SlideShare una empresa de Scribd logo
1 de 11
Descargar para leer sin conexión
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 2 Issue 4 || April. 2014 || PP-01-11
www.ijmsi.org 1 | P a g e
Relationships among determining matrices, partials of indices of
control systems matrices and systems coefficients for single–delay
linear neutral control systems.
Ukwu Chukwunenye
Department of Mathematics
University of Jos P.M.B 2084 Jos, Nigeria
ABSTRACT: This paper obtained various relationships among determining matrices, partial derivatives of
indices of control systems matrices of all orders, as well as their relationships with systems coefficients for
single – delay autonomous neutral linear differential systems through a sequence of lemmas, theorems and
corollaries and the exploitation of key facts about permutations.
The proofs were achieved using appropriate combinations of summation notations, multinomial
distribution, change of variables techniques and deft deployment of skills in the differentiation of matrix
functions of several variables.
KEYWORDS- Determining, Feasible, Generalized, Index, Systems.
I. INTRODUCTION
The importance of the relationships among determining matrices, indices of control systems matrices
and systems coefficient stems from the fact that these relationships pave the way for the determination of
Euclidean controllability and compactness of cores of Euclidean targets. This paper brings fresh perspectives to
bear on such relationships.
The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) below on
the interval 1[0, ],t using determining matrices depends on
(i) Obtaining workable expressions for the determining equations of the n n matrices for
1: 0, 0, 1,j t jh k   
(ii) Showing that = ( h),for j:
where
(iii) showing that is a linear combination of 0 1 1( ), ( ), , ( ); 0, , ( 1) .nQ s Q s Q s s h n h   
Our objective is to prosecute task (ii) and (iii). Tasks (i) has been prosecuted in Ukwu [1].
II. IDENTIFICATION OF WORK-BASED DOUBLE-DELAY AUTONOMOUS CONTROL
SYSTEM
We consider the single-delay autonomous neutral control system:
         
     
1 0 1 ; 0 (1)
, , 0 , 0 (2)
x t A x t h A x t A x t h B u t t
x t t t h h
      
   
 
where 1 0 1, ,A A A are n n constant matrices with real entries, B is an n m constant matrix with real
entries. The initial function  is in   , 0 , n
C h R , the space of continuous functions from [ , 0]h into the
real n-dimension Euclidean space,
n
R with norm defined by
 
 
, 0
sup
t h
t 
 
 , (the sup norm). The
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 2 | P a g e
control u is in the space   10, , n
L t R , the space of essentially bounded measurable functions taking  0 1, t
into
n
R with norm  

ess u t
t t
sup ( )
[ , ]0 1
.
Any control   10, , n
u L t R will be referred to as an admissible control. For full discussion on the spaces
1
and (or )p p
pC L L
, {1,2,..., }p  , see Chidume [2 and 3] and Royden [4].
1.2 Preliminaries on the partial derivatives
( , )
, 0,1,
k
k
X t
k






Let  t t, ,  0 1 . For fixed t, let  , t   satisfy the matrix differential equation:
       1 0 1, , , , (3)X t X h t A X t A X h t A
 
   
      
for 0 , , 0,1,...t t k h k      where    ;
0;, nI t
tX t 
 

See Chukwu [5 and 6], Hale [7] and Tadmore [8] for properties of   t,  . Of particular importance is the
fact that  ,t   is analytic on the intervals     t j h t j h j t j h1 1 11 01 1 0      , , , ,..., .
Any such       t j h t j h1 11 , is called a regular point of     t, . Let
 
 ,
k
t denote
 1,
k
k
t


 
 , the
th
k partial derivative of  1,t with respect to , where  is in
  t j h t j h j r1 11 01   , ; , ,..., , for some integer r such that  t r h1 1 0   .
Write
 
   1
1 1, ,
k k
t t

 


   .
Define:
 
   
    
  1 1 1 1 1 1 1
1
, , , , , (4)
for 0,1,...; 0,1,...; 0,
k k k
t jh t t t j h t t j h t
k j t jh
 
       
   
where
 
  1 1,
k
X t j h t

 and
 
  1 1 1, ,k
X t t j h t

 denote respectively the left and right hand limits
of
 
 1,
k
X t at   t j h1 . Hence:
 
 
 ( )
1 1 1
1
( 1)
1 1
( ) (5), lim ,k
k
X
t jh
t j h t jh
X t jh t t



 
    
 
 
 
 1
( )
1 1
1
( 1)
1 1
,lim( ) , (6)
k
k X
t jh
t jh t j h
tX t jh t



 
    
 
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 3 | P a g e
2.2 Definition, existence and uniqueness of Determining matrices for system (1)
Let ( )kQ s be then n n matrix function defined
by:        1 1 0 1 1 1 (7)k k k kQ s A Q s h A Q s AQ s h       
for 1,2, ; 0,k s  with initial conditions:
 0 0 (8)nQ I
  0; 0 or 0 (9)kQ s k s  
These initial conditions guarantee the unique solvability of (7). Cf.Gabasov and Kirillova [9].
III. MAIN RESULTS
The investigation in this section will be carried out through the following sequence of results.
3.1 Theorem relating
( )
1 1(( ), ) to ( )k
kX t jh t Q jh 
1
( )
1 1
For all nonnegative integers : 0, and for {0,1, ,}:
( , ) ( 1) ( ) (10)k k
k
j t jh k
X t jh t Q jh
  
   

