso and Aso) are nuclear asymmetry dependent only.
Acknowledgement
I would like to thank Iraq Scholar Rescue Project/Scholar Rescue Fund / Institute of International
Education group for any kind of help, adding to Oklahoma State University / school of ECEN.
References
[1] R.L. Cassola & R.D. Koshel, the neutron-nucleus interaction, IL NUOVO CIMENTO B (1965-1970),
Volume 47, Number 2 ,1967 , pp.303-305
[2] P.E. Hodgson, Rep. Prog. Phys., 47, 1984, pp.613-654
[3] C.M. Perey & F.G. Perey, Atomic Data and Nuclear Data Tables, Volume 17, Issue 1, January
1976,pp. 1–101
[4] John Paul Mueller," C# Design and Development: Expert One on One", John Wiley & Sons, 2009
[5] Li Wenlung , Y.P. Tsaib & C.L. Chiu, The experimental study of the expert system for diagnosing
unbalances by ANN and acoustic signals, Journal of Sound and Vibration, 272,2004,pp.69–83
[6] M. Riedmiller & H. Braun, A direct Adaptive Method for Faster Back propagation learning: The
RPROP Algorithm, IEEE international Conference on Neural Networks, 1993, pp.586-591
[7] J.H. Dave & C.R. Gould, Optical model analysis of scattering of 7- to 15-MeV neutrons from 1-p
shell nuclei, Physical Review C, 28, Issue 6, 1983,pp.2212-2221
[8] Subhra Rani Patra et al, Artificial Neural Network Model for Intermediate Heat Exchanger of Nuclear
Reactor,International Journal of Computer applications (0975 - 8887) Volume 1 – No. 26, 2010

Más contenido relacionado

La actualidad más candente

A broad ranging open access journal Fast and efficient online submission Expe...
A broad ranging open access journal Fast and efficient online submission Expe...A broad ranging open access journal Fast and efficient online submission Expe...
A broad ranging open access journal Fast and efficient online submission Expe...ijceronline
 
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...ijdmtaiir
 
Black-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX modelBlack-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX modelIJECEIAES
 
Genetic related clustering for reducing energy consumption in wireless sensor...
Genetic related clustering for reducing energy consumption in wireless sensor...Genetic related clustering for reducing energy consumption in wireless sensor...
Genetic related clustering for reducing energy consumption in wireless sensor...eSAT Journals
 
Improving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning AlgorithmImproving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning Algorithmijsrd.com
 
An introduction to machine learning for particle physics
An introduction to machine learning for particle physicsAn introduction to machine learning for particle physics
An introduction to machine learning for particle physicsAndrew Lowe
 
Optimization of workload prediction based on map reduce frame work in a cloud...
Optimization of workload prediction based on map reduce frame work in a cloud...Optimization of workload prediction based on map reduce frame work in a cloud...
Optimization of workload prediction based on map reduce frame work in a cloud...eSAT Journals
 
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless  Sensor NetworksAn Efficient top- k Query Processing in Distributed Wireless  Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless Sensor NetworksIJMER
 
Comparison of Different Methods for Fusion of Multimodal Medical Images
Comparison of Different Methods for Fusion of Multimodal Medical ImagesComparison of Different Methods for Fusion of Multimodal Medical Images
Comparison of Different Methods for Fusion of Multimodal Medical ImagesIRJET Journal
 
Modeling and simulation of single phase transformer inrush current using neur...
Modeling and simulation of single phase transformer inrush current using neur...Modeling and simulation of single phase transformer inrush current using neur...
Modeling and simulation of single phase transformer inrush current using neur...Alexander Decker
 
Simulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using VerilogSimulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using Verilogijsrd.com
 
Paper id 21201488
Paper id 21201488Paper id 21201488
Paper id 21201488IJRAT
 
Hybrid PSO-SA algorithm for training a Neural Network for Classification
Hybrid PSO-SA algorithm for training a Neural Network for ClassificationHybrid PSO-SA algorithm for training a Neural Network for Classification
Hybrid PSO-SA algorithm for training a Neural Network for ClassificationIJCSEA Journal
 
