SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
SECTION 3.7

LINEAR EQUATIONS AND CURVE FITTING

In Problems 1-10 we first set up the linear system in the coefficients a , b,  that we get by
substituting each given point ( xi , yi ) into the desired interpolating polynomial equation
 y = a + bx + . Then we give the polynomial that results from solution of this linear system.

1.      y ( x ) = a + bx

        1 1   a   1 
        1 3  b  = 7         ⇒   a = − 2, b = 3   so    y ( x) = − 2 + 3 x
                   

2.      y ( x ) = a + bx

        1 −1  a     11 
        1 2   b  =  −10         ⇒   a = 4, b = −7     so    y ( x) = 4 − 7 x
                        

3.      y ( x ) = a + bx + cx 2

        1 0 0   a    3
        1 1 1   b  =  1         ⇒    a = 3, b = 0, c = −2    so     y ( x) = 3 − 2 x 2
                      
        1 2 4   c 
                      −5 
                          

4.      y ( x ) = a + bx + cx 2

        1 −1 1   a   1
        1 1 1   b  =  5         ⇒     a = 0, b = 2, c = 3    so     y ( x) = 2 x + 3 x 2
                      
        1 2 4   c 
                     16 
                          

5.      y ( x ) = a + bx + cx 2

        1 1 1   a    3
        1 2 4   b  = 3          ⇒   a = 5, b = −3, c = 1    so    y ( x) = 5 − 3 x + x 2
                      
        1 3 9   c 
                     5 
                          

6.      y ( x ) = a + bx + cx 2

        1 −1 1   a   −1 
        1 3 9  b  =  −13
                        
        1 5 25   c 
                     5 
                            
⇒     a = − 10, b = −7, c = 2      so        y ( x) = − 10 − 7 x + 2 x 2

7.      y ( x ) = a + bx + cx 2 + dx 3

        1 −1  1 −1  a      1
        1 0         b 
               0 0          0
                            =  
        1 1   1 1  c       1
                            
        1 2   4 8  d        −4 
                           4
             ⇒ a = 0, b = , c = 1, d = −
                           3
                                         4
                                         3
                                                          so      y( x) =
                                                                            1
                                                                            3
                                                                              ( 4 x + 3x 2 − 4 x3 )
8.      y ( x ) = a + bx + cx 2 + dx 3

        1 −1     1 −1  a    3
        1 0           b 
                  0 0        5 
                             =  
        1 1      1 1  c     7 
                             
        1 2      4 8  d     3
             ⇒     a = 5, b = 3, c = 0, d = −1        so        y ( x) = 5 + 3x − x3

9.      y ( x ) = a + bx + cx 2 + dx 3

        1 −2 4 −8   a   −2 
        1 −1 1 −1  b    
                    =  2 
        1 1 1 1   c    10 
                        
        1 2 4 8   d     26 
             ⇒     a = 4, b = 3, c = 2, d = 1        so        y ( x) = 4 + 3 x + 2 x 2 + x 3

10.     y ( x ) = a + bx + cx 2 + dx 3

        1 −1     1 −1  a     17 
        1 1            b 
                  1 1          −5 
                              =  
        1 2      4 8  c      3
                              
        1 3      9 27   d     −2 
             ⇒     a = 17, b = −5, c = 3, d = −2           so       y ( x) = 17 − 5 x + 3 x 2 − 2 x 3

In Problems 11-14 we first set up the linear system in the coefficients A, B, C that we get by
substituting each given point ( xi , yi ) into the circle equation Ax + By + C = − x 2 − y 2 (see
Eq. (9) in the text). Then we give the circle that results from solution of this linear system.
11.     Ax + By + C = − x 2 − y 2