Paper id 21201483
Paper id 21201483Paper id 21201483
Paper id 21201483IJRAT
 
Neural wavelet based hybrid model for short-term load forecasting
Neural wavelet based hybrid model for short-term load forecastingNeural wavelet based hybrid model for short-term load forecasting
Neural wavelet based hybrid model for short-term load forecastingAlexander Decker
 
Localization of Objects using Stochastic Tunneling
Localization of Objects using Stochastic TunnelingLocalization of Objects using Stochastic Tunneling
Localization of Objects using Stochastic TunnelingRana Basheer
 

La actualidad más candente (19)

Radial Basis Function
Radial Basis FunctionRadial Basis Function
Radial Basis Function
 
A broad ranging open access journal Fast and efficient online submission Expe...
A broad ranging open access journal Fast and efficient online submission Expe...A broad ranging open access journal Fast and efficient online submission Expe...
A broad ranging open access journal Fast and efficient online submission Expe...
 
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
 
Black-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX modelBlack-box modeling of nonlinear system using evolutionary neural NARX model
Black-box modeling of nonlinear system using evolutionary neural NARX model
 
Genetic related clustering for reducing energy consumption in wireless sensor...
Genetic related clustering for reducing energy consumption in wireless sensor...Genetic related clustering for reducing energy consumption in wireless sensor...
Genetic related clustering for reducing energy consumption in wireless sensor...
 
Er4301866870
Er4301866870Er4301866870
Er4301866870
 
Improving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning AlgorithmImproving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning Algorithm
 
An introduction to machine learning for particle physics
An introduction to machine learning for particle physicsAn introduction to machine learning for particle physics
An introduction to machine learning for particle physics
 
Optimization of workload prediction based on map reduce frame work in a cloud...
Optimization of workload prediction based on map reduce frame work in a cloud...Optimization of workload prediction based on map reduce frame work in a cloud...
Optimization of workload prediction based on map reduce frame work in a cloud...
 
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless  Sensor NetworksAn Efficient top- k Query Processing in Distributed Wireless  Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
 
Comparison of Different Methods for Fusion of Multimodal Medical Images
Comparison of Different Methods for Fusion of Multimodal Medical ImagesComparison of Different Methods for Fusion of Multimodal Medical Images
Comparison of Different Methods for Fusion of Multimodal Medical Images
 
Modeling and simulation of single phase transformer inrush current using neur...
Modeling and simulation of single phase transformer inrush current using neur...Modeling and simulation of single phase transformer inrush current using neur...
Modeling and simulation of single phase transformer inrush current using neur...
 
Simulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using VerilogSimulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using Verilog
 
Paper id 21201488
Paper id 21201488Paper id 21201488
Paper id 21201488
 
Hybrid PSO-SA algorithm for training a Neural Network for Classification
Hybrid PSO-SA algorithm for training a Neural Network for ClassificationHybrid PSO-SA algorithm for training a Neural Network for Classification
Hybrid PSO-SA algorithm for training a Neural Network for Classification
 
Paper id 21201483
Paper id 21201483Paper id 21201483
Paper id 21201483
 
Neural wavelet based hybrid model for short-term load forecasting
Neural wavelet based hybrid model for short-term load forecastingNeural wavelet based hybrid model for short-term load forecasting
Neural wavelet based hybrid model for short-term load forecasting
 
Bj4103381384
Bj4103381384Bj4103381384
Bj4103381384
 
Localization of Objects using Stochastic Tunneling
Localization of Objects using Stochastic TunnelingLocalization of Objects using Stochastic Tunneling
Localization of Objects using Stochastic Tunneling
 

Destacado

Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...ijcsa
 
Modeling cassava yield a response surface approach
Modeling cassava yield a response surface approachModeling cassava yield a response surface approach
Modeling cassava yield a response surface approachijcsa
 
Emerged computer interaction with humanity social computing
Emerged computer interaction with humanity social computingEmerged computer interaction with humanity social computing
Emerged computer interaction with humanity social computingijcsa
 