         −1 −1 1  A   −2 
         6 6 1  B  =  −72           ⇒      A = −6, B = −4, C = −12
                          
         7 5 1 C 
                      −74 
                              
        x 2 + y 2 − 6 x − 4 y − 12 = 0

        ( x − 3)2 + ( y − 2)2 = 25       center (3, 2) and radius 5

12.     Ax + By + C = − x 2 − y 2

         3 −4 1  A     −25 
         5 10 1  B  =  −125           ⇒     A = 6, B = −8, C = −75
                           
         −9 12 1 C 
                       −225
                               
        x 2 + y 2 + 6 x − 8 y − 75 = 0

        ( x + 3)2 + ( y − 4)2 = 100      center (–3, 4) and radius 10

13.     Ax + By + C = − x 2 − y 2

         1 0 1  A      −1 
         0 −5 1  B  =  −25           ⇒     A = 4, B = 4, C = −5
                           
         −5 −4 1 C 
                       −41
                               
        x2 + y 2 + 4 x + 4 y − 5 = 0

        ( x + 2)2 + ( y + 2)2 = 13       center (–3, –2) and radius     13

14.     Ax + By + C = − x 2 − y 2

         0 0 1  A     0 
        10 0 1  B  =  −100           ⇒     A = −10, B = −24, C = 0
                           
         −7 7 1 C 
                      −98 
                               
        x 2 + y 2 − 10 x − 24 y = 0

        ( x − 5)2 + ( y − 12)2 = 169     center (5, 12) and radius 13

In Problems 15-18 we first set up the linear system in the coefficients A, B, C that we get by
substituting each given point ( xi , yi ) into the central conic equation Ax 2 + Bxy + Cy 2 = 1 (see
Eq. (10) in the text). Then we give the equation that results from solution of this linear system.
15.   Ax 2 + Bxy + Cy 2 = 1

       0 0 25  A     1
       25 0 0   B  = 1             ⇒       A=
                                                      1       1
                                                         , B=− , C=
                                                                    1
                                                25      25    25
       25 25 25  C 
                     1
                         
      x 2 − xy + y 2 = 25


16.   Ax 2 + Bxy + Cy 2 = 1

       0   0   25   A    1
       25  0        B  = 1
                0                         ⇒     A=
                                                        1
                                                           , B=−
                                                                  7
                                                                     , C=
                                                                          1
                                                     25       100      25
      100 100 100  C 
                         1
                             
      4 x 2 − 7 xy + 4 y 2 = 100


17.   Ax 2 + Bxy + Cy 2 = 1

       0   0   1   A    1
       1   0   0   B  = 1              ⇒     A = 1, B = −
                                                                  199
                                                                      , C =1
                                                            100
      100 100 100  C 
                        1
                            
      100 x 2 − 199 xy + 100 y 2 = 100


18.   Ax 2 + Bxy + Cy 2 = 1

       0 0 16   A   1
       9 0 0   B  = 1              ⇒
                                                   1
                                                 A= , B =−
                                                            481
                                                                , C=
                                                                      1
                                             9       3600      16
       25 25 25 C 
                    1
                        
      400 x 2 − 481xy + 225 y 2 = 3600
                                                                               B
19.   We substitute each of the two given points into the equation y = A +       .
                                                                               x
      1 1 
       1   A = 5             ⇒   A = 3, B = 2 so y = 3 +
                                                                     2
      1    B   4
       2                                                       x
          
B C
20.     We substitute each of the three given points into the equation y = Ax +          + .
                                                                                        x x2
                  
        1    1 1
                    A  2
              1 1  
                       B =  20
        2                                                                                   8 16
                                           ⇒        A = 10, B = 8, C = −16 so y = 10 x +      −
             2 4                                                                       x x2
                    C    41
              1 1        
        4         
        
             4 16 
                   

In Problems 21 and 22 we fit the sphere equation ( x − h )2 + ( y − k )2 + ( z − l ) 2 = r 2 in the expanded
form Ax + By + Cz + D = − x 2 − y 2 − z 2 that is analogous to Eq. (9) in the text (for a circle).

21.      Ax + By + Cz + D = − x 2 − y 2 − z 2

         4 6 15         1  A   −277 
        13 5 7          1  B        
                            =  −243             ⇒     A = −2, B = −4, C = −6, D = −155
         5 14 6         1  C   −257 
                                    
         5 5 −9         1  D   −131
        x 2 + y 2 + z 2 − 2 x − 4 y − 6 z − 155 = 0

        ( x − 1)2 + ( y − 2)2 + ( z − 3)2 = 169       center (1, 2, 3) and radius 13

22.      Ax + By + Cz + D = − x 2 − y 2 − z 2

         11 17 17 1  A       −699 
         29           B
               1 15 1         −1067 
                             =                         ⇒     A = −10, B = 14, C = −18, D = −521
         13   −1 33 1  C     −1259 
                                   
         −19 −13 1 1  D      −531 
        x 2 + y 2 + z 2 − 10 x + 14 y − 18 z − 521 = 0

        ( x − 5) 2 + ( y + 7)2 + ( z − 9) 2 = 676     center (5, –7, 9) and radius 26

In Problems 23-26 we first take t = 0 in 1970 to fit a quadratic polynomial P(t ) = a + bt + ct 2 .
Then we write the quadratic polynomial Q(T ) = P(T − 1970) that expresses the predicted
population in terms of the actual calendar year T.
23.     P(t ) = a + bt + ct 2

        1 0   0  a      49.061
        1 10 100  b  =  49.137 
                               
        1 20 400   c 
                       50.809 
                                   
        P(t ) = 49.061 − 0.0722 t + 0.00798 t 2

        Q(T ) = 31160.9 − 31.5134 T + 0.00798 T 2

24.     P(t ) = a + bt + ct 2

        1 0   0  a     56.590 
        1 10 100  b  = 58.867 
                              
        1 20 400   c 
                       59.669 
                                  
        P(t ) = 56.590 + 0.30145 t − 0.007375 t 2

        Q(T ) = − 29158.9 + 29.3589 T − 0.007375 T 2


25.     P(t ) = a + bt + ct 2

        1 0   0  a      62.813 
        1 10 100  b  = 75.367 
                               
        1 20 400   c 
                       85.446 
                                   
        P(t ) = 62.813 + 1.37915 t − 0.012375 t 2

        Q(T ) = − 50680.3 + 50.1367 T − 0.012375 T 2


26.     P(t ) = a + bt + ct 2

        1 0   0  a     34.838
        1 10 100  b  =  43.171
                              
        1 20 400   c 
                       52.786 
                                  
        P(t ) = 34.838 + 0.7692 t + 0.00641t 2

        Q(T ) = 23396.1 − 24.4862 T + 0.00641T 2


In Problems 27-30 we first take t = 0 in 1960 to fit a cubic polynomial P(t ) = a + bt + ct 2 + dt 3 .
Then we write the cubic polynomial Q(T ) = P(T − 1960) that expresses the predicted population
in terms of the actual calendar year T.
27.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a      44.678 
      1 10 100 1000   b           
                        =  49.061
      1 20 400 8000   c    49.137 
                                  
      1 30 900 27000   d  50.809 
      P(t ) = 44.678 + 0.850417 t − 0.05105 t 2 + 0.000983833 t 3

      Q(T ) = − 7.60554 × 106 + 11539.4 T − 5.83599 T 2 + 0.000983833 T 3

28.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a     51.619 
      1 10 100 1000   b          
                        = 56.590 
      1 20 400 8000   c   58.867 
                                 
      1 30 900 27000   d  59.669 
      P(t ) = 51.619 + 0.672433 t − 0.019565 t 2 + 0.000203167 t 3

      Q(T ) = − 1.60618 × 106 + 2418.82 T − 1.21419 T 2 + 0.000203167 T 3

29.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a      54.973 
      1 10 100 1000   b           
                        =  62.813
      1 20 400 8000   c   75.367 
                                  
      1 30 900 27000   d  85.446 
      P(t ) = 54.973 + 0.308667 t + 0.059515 t 2 − 0.00119817 t 3

      Q(T ) = 9.24972 ×106 − 14041.6 T + 7.10474 T 2 − 0.00119817 T 3

30.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a      28.053
      1 10 100 1000   b          
                        = 34.838 
      1 20 400 8000   c    43.171
                                 
      1 30 900 27000   d  52.786 
      P(t ) = 28.053 + 0.592233 t + 0.00907 t 2 − 0.0000443333 t 3

      Q(T ) = 367520 − 545.895 T + 0.26975 T 2 − 0.0000443333T 3
In Problems 31-34 we take t = 0 in 1950 to fit a quartic polynomial P(t ) = a + bt + ct 2 + dt 3 + et 4 .
Then we write the quartic polynomial Q(T ) = P(T − 1950) that expresses the predicted
population in terms of the actual calendar year T.

31.     P(t ) = a + bt + ct 2 + dt 3 + et 4 .

        1    0   0    0      0     a    39.478 
        1   10 100 1000            b 
                            10000        44.678 
                                                  
        1   20 400 8000 160000   c  =  49.061
                                               
        1   30 900 27000 810000   d     49.137 
        1
            40 1600 64000 2560000   e 
                                        50.809 
                                                   
        P(t ) = 39.478 + 0.209692 t + 0.0564163 t 2 − 0.00292992 t 3 + 0.0000391375 t 4

        Q(T ) = 5.87828 × 108 − 1.19444 ×106 T + 910.118 T 2 − 0.308202 T 3 + 0.0000391375 T 4

32.     P(t ) = a + bt + ct 2 + dt 3 + et 4 .

        1    0   0    0      0     a    44.461
        1   10 100 1000            b 
                            10000       51.619 
                                                 
        1   20 400 8000 160000   c  = 56.590 
                                              
        1   30 900 27000 810000   d    58.867 
        1
            40 1600 64000 2560000   e 
                                        59.669 
                                                  
        P(t ) = 44.461 + 0.7651t − 0.000489167 t 2 − 0.000516 t 3 + 7.19167 × 10−6 t 4

        Q(T ) = 1.07807 × 108 − 219185 T + 167.096 T 2 − 0.056611T 3 + 7.19167 ×10−6 T 4

33.     P(t ) = a + bt + ct 2 + dt 3 + et 4 .

        1    0   0    0      0     a    47.197 
        1   10 100 1000            b 
                            10000        54.973 
                                                  
        1   20 400 8000 160000   c  =  62.813 
                                               
        1   30 900 27000 810000   d    75.367 
        1
            40 1600 64000 2560000   e 
                                        85.446 
                                                   
        P(t ) = 47.197 + 1.22537 t − 0.0771921t 2 + 0.00373475 t 3 − 0.0000493292 t 4

        Q(T ) = − 7.41239 × 108 + 1.50598 × 106 T − 1147.37 T 2 + 0.388502 T 3 − 0.0000493292 T 4
34.   P(t ) = a + bt + ct 2 + dt 3 + et 4 .