DATA MINING METHODOLOGIES TO STUDY STUDENT'S ACADEMIC PERFORMANCE USING THE...
DATA MINING METHODOLOGIES TO  STUDY STUDENT'S ACADEMIC  PERFORMANCE USING THE...DATA MINING METHODOLOGIES TO  STUDY STUDENT'S ACADEMIC  PERFORMANCE USING THE...
DATA MINING METHODOLOGIES TO STUDY STUDENT'S ACADEMIC PERFORMANCE USING THE...ijcsa
 
CHANGE DETECTION TECHNIQUES - A SUR V EY
CHANGE DETECTION TECHNIQUES - A  SUR V EY CHANGE DETECTION TECHNIQUES - A  SUR V EY
CHANGE DETECTION TECHNIQUES - A SUR V EY ijcsa
 
dynamic traffic grooming in elastic optical network made from a reserch paper
dynamic traffic grooming in elastic optical network made from a reserch paperdynamic traffic grooming in elastic optical network made from a reserch paper
dynamic traffic grooming in elastic optical network made from a reserch paperHamdard University
 
OFDM BASED ELASTIC OPTICAL NETWORK
OFDM BASED ELASTIC OPTICAL NETWORKOFDM BASED ELASTIC OPTICAL NETWORK
OFDM BASED ELASTIC OPTICAL NETWORKDeepika Baraskar
 
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaborationPlenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaborationOri Gerstel
 
Eced 2421 observation of centre
Eced 2421 observation of centreEced 2421 observation of centre
Eced 2421 observation of centreBeulah1707
 
ตอนที่ 2
ตอนที่ 2ตอนที่ 2
ตอนที่ 2wachiradej
 
ตอนที่ 1
ตอนที่ 1ตอนที่ 1
ตอนที่ 1wachiradej
 
Flexible optical networking with spectral or spatial super-channels
Flexible optical networking with spectral or spatial super-channelsFlexible optical networking with spectral or spatial super-channels
Flexible optical networking with spectral or spatial super-channelsCPqD
 
High capacity optical
High capacity opticalHigh capacity optical
High capacity opticalNisha Menon K
 
Business Success Coaching with Larissa Halls
Business Success Coaching with Larissa HallsBusiness Success Coaching with Larissa Halls
Business Success Coaching with Larissa HallsLarissaHalls
 
BIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHM
BIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHMBIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHM
BIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHMijcsa
 
B@ S Sports Bar
B@ S  Sports  BarB@ S  Sports  Bar
B@ S Sports BarTom Aikins
 
Surin Elephant Roundups
Surin  Elephant  RoundupsSurin  Elephant  Roundups
Surin Elephant RoundupsTom Aikins
 
I See Jesus In Your Eyes
I See Jesus In Your EyesI See Jesus In Your Eyes
I See Jesus In Your EyesSHINE Fest
 

Destacado (20)

Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...Using inhomogeneity of heterostructure and optimization of annealing to decre...
Using inhomogeneity of heterostructure and optimization of annealing to decre...
 
Modeling cassava yield a response surface approach
Modeling cassava yield a response surface approachModeling cassava yield a response surface approach
Modeling cassava yield a response surface approach
 
Emerged computer interaction with humanity social computing
Emerged computer interaction with humanity social computingEmerged computer interaction with humanity social computing
Emerged computer interaction with humanity social computing
 
DATA MINING METHODOLOGIES TO STUDY STUDENT'S ACADEMIC PERFORMANCE USING THE...
DATA MINING METHODOLOGIES TO  STUDY STUDENT'S ACADEMIC  PERFORMANCE USING THE...DATA MINING METHODOLOGIES TO  STUDY STUDENT'S ACADEMIC  PERFORMANCE USING THE...
DATA MINING METHODOLOGIES TO STUDY STUDENT'S ACADEMIC PERFORMANCE USING THE...
 
CHANGE DETECTION TECHNIQUES - A SUR V EY
CHANGE DETECTION TECHNIQUES - A  SUR V EY CHANGE DETECTION TECHNIQUES - A  SUR V EY
CHANGE DETECTION TECHNIQUES - A SUR V EY
 
dynamic traffic grooming in elastic optical network made from a reserch paper
dynamic traffic grooming in elastic optical network made from a reserch paperdynamic traffic grooming in elastic optical network made from a reserch paper
dynamic traffic grooming in elastic optical network made from a reserch paper
 
OFDM BASED ELASTIC OPTICAL NETWORK
OFDM BASED ELASTIC OPTICAL NETWORKOFDM BASED ELASTIC OPTICAL NETWORK
OFDM BASED ELASTIC OPTICAL NETWORK
 
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaborationPlenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
 
Eced 2421 observation of centre
Eced 2421 observation of centreEced 2421 observation of centre
Eced 2421 observation of centre
 
ตอนที่ 2
ตอนที่ 2ตอนที่ 2
ตอนที่ 2
 
ตอนที่ 1
ตอนที่ 1ตอนที่ 1
ตอนที่ 1
 
Flexible optical networking with spectral or spatial super-channels
Flexible optical networking with spectral or spatial super-channelsFlexible optical networking with spectral or spatial super-channels
Flexible optical networking with spectral or spatial super-channels
 
High capacity optical
High capacity opticalHigh capacity optical
High capacity optical
 
Business Success Coaching with Larissa Halls
Business Success Coaching with Larissa HallsBusiness Success Coaching with Larissa Halls
Business Success Coaching with Larissa Halls
 
BIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHM
BIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHMBIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHM
BIN PACKING PROBLEM: A LINEAR CONSTANTSPACE  -APPROXIMATION ALGORITHM
 
B@ S Sports Bar
B@ S  Sports  BarB@ S  Sports  Bar
B@ S Sports Bar
 
Surin Elephant Roundups
Surin  Elephant  RoundupsSurin  Elephant  Roundups
Surin Elephant Roundups
 
Cob 222
Cob 222Cob 222
Cob 222
 
Bar Su
Bar SuBar Su
Bar Su
 
I See Jesus In Your Eyes
I See Jesus In Your EyesI See Jesus In Your Eyes
I See Jesus In Your Eyes
 

Similar a Expert system design for elastic scattering neutrons optical model using bpnn

Optimal neural network models for wind speed prediction
Optimal neural network models for wind speed predictionOptimal neural network models for wind speed prediction
Optimal neural network models for wind speed predictionIAEME Publication
 
Optimal neural network models for wind speed prediction
Optimal neural network models for wind speed predictionOptimal neural network models for wind speed prediction
Optimal neural network models for wind speed predictionIAEME Publication
 
Efficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesEfficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesIRJET Journal
 
Machine Learning Algorithms for Image Classification of Hand Digits and Face ...
Machine Learning Algorithms for Image Classification of Hand Digits and Face ...Machine Learning Algorithms for Image Classification of Hand Digits and Face ...
Machine Learning Algorithms for Image Classification of Hand Digits and Face ...IRJET Journal
 
Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...
Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...
Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...IJECEIAES
 
Prediction of Extreme Wind Speed Using Artificial Neural Network Approach
Prediction of Extreme Wind Speed Using Artificial Neural  Network ApproachPrediction of Extreme Wind Speed Using Artificial Neural  Network Approach
Prediction of Extreme Wind Speed Using Artificial Neural Network ApproachScientific Review SR
 
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...ijsc
 
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...ijsc
 
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...ijsc
 
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Cemal Ardil
 
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...ijtsrd
 
Design of frequency selective surface comprising of dipoles using artificial ...
Design of frequency selective surface comprising of dipoles using artificial ...Design of frequency selective surface comprising of dipoles using artificial ...
Design of frequency selective surface comprising of dipoles using artificial ...IJAAS Team
 
Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra drboon
 
Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra drboon
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINEScseij
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linescseij
 
WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...
WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...
WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...Journal For Research
 

Similar a Expert system design for elastic scattering neutrons optical model using bpnn (20)

Optimal neural network models for wind speed prediction
Optimal neural network models for wind speed predictionOptimal neural network models for wind speed prediction
Optimal neural network models for wind speed prediction
 
Optimal neural network models for wind speed prediction
Optimal neural network models for wind speed predictionOptimal neural network models for wind speed prediction
Optimal neural network models for wind speed prediction
 
Efficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesEfficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of Trusses
 
Machine Learning Algorithms for Image Classification of Hand Digits and Face ...
Machine Learning Algorithms for Image Classification of Hand Digits and Face ...Machine Learning Algorithms for Image Classification of Hand Digits and Face ...
Machine Learning Algorithms for Image Classification of Hand Digits and Face ...
 
Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...
Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...
Reflectivity Parameter Extraction from RADAR Images Using Back Propagation Al...
 
Prediction of Extreme Wind Speed Using Artificial Neural Network Approach
Prediction of Extreme Wind Speed Using Artificial Neural  Network ApproachPrediction of Extreme Wind Speed Using Artificial Neural  Network Approach
Prediction of Extreme Wind Speed Using Artificial Neural Network Approach
 
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
 
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...
 
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
 
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
Levenberg marquardt-algorithm-for-karachi-stock-exchange-share-rates-forecast...
 
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
Mobile Network Coverage Determination at 900MHz for Abuja Rural Areas using A...
 
Hs3613611366
Hs3613611366Hs3613611366
Hs3613611366
 
Hs3613611366
Hs3613611366Hs3613611366
Hs3613611366
 
Design of frequency selective surface comprising of dipoles using artificial ...
Design of frequency selective surface comprising of dipoles using artificial ...Design of frequency selective surface comprising of dipoles using artificial ...
Design of frequency selective surface comprising of dipoles using artificial ...
 
Dx25751756
Dx25751756Dx25751756
Dx25751756
 
Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra
 
Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra Relevance Vector Machines for Earthquake Response Spectra
Relevance Vector Machines for Earthquake Response Spectra
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
 
WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...
WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...
WIND SPEED & POWER FORECASTING USING ARTIFICIAL NEURAL NETWORK (NARX) FOR NEW...
 

Último

2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...itnewsafrica
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesManik S Magar
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 

Último (20)