      1    0   0    0      0     a    20.190 
      1   10 100 1000            b 
                          10000        28.053
                                                
      1   20 400 8000 160000   c  = 34.838 
                                             
      1   30 900 27000 810000   d     43.171
      1
          40 1600 64000 2560000   e 
                                      52.786 
                                                 
      P(t ) = 20.190 + 1.00003 t − 0.031775 t 2 + 0.00116067 t 3 − 0.00001205 t 4

      Q(T ) = − 1.8296 ×108 + 370762 T − 281.742 T 2 + 0.0951507 T 3 − 0.00001205 T 4

35.   Expansion of the determinant along the first row gives an equation of the form
       ay + bx 2 + cx + d = 0 that can be solved for y = Ax 2 + Bx + C. If the coordinates of any
      one of the three given points ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 ) are substituted in the first row, then
      the determinant has two identical rows and therefore vanishes.

36.   Expansion of the determinant along the first row gives

                  y       x2   x 1
                                       1 1 1    3 1 1  3 1 1 3 1 1
                  3       1    1 1
                                   = y 4 2 1−x 3 2 1+x 3 4 1− 3 4 2 =
                                              2

                  3       4    2 1
                                       9 3 1    7 3 1  7 9 1 7 9 3
                  7       9    3 1
                                              −2 y + 4 x 2 − 12 x + 14 = 0 .

      Hence y = 2 x 2 − 6 x + 7 is the parabola that interpolates the three given points.

37.   Expansion of the determinant along the first row gives an equation of the form
       a( x 2 + y 2 ) + bx + cy + d = 0, and we get the desired form of the equation of a circle upon
      division by a. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), and
       ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and
      therefore vanishes.

38.   Expansion of the determinant along the first row gives

       x2 + y 2       x   y 1
         25           3 −4 1
                              =
        125           5 10 1
        225           −9 12 1
3 −4 1      25 −4 1      25 3 1 25 3 −4
               = ( x + y ) 5 10 1 − x 125 10 1 + y 125 5 1 − 125 5 10
                       2   2


                           −9 12 1    225 12 1     225 −9 1 225 −9 12

               = 200( x 2 + y 2 ) + 1200 x − 1600 y − 15000 = 0.

      Division by 200 and completion of squares gives ( x + 3)2 + ( y − 4)2 = 100, so the circle has
      center (–3, 4) and radius 10.

39.   Expansion of the determinant along the first row gives an equation of the form
      ax 2 + bxy + cy 2 + d = 0, which can be written in the central conic form
      Ax 2 + Bxy + Cy 2 = 1 upon division by –d. If the coordinates of any one of the three given
      points ( x1 , y1 ), ( x2 , y2 ), and ( x3 , y3 ) are substituted in the first row, then the determinant
      has two identical rows and therefore vanishes.

40.   Expansion of the determinant along the first row gives

       x2   y2 1
            xy
      0 0 16 1
                 =
      9 0 0 1
      25 25 25 1

                   0 16 1     0 16 1    0 0 1 0 0 16
               = x 0 0 1 − xy 9 0 1 + y 9 0 1 − 9 0 0
                   2


                   25 25 1    25 25 1   25 25 1 25 25 25

               = 400 x 2 − 481xy + 225 y 2 − 3600 = 0.

Más contenido relacionado

La actualidad más candente

Appendex g
Appendex gAppendex g
Appendex g
swavicky
 
02[anal add math cd]
02[anal add math cd]02[anal add math cd]
02[anal add math cd]
ilya shafiqah
 
Pers & fung kuad abc
Pers & fung kuad abcPers & fung kuad abc
Pers & fung kuad abc
Arikha Nida
 
Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ragulan Dev
 

La actualidad más candente (17)

Solucionario c.t. álgebra 5°
Solucionario c.t.   álgebra 5°Solucionario c.t.   álgebra 5°
Solucionario c.t. álgebra 5°
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
Presentacion unidad 4
Presentacion unidad 4Presentacion unidad 4
Presentacion unidad 4
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Appendex g
Appendex gAppendex g
Appendex g
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Função afim resumo teórico e exercícios - celso brasil
Função afim   resumo teórico e exercícios - celso brasilFunção afim   resumo teórico e exercícios - celso brasil
Função afim resumo teórico e exercícios - celso brasil
 