2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 

Expert system design for elastic scattering neutrons optical model using bpnn

  • 1. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 DOI:10.5121/ijcsa.2014.4 101 1 Expert System Design for Elastic Scattering Neutrons Optical Model using BPNN FADHIL A. ALI Department of Electrical and Computer Engineering- Oklahoma State University 202 Engineering South Stillwater, OK 74078 USA- Tel:405-714-1084 ABSTRACT In present paper, a proposed expert system is designed to obtain a trained formulae for the optical model parameters used in elastic scattering neutrons of light nuclei for (7 Li), at energy range between [(1) to (20)] MeV. A simple algorithm has used to design this expert system, while a multi-layer backward- propagation neural network (BPNN) is applied for training and testing the data used in this model. This group of formulae may get a simple expert system occurring from governing formulae model, and predicts the critical parameters usually resulted from the complicated computer coding methods. This expert system may use in nuclear reactions yields in both fission and fusion nature who gives more closely results to the real model. KEYWORDS Expert systems, optical model analysis, software engineering applications, neural networks 1. Introduction The scattering of a neutron by a nucleus is the result of a very complicated series of interactions of direct and indirect reactions between the neutron and the nucleons of the target nucleus. It rather surprising this can be represented only by a simple optical potential, which is called an optical model. The optical potential which was employed throughout this study is: V(r) = - Vr f(r, Rr, Ar) + i4Wd Ad f (r, Rd, Ad) + [ Vso f (r, Rso, Aso) ] ( )2 σ.l ………(1) Where: f( r, R, A) = [1+exp[(r-R)/A]]-1 …………………..…(2) Thus the expression (2) is Saxon-Woods form factor which is the first approximation that considers the optical potential to have a radial variation that follows the nuclear density quite closely [1]. The numerical values of these parameters are calculated for this investigation, which observed in equation (1), as follows: 1. Potential parameters: i- Real potential "Vr " ii- Volume – imaginary potential "Wv" iii- Surface – imaginary potential "Ws" iv- Spin – orbit potential "Vso" Where:"Wv" and "Ws" can be represented as "Wd".
  • 2. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 2 2. Radius parameters: i- Real radius "Rr" ii- Volume – imaginary radius" Rv" iii- Surface – imaginary radius" Rs" iv- Spin – orbit radius "Rso" Where:"Rv" and "Rs" can be represented as "Rd" 2. Diffuseness parameters: i- Real diffuseness "Ar" ii- Volume – imaginary diffuseness "Av" iii- Surface – imaginary diffuseness "As" iv- Spin – orbit diffuseness "Aso" Where:"Av" and "As" can be represented as "Ad". Also, the expression "( )2 " is the square of the pion Compton wavelength." [1, 2] 2. Proposed system 2.1 Data collection Perey & Perey Tables [3] have been used to collect the present optical model parameters data were available for 7 Li nucleus, by scattered neutrons at energy range (1-20) MeV. This study was extended to provide more data till the end of 2010. 2.2 Program Design (Coding) An expert system is a software package containing at least a knowledgebase, for reasoning unit and man–machine interfaces, it is used to create and design the present expert algorithm. Its code is written to solve the parameters in equations (1) & (2). The C# language is used in coding the expert system nuggets. Since the potential parameters vary linearly with energy [E] and nuclear asymmetry [(N-Z)/A]; where N is the number of neutrons and Z is the number of protons. Similarly, radius parameters and diffuseness parameters are vary with mass number (A1/3 ) and nuclear asymmetry; have analyzed them according to the same routine. This work have included those parameters by writing: [2] V = V0 + ϵE + Vi [(N-Z)/A]……..…………….…… (3) R = R0 + ɣ A1/3 + Ri [(N-Z)/A] ……….….………… (4) A = A0 + β A1/3 + Ai [(N-Z)/A] ……….…………… (5) Where; V0,Vi, R0, A0, ϵ, ɣ and β are the coefficients of the potential, radius and diffuseness parameters, respectively. The expert system rules written have a data-driven program, it has taken procedure in [4], where the facts are the data as (text files) stored in our knowledgebase engine. This engine decides which rule should be executed. Therefore, the present expert system automatically performs the optical model parameters, according to the following: • It has 3 facts being analyzed (potential, radius and diffuseness parameters) equations (3, 4, and 5) respectively.
  • 3. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 3 • It has 36 rules of dynamic programming procedure codes, which obey the coefficients (V0,Vi, R0, A0, ϵ, ɣ and β )and constraints (energy [E] ,nuclear asymmetry [(N-Z)/A] and mass number (A1/3 ) equation (1). 2.3 Algorithm Figure (1) is an algorithm of the present expert system, which shows available data, calculated the optical model parameters. Figure (1) shows the proposed expert system algorithm