02[anal add math cd]
02[anal add math cd]02[anal add math cd]
02[anal add math cd]
 
Pers & fung kuad abc
Pers & fung kuad abcPers & fung kuad abc
Pers & fung kuad abc
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and Continuity
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222
 
Satyabama niversity questions in vector
Satyabama niversity questions in vectorSatyabama niversity questions in vector
Satyabama niversity questions in vector
 
Test 1 f4 add maths
Test 1 f4 add mathsTest 1 f4 add maths
Test 1 f4 add maths
 
Notes and-formulae-mathematics
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
 

Similar a Sect3 7

งานนำเสนอ12
งานนำเสนอ12งานนำเสนอ12
งานนำเสนอ12
krookay2012
 
Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02
MasfuahFuah
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12
Aidia Propitious
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
Tarun Gehlot
 
Lecture quadratic equations good one
Lecture quadratic equations good oneLecture quadratic equations good one
Lecture quadratic equations good one
Hazel Joy Chong
 

Similar a Sect3 7 (20)

งานนำเสนอ12
งานนำเสนอ12งานนำเสนอ12
งานนำเสนอ12
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02
 
H 2004 2007
H 2004   2007H 2004   2007
H 2004 2007
 
V2.0
V2.0V2.0
V2.0
 
Yr.12 Transition Workshop 2012- 2013
Yr.12 Transition Workshop 2012- 2013Yr.12 Transition Workshop 2012- 2013
Yr.12 Transition Workshop 2012- 2013
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)
 
Pembahasan Soal Matematika Kelas 10 Semester 1
Pembahasan Soal Matematika Kelas 10 Semester 1Pembahasan Soal Matematika Kelas 10 Semester 1
Pembahasan Soal Matematika Kelas 10 Semester 1
 
JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12JAWAB UAN IPA 2006/2007 P12
JAWAB UAN IPA 2006/2007 P12
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Lecture quadratic equations good one
Lecture quadratic equations good oneLecture quadratic equations good one
Lecture quadratic equations good one
 
Maths04
Maths04Maths04
Maths04
 
Algebra
AlgebraAlgebra
Algebra
 
2º mat emática
2º mat emática2º mat emática
2º mat emática
 
Appendex
AppendexAppendex
Appendex
 
Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 

Más de inKFUPM (20)

Tb10
Tb10Tb10
Tb10
 
Tb18
Tb18Tb18
Tb18
 
Tb14
Tb14Tb14
Tb14
 
Tb13
Tb13Tb13
Tb13
 
Tb17
Tb17Tb17
Tb17
 
Tb16
Tb16Tb16
Tb16
 
Tb15
Tb15Tb15
Tb15
 
Tb12
Tb12Tb12
Tb12
 
Tb11
Tb11Tb11
Tb11
 
Tb09
Tb09Tb09
Tb09
 
Tb05
Tb05Tb05
Tb05
 
Tb07
Tb07Tb07
Tb07
 
Tb04
Tb04Tb04
Tb04
 
Tb02
Tb02Tb02
Tb02
 
Tb03
Tb03Tb03
Tb03
 
Tb06
Tb06Tb06
Tb06
 
Tb01
Tb01Tb01
Tb01
 
Tb08
Tb08Tb08
Tb08
 
21221
2122121221
21221
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 

Último

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Último (20)

Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 

Sect3 7

  • 1. SECTION 3.7 LINEAR EQUATIONS AND CURVE FITTING In Problems 1-10 we first set up the linear system in the coefficients a , b, that we get by substituting each given point ( xi , yi ) into the desired interpolating polynomial equation y = a + bx + . Then we give the polynomial that results from solution of this linear system. 1. y ( x ) = a + bx 1 1   a  1  1 3  b  = 7  ⇒ a = − 2, b = 3 so y ( x) = − 2 + 3 x      2. y ( x ) = a + bx 1 −1  a   11  1 2   b  =  −10  ⇒ a = 4, b = −7 so y ( x) = 4 − 7 x      3. y ( x ) = a + bx + cx 2 1 0 0   a  3 1 1 1   b  =  1  ⇒ a = 3, b = 0, c = −2 so y ( x) = 3 − 2 x 2      1 2 4   c      −5    4. y ( x ) = a + bx + cx 2 1 −1 1   a  1 1 1 1   b  =  5  ⇒ a = 0, b = 2, c = 3 so y ( x) = 2 x + 3 x 2      1 2 4   c     16    5. y ( x ) = a + bx + cx 2 1 1 1   a  3 1 2 4   b  = 3 ⇒ a = 5, b = −3, c = 1 so y ( x) = 5 − 3 x + x 2      1 3 9   c     5    6. y ( x ) = a + bx + cx 2 1 −1 1   a   −1  1 3 9  b  =  −13      1 5 25   c      5   
  • 2. a = − 10, b = −7, c = 2 so y ( x) = − 10 − 7 x + 2 x 2 7. y ( x ) = a + bx + cx 2 + dx 3 1 −1 1 −1  a  1 1 0  b  0 0   0  =   1 1 1 1  c  1      1 2 4 8  d   −4  4 ⇒ a = 0, b = , c = 1, d = − 3 4 3 so y( x) = 1 3 ( 4 x + 3x 2 − 4 x3 ) 8. y ( x ) = a + bx + cx 2 + dx 3 1 −1 1 −1  a  3 1 0  b  0 0   5   =   1 1 1 1  c 7       1 2 4 8  d  3 ⇒ a = 5, b = 3, c = 0, d = −1 so y ( x) = 5 + 3x − x3 9. y ( x ) = a + bx + cx 2 + dx 3 1 −2 4 −8   a   −2  1 −1 1 −1  b       =  2  1 1 1 1   c  10       1 2 4 8   d   26  ⇒ a = 4, b = 3, c = 2, d = 1 so y ( x) = 4 + 3 x + 2 x 2 + x 3 10. y ( x ) = a + bx + cx 2 + dx 3 1 −1 1 −1  a  17  1 1  b  1 1    −5   =   1 2 4 8  c  3      1 3 9 27   d   −2  ⇒ a = 17, b = −5, c = 3, d = −2 so y ( x) = 17 − 5 x + 3 x 2 − 2 x 3 In Problems 11-14 we first set up the linear system in the coefficients A, B, C that we get by substituting each given point ( xi , yi ) into the circle equation Ax + By + C = − x 2 − y 2 (see Eq. (9) in the text). Then we give the circle that results from solution of this linear system.
  • 3. 11. Ax + By + C = − x 2 − y 2  −1 −1 1  A   −2   6 6 1  B  =  −72  ⇒ A = −6, B = −4, C = −12       7 5 1 C      −74    x 2 + y 2 − 6 x − 4 y − 12 = 0 ( x − 3)2 + ( y − 2)2 = 25 center (3, 2) and radius 5 12. Ax + By + C = − x 2 − y 2  3 −4 1  A   −25   5 10 1  B  =  −125 ⇒ A = 6, B = −8, C = −75       −9 12 1 C      −225   x 2 + y 2 + 6 x − 8 y − 75 = 0 ( x + 3)2 + ( y − 4)2 = 100 center (–3, 4) and radius 10 13. Ax + By + C = − x 2 − y 2  1 0 1  A   −1   0 −5 1  B  =  −25  ⇒ A = 4, B = 4, C = −5       −5 −4 1 C      −41   x2 + y 2 + 4 x + 4 y − 5 = 0 ( x + 2)2 + ( y + 2)2 = 13 center (–3, –2) and radius 13 14. Ax + By + C = − x 2 − y 2  0 0 1  A   0  10 0 1  B  =  −100  ⇒ A = −10, B = −24, C = 0       −7 7 1 C      −98    x 2 + y 2 − 10 x − 24 y = 0 ( x − 5)2 + ( y − 12)2 = 169 center (5, 12) and radius 13 In Problems 15-18 we first set up the linear system in the coefficients A, B, C that we get by substituting each given point ( xi , yi ) into the central conic equation Ax 2 + Bxy + Cy 2 = 1 (see Eq. (10) in the text). Then we give the equation that results from solution of this linear system.
  • 4. 15. Ax 2 + Bxy + Cy 2 = 1  0 0 25  A  1  25 0 0   B  = 1 ⇒ A= 1 1 , B=− , C= 1     25 25 25  25 25 25  C     1  x 2 − xy + y 2 = 25 16. Ax 2 + Bxy + Cy 2 = 1  0 0 25   A  1  25 0   B  = 1 0   ⇒ A= 1 , B=− 7 , C= 1   25 100 25 100 100 100  C     1  4 x 2 − 7 xy + 4 y 2 = 100 17. Ax 2 + Bxy + Cy 2 = 1  0 0 1   A 1  1 0 0   B  = 1 ⇒ A = 1, B = − 199 , C =1     100 100 100 100  C     1  100 x 2 − 199 xy + 100 y 2 = 100 18. Ax 2 + Bxy + Cy 2 = 1  0 0 16   A  1  9 0 0   B  = 1 ⇒ 1 A= , B =− 481 , C= 1     9 3600 16  25 25 25 C     1  400 x 2 − 481xy + 225 y 2 = 3600 B 19. We substitute each of the two given points into the equation y = A + . x 1 1   1   A = 5  ⇒ A = 3, B = 2 so y = 3 + 2 1  B 4  2     x  