  • 4. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 4 2.4 The Neural network For an artificial expert system ANN, reliability and applicability are the two most important factors to be taken into consideration even at the first stage of development. The backward propagation neural network (BPNN) model has been applied and reported well in industries [5]. The present parameters are tested using the available Perey & Perey data Tables [3]. The application of BPN, as shown in Figure 2, involves the calculation of the error between the network output vector and the target vector. Generally, let the BPN have the input vector x of length Nin; the network output vector y of length r; and the synaptic weight matrix W [5]. Figure (2) shows schematic diagram of the BPN Architecture Then a transfer function maps x into y by y= (WT x - θ) = ( ) ………………….. (6) Where θ is the bias that is used to mimic the threshold value of the axon, below which the neuron would not respond, the output net activity vector. For BPN with a supervised learning process, there exist two distinct computation passes. The first one is referred to as the ‘forward pass’ in which the synaptic weight matrix remains unchanged. In other words, the information inputs pass forward to the output. On the other hand, the second pass is called the ‘backward pass’ where the error is passing backwards starting from the outermost layer. Thus, through the recursive computation for each neuron the weight matrix undergoes modifications. Or, let the (n+1)th change of weight matrix be W(n+1). Then W (n+1) = W (n) + Δ W (n)……………….. (7) Where Δ W (n) is the weight adjustment matrix obtained from the last change."[5] "The learning mechanism of the backward propagation networks is a generalized delta rule that performs a gradient descent on the error space to minimize the total error between the calculated
  • 5. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 5 the desired one of an output layer during modification of connection weight. The least mean square error is carried out to find the values the connection weights that minimize the error function by resilient backward propagation method. During the process of learning the mean square error (MSE) is monitored the network instantaneously to achieve better understating of the network performance. The MSE can be calculated as; MSE= ( + ) ……………………. (8) Where, is the actual value, is the predicted value and is the number of values." [6] This study has collected a selective range of data provided by Perey & Perey Tables [3]; these data include 100 results of the elastic scattered neutrons of 7 Li for energy range (1-20) MeV. Among the collected data 75 selected randomly are used as training data, while the remaining 25 are regarded as tested data. Presently, optical model has three major parameters • Potential parameters: [Vr, Wv, Ws, Vso] • Radius parameters [Rr, Rv, Rs, Rso ] • Diffuseness parameters[ Ar, Av, As, Aso] Therefore, 12 parameters are used and represented as input layer of the neural network nodes (units). The output layer includes one neuron representing the ultimate moment capacity of the elastic scattered neutron beams of 7 Li for energy range (1-20) MeV. 3. Results and discussion 3.1 Training and testing of network The present network configuration has achieved after watching the performance of different configurations. Thus, learning parameters and processes were changed and repeated due to the same procedure. To avoid any over-training, a convergence criterion adopted by present work depending on whether the MSE of testing data has reached its minimum or not. The present neural network is trained, therefore the slow rate of learning near the end points of data range is avoided, the inputs and outputs data were scaled into an interval of [-1,1] by using the minimum and maximum method. The values of the present network parameters considered the following; • Number of hidden layers = 2 • Number of units in first hidden layer = 12 • Number of units in second hidden layer = 10 • Training cycles = 10000 • Initial weights = 0.3 • Learning rate = 0.3 • Momentum = 0.9 The average MSE for training and testing is 0.000287 and 0.00041 respectively. Figure 3 shows the convergence of network for both training represents as ultimate optical model parameters data, and testing represents as optical model data.
  • 6. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 6 Figure (3) shows the convergence of present network Table (1) shows the MSE values for each optical model parameters data in both training and testing respectively. Thus, table (2) shows an optical model parameters predicted values resulted by the proposed expert system. This will get new set formulae represented the optical model, and table (3) has shown the set formulae depending on the predicted values of the proposed expert system. Since nuclear asymmetry has fixed value for 7 Li, which equals to (0.14) as well as mass number 7, the parameters were not affected dynamically rather than energy range dependences. Table (1) shows the MSE values for each optical model parameters data Optical Parameters MSE of Training Data MSE of Testing Data Vr 0.00013 0.00015 Rr 0.00040 0.000143 Ar 0.00030 0.000409 Wv 0.000433 0.001436 Rv 0.000450 0.000108 Av 0.00080 0.000525 Ws 0.00090 0.000744 Rs 0.000006 0.000130 As 0.000150 0.000510 Vso 0.000194 0.003260 Rso 0.000093 0.000162 Aso 0.000310 0.000248
  • 7. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 7 Table (2) shows parameters predicted values Present Optical Model1 Predicted Values Potential Parameters Energy (MeV) Vr Wv Ws Vso 1 47.24 5.25 9.60 9.26 2 47.27 4.98 9.80 9.07 3 47.29 4.71 9.99 8.88 4 47.31 4.44 10.19 8.69 5 47.34 4.17 10.38 8.50 6 47.36 3.90 10.57 8.31 7 47.38 3.63 10.77 8.12 8 47.41 3.36 10.96 7.93 9 47.43 3.09 11.16 7.74 10 47.45 2.82 11.35 7.55 11 47.47 2.55 11.54 7.36 12 47.50 2.28 11.74 7.17 13 47.52 2.01 11.93 6.98 14 47.54 1.74 12.13 6.79 15 47.57 1.47 12.32 6.60 16 47.59 1.20 12.51 6.41 17 47.61 0.93 12.71 6.22 19 47.64 0.66 12.90 6.03 20 47.66 0.39 13.10 5.84 Present Optical Model2 Radius Parameters Rr Rv Rs Rso 1.27 1.26 1.21 1.11 Present Optical Model3 Diffuseness Parameters Ar Av As Aso 0.55 0.58 0.38 0.88
  • 8. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 8 Table (3) shows the new empirical set formulae of the present optical model compact expert system Optical Parameters Predicted empirical formula E: Energy (MeV), A: Mass Number and α : Nuclear Asymmetry (N-Z)/A Vr 47.24+0.023E-0.13α Rr 1.198+0.01A1/3 +0.38α Ar 0.5+0.036 A1/3 -0.164α Wv 5.58-0.27E-0.41α Rv 1.27-0.007 A1/3 +0.003α Av 0.09+0.195 A1/3 +0.8α Ws 5.66+0.194E+26.79α Rs 1.17+0.019 A1/3 As 0.69-2.25α Vso 8.7-0.19E+5.34α Rso 1.21-0.75α Aso 0.58+2.12α In compare the present formulae resulted with others, table (4) shows both present results and Dave et al [7] in order to give the global representation of this proposed expert system. Table 4 shows the empirical set formulae of Dave et al Optical Parameters Dave et al Formulae Vr 54.14-0.02E-23.48α Rr 1.508-0.013A Ar 0.5 Wv 11.32+0.237E-16.08α Rv 1.353 Av 0.2 Ws 11.32+0.237E-16.08α Rs 1.353 As 0.2 Vso 5.5 Rso 1.15 Aso 0.5 3.2 Discussions For the light nucleus of 7 Li, the nuclear asymmetry (N-Z)/A has value equals to 0.14, that might give both radius and diffuseness parameters fixed values depending on the empirical formulae as in table 2. These parameters are depended on mass number A and nuclear asymmetry α. Incident
  • 9. International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.1, February 2014 9 neutrons energy (1-20) MeV does not affect the values of such parameters. Potential parameters have functions depending on incident neutron energy and nuclear asymmetry. It can be seen that BPN gives the smallest MSE values for both training and testing data. And it is clear that all optical parameters are functions of energy, mass number and nuclear asymmetry. While it cannot be seen these factors in Dave et al formulae set. The 36 rules written in comparison to the predictions of the BPN results, and it give the expert system to show the ability for taken the map of decisions made. As fit all results that BPN gets strong and precise model for nuclear reactions used as in [8]. 4. Conclusion In this study, it is found that backward propagation neural network embedded model with 36 rules and 3 facts are effective way for analyze of an optical model for elastic scattered neutrons. The configuration of 12-10 nodes in the first and second hidden layer is proved to be very efficient for predicting the ultimate optical parameters. In addition, MSE has acceptable values in both training and testing data of the network. Mass number A1/3 , incident neutron energy E and nuclear asymmetry (N-Z)/A are found by predictions to have large influence on optical model parameters. Potential parameters (Vr,Wv,Ws and Vso) are found to be energy E and nuclear asymmetry dependent, while radius and diffuseness parameters (Rr,Ar,Rv, and Av) are mass number A and nuclear asymmetry dependent. Except for Rs which is mass number dependent only, similarly (As,Rso and Aso) are nuclear asymmetry dependent only. Acknowledgement I would like to thank Iraq Scholar Rescue Project/Scholar Rescue Fund / Institute of International Education group for any kind of help, adding to Oklahoma State University / school of ECEN. References [1] R.L. Cassola & R.D. Koshel, the neutron-nucleus interaction, IL NUOVO CIMENTO B (1965-1970), Volume 47, Number 2 ,1967 , pp.303-305 [2] P.E. Hodgson, Rep. Prog. Phys., 47, 1984, pp.613-654 [3] C.M. Perey & F.G. Perey, Atomic Data and Nuclear Data Tables, Volume 17, Issue 1, January 1976,pp. 1–101 [4] John Paul Mueller," C# Design and Development: Expert One on One", John Wiley & Sons, 2009 [5] Li Wenlung , Y.P. Tsaib & C.L. Chiu, The experimental study of the expert system for diagnosing unbalances by ANN and acoustic signals, Journal of Sound and Vibration, 272,2004,pp.69–83 [6] M. Riedmiller & H. Braun, A direct Adaptive Method for Faster Back propagation learning: The RPROP Algorithm, IEEE international Conference on Neural Networks, 1993, pp.586-591 [7] J.H. Dave & C.R. Gould, Optical model analysis of scattering of 7- to 15-MeV neutrons from 1-p shell nuclei, Physical Review C, 28, Issue 6, 1983,pp.2212-2221 [8] Subhra Rani Patra et al, Artificial Neural Network Model for Intermediate Heat Exchanger of Nuclear Reactor,International Journal of Computer applications (0975 - 8887) Volume 1 – No. 26, 2010