  • 5. B C 20. We substitute each of the three given points into the equation y = Ax + + . x x2   1 1 1    A 2 1 1   B =  20 2 8 16 ⇒ A = 10, B = 8, C = −16 so y = 10 x + −  2 4     x x2  C   41 1 1     4    4 16   In Problems 21 and 22 we fit the sphere equation ( x − h )2 + ( y − k )2 + ( z − l ) 2 = r 2 in the expanded form Ax + By + Cz + D = − x 2 − y 2 − z 2 that is analogous to Eq. (9) in the text (for a circle). 21. Ax + By + Cz + D = − x 2 − y 2 − z 2  4 6 15 1  A   −277  13 5 7 1  B        =  −243  ⇒ A = −2, B = −4, C = −6, D = −155  5 14 6 1  C   −257        5 5 −9 1  D   −131 x 2 + y 2 + z 2 − 2 x − 4 y − 6 z − 155 = 0 ( x − 1)2 + ( y − 2)2 + ( z − 3)2 = 169 center (1, 2, 3) and radius 13 22. Ax + By + Cz + D = − x 2 − y 2 − z 2  11 17 17 1  A   −699   29  B 1 15 1    −1067   =   ⇒ A = −10, B = 14, C = −18, D = −521  13 −1 33 1  C   −1259        −19 −13 1 1  D   −531  x 2 + y 2 + z 2 − 10 x + 14 y − 18 z − 521 = 0 ( x − 5) 2 + ( y + 7)2 + ( z − 9) 2 = 676 center (5, –7, 9) and radius 26 In Problems 23-26 we first take t = 0 in 1970 to fit a quadratic polynomial P(t ) = a + bt + ct 2 . Then we write the quadratic polynomial Q(T ) = P(T − 1970) that expresses the predicted population in terms of the actual calendar year T.
  • 6. 23. P(t ) = a + bt + ct 2 1 0 0  a   49.061 1 10 100  b  =  49.137       1 20 400   c     50.809    P(t ) = 49.061 − 0.0722 t + 0.00798 t 2 Q(T ) = 31160.9 − 31.5134 T + 0.00798 T 2 24. P(t ) = a + bt + ct 2 1 0 0  a  56.590  1 10 100  b  = 58.867       1 20 400   c     59.669    P(t ) = 56.590 + 0.30145 t − 0.007375 t 2 Q(T ) = − 29158.9 + 29.3589 T − 0.007375 T 2 25. P(t ) = a + bt + ct 2 1 0 0  a   62.813  1 10 100  b  = 75.367       1 20 400   c     85.446    P(t ) = 62.813 + 1.37915 t − 0.012375 t 2 Q(T ) = − 50680.3 + 50.1367 T − 0.012375 T 2 26. P(t ) = a + bt + ct 2 1 0 0  a  34.838 1 10 100  b  =  43.171      1 20 400   c     52.786    P(t ) = 34.838 + 0.7692 t + 0.00641t 2 Q(T ) = 23396.1 − 24.4862 T + 0.00641T 2 In Problems 27-30 we first take t = 0 in 1960 to fit a cubic polynomial P(t ) = a + bt + ct 2 + dt 3 . Then we write the cubic polynomial Q(T ) = P(T − 1960) that expresses the predicted population in terms of the actual calendar year T.
  • 7. 27. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a   44.678  1 10 100 1000   b        =  49.061 1 20 400 8000   c   49.137       1 30 900 27000   d  50.809  P(t ) = 44.678 + 0.850417 t − 0.05105 t 2 + 0.000983833 t 3 Q(T ) = − 7.60554 × 106 + 11539.4 T − 5.83599 T 2 + 0.000983833 T 3 28. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a  51.619  1 10 100 1000   b        = 56.590  1 20 400 8000   c  58.867       1 30 900 27000   d  59.669  P(t ) = 51.619 + 0.672433 t − 0.019565 t 2 + 0.000203167 t 3 Q(T ) = − 1.60618 × 106 + 2418.82 T − 1.21419 T 2 + 0.000203167 T 3 29. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a   54.973  1 10 100 1000   b        =  62.813 1 20 400 8000   c  75.367       1 30 900 27000   d  85.446  P(t ) = 54.973 + 0.308667 t + 0.059515 t 2 − 0.00119817 t 3 Q(T ) = 9.24972 ×106 − 14041.6 T + 7.10474 T 2 − 0.00119817 T 3 30. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a   28.053 1 10 100 1000   b        = 34.838  1 20 400 8000   c   43.171      1 30 900 27000   d  52.786  P(t ) = 28.053 + 0.592233 t + 0.00907 t 2 − 0.0000443333 t 3 Q(T ) = 367520 − 545.895 T + 0.26975 T 2 − 0.0000443333T 3
  • 8. In Problems 31-34 we take t = 0 in 1950 to fit a quartic polynomial P(t ) = a + bt + ct 2 + dt 3 + et 4 . Then we write the quartic polynomial Q(T ) = P(T − 1950) that expresses the predicted population in terms of the actual calendar year T. 31. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   39.478  1 10 100 1000  b  10000     44.678     1 20 400 8000 160000   c  =  49.061      1 30 900 27000 810000   d   49.137  1  40 1600 64000 2560000   e    50.809    P(t ) = 39.478 + 0.209692 t + 0.0564163 t 2 − 0.00292992 t 3 + 0.0000391375 t 4 Q(T ) = 5.87828 × 108 − 1.19444 ×106 T + 910.118 T 2 − 0.308202 T 3 + 0.0000391375 T 4 32. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   44.461 1 10 100 1000  b  10000    51.619     1 20 400 8000 160000   c  = 56.590       1 30 900 27000 810000   d  58.867  1  40 1600 64000 2560000   e    59.669    P(t ) = 44.461 + 0.7651t − 0.000489167 t 2 − 0.000516 t 3 + 7.19167 × 10−6 t 4 Q(T ) = 1.07807 × 108 − 219185 T + 167.096 T 2 − 0.056611T 3 + 7.19167 ×10−6 T 4 33. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   47.197  1 10 100 1000  b  10000     54.973     1 20 400 8000 160000   c  =  62.813       1 30 900 27000 810000   d  75.367  1  40 1600 64000 2560000   e    85.446    P(t ) = 47.197 + 1.22537 t − 0.0771921t 2 + 0.00373475 t 3 − 0.0000493292 t 4 Q(T ) = − 7.41239 × 108 + 1.50598 × 106 T − 1147.37 T 2 + 0.388502 T 3 − 0.0000493292 T 4
  • 9. 34. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   20.190  1 10 100 1000  b  10000     28.053    1 20 400 8000 160000   c  = 34.838       1 30 900 27000 810000   d   43.171 1  40 1600 64000 2560000   e    52.786    P(t ) = 20.190 + 1.00003 t − 0.031775 t 2 + 0.00116067 t 3 − 0.00001205 t 4 Q(T ) = − 1.8296 ×108 + 370762 T − 281.742 T 2 + 0.0951507 T 3 − 0.00001205 T 4 35. Expansion of the determinant along the first row gives an equation of the form ay + bx 2 + cx + d = 0 that can be solved for y = Ax 2 + Bx + C. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and therefore vanishes. 36. Expansion of the determinant along the first row gives y x2 x 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 = y 4 2 1−x 3 2 1+x 3 4 1− 3 4 2 = 2 3 4 2 1 9 3 1 7 3 1 7 9 1 7 9 3 7 9 3 1 −2 y + 4 x 2 − 12 x + 14 = 0 . Hence y = 2 x 2 − 6 x + 7 is the parabola that interpolates the three given points. 37. Expansion of the determinant along the first row gives an equation of the form a( x 2 + y 2 ) + bx + cy + d = 0, and we get the desired form of the equation of a circle upon division by a. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), and ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and therefore vanishes. 38. Expansion of the determinant along the first row gives x2 + y 2 x y 1 25 3 −4 1 = 125 5 10 1 225 −9 12 1
  • 10. 3 −4 1 25 −4 1 25 3 1 25 3 −4 = ( x + y ) 5 10 1 − x 125 10 1 + y 125 5 1 − 125 5 10 2 2 −9 12 1 225 12 1 225 −9 1 225 −9 12 = 200( x 2 + y 2 ) + 1200 x − 1600 y − 15000 = 0. Division by 200 and completion of squares gives ( x + 3)2 + ( y − 4)2 = 100, so the circle has center (–3, 4) and radius 10. 39. Expansion of the determinant along the first row gives an equation of the form ax 2 + bxy + cy 2 + d = 0, which can be written in the central conic form Ax 2 + Bxy + Cy 2 = 1 upon division by –d. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), and ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and therefore vanishes. 40. Expansion of the determinant along the first row gives x2 y2 1 xy 0 0 16 1 = 9 0 0 1 25 25 25 1 0 16 1 0 16 1 0 0 1 0 0 16 = x 0 0 1 − xy 9 0 1 + y 9 0 1 − 9 0 0 2 25 25 1 25 25 1 25 25 1 25 25 25 = 400 x 2 − 481xy + 225 y 2 − 3600 = 0.