Proof
( )
1 1 1 1 1 0If 0,then ( , ) ( , ) ( ) ( 1) ( ),with 0.k j k
kk X t jh t X t jh t A Q jh Q jh k          
1
( ) ( 1)
1 1 1 1 1
0 0
1
(1)
1 1 1 1 1
0 0
1 1 0 1 1
By lemma 2.7 of [1], (( ), ) (( ( ( )) ), ) ,
1 (( ), ) (( ( ( )) ), )
(( ( ) ), ) (( ( ( 1)) ),
j
k k r
i
r i
j
r
i
r i
X t jh t X t j r i h t A A
k X t jh t X t j r i h t A A
X t j r h t A X t j r h t


 

 
 
       
 
 
          
 
         
 
 
1 1
0
1 1 0 1 1 1 0 1
0 0
)
(( ( ) ), ) (( ( 1) ), )
j
r
r
j j
r r
r r
A A
X t j r h t A A X t j r h t A A


 
 
  
               

 
1
1 1 0 1 1 1 1 1
0 0
1 1
1
1
1 0 1 1 1 1
0 0
1 0 1
(( ( ) ), ) (( ( 1) ), )
(since (( ( 1) , ) 0, for )
(by vii of lemma 2.4 of [1] )
j j
r r
r r
j j
j r r j r r
r r
j r j
X t j r h t A A X t j r h t A A
X t j r h t r j
A A A A A A
A A A

 
 

  
   
 

 
               
     
        
  
 
 
1
1
0 1 1 1 1
1 0
1 1
( 1) 1 1
1 0 1 0 1 1 1 1
0 0
1
( 1)
1 0 1 0 1 1 1 1 0 1 0
0
(by change of variables)
( ) (
j j
r r j r r
r r
j j
j r j r r j r r
r r
j
j r j r r j r r
r
A A A A A
A A A A A A A A
A A A A A A A A A A A A

  
  
 
 
     
    
 

   
      

      
         
        
 
 

1
( 1)
1 1 1 1
0
) ( )
(by change of variables ( 1) and then by iv, lemma 2.4 of [1])
j
j r
r
A A Q jh
r j r

 


 
  


Therefore, the theorem is true for {0, 1}.k 
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 4 | P a g e
The rest of the proof is by induction on
.k
1
1
( 1) ( )
1 1 1 1 1
0 0
Assume that the theorem is valid for for some integer , and for all such that
t 0.
Then,
2 ,
(( ), ) (( ( ( )) ), ) ,
(by lemma 2.7 of [1]).
( 1) (
j
p p r
i
r i
p
p
p j
jh
k p
X t jh t X t j r i h t A A
Q


 
 
 
 
       
 
  
 
1
1
0 0
(by the induction hypothesis)[ ( )] )
j
r
i
r i
j r i h A A
 
 
  
 
 
1
1
1 0 1 1
0 0 0
1
1 1 1 1
0
( 1) ([ ( )] ) ( 1) ([ ] ) ([ 1] )
( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1])
j j
p r p r
p i p p
r i r
j
p r
p p
r
Q j r i h A A Q j r h A Q j r h A A
Q j r h Q j r h A A

 
  

   

 
              
 
       
  

1
0 1 1
0
1
1 1 1 1
0
( 1) ([ ] ) ([ 1] )
( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1])
Now we proceed to obtain the above sum by writing out the equivalent
exp ressions
j
p r
p p
r
j
p r
p p
r
Q j r h A Q j r h A A
Q j r h Q j r h A A




   

        
       


0 1 1 1 1
2
0 1 1 1 1 1 1
2
0 1 1
for each and then summing the equivalents:
0 ( ) ([ 1] ) ( ) ([ 1] )
1 ( ([ 1] ) ([ 2] ) ) ([ 1] ) ([ 2] ) )
2 ( ([ 2] ) ([ 3] ) )
p p p p
p p p p
p p p
r
r Q jh A Q j h A Q jh Q j h A
r Q j h A Q j h A A Q j h A Q j h A
r Q j h A Q j h A A Q
  
    

      
        
      2 2
1 1 1 1
3 3 3
0 1 1 1 1 1 1
([ 2] ) ([ 3] )
3 ( ([ 3] ) ([ 4] ) ) ([ 3] ) ([ 4] )
p
p p p p
j h A Q j h A
r Q j h A Q j h A A Q j h A Q j h A
   
    
  
        
1
0 1 1
1
1 1 1 1
0 1 1
1 1 1
The process continues up to , yielding
1 ( ([ ( 1)] ) ([ ] ) )
([ ( 1)] ) ([ ] )
( ([ ] ) ([ ( 1)] ) )
([ )] ) ([ ( 1)] )
j
p p
j j
p p
j
p p
j
p p
r j
r j Q j j h A Q j j h A A
Q j j h A Q j j h A
r j Q j j h A Q j j h A A
Q j j h A Q j j h A



   

   

      
    
     
    

1
1
j
Adding up the terms on the right-hand side for 0,1,2, ,r j  , it follows that only the first term
corresponding to 0r  and the last term corresponding to r j survive the summation; all other terms cancel
out. Therefore:
3.2 Corollary to theorem 3.1
 
     
( ) ( ) ( )
( )
1
1
Let
for where Then:
for
( , ) ( , ), . Let ( , ) ( , ) ( , )
(0, ), ( , ) ( , ).
, 1 , (11)
: 0, 0,1,...
T n k k k
k
k
k
kk
k
c c X t c c c c
c c
c t jh c Q jh B
j t jh k
        
    


 

   

  

   
  
R
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 5 | P a g e
Proof
The proof is immediate by noting that
 
     ( ) ( )
1
1 (by the preceeding theorem).
Hence
for
( , ) ( , ) . , 1 ,
: 0, 0,1,...
kkk T k
kc c X t B c t jh c Q jh B
j t jh k
    
      
  
The following sequence of lemmas is needed in the proof of theorem 3.6
3.3First Corollary to Eq. 9: Expressing the partials of
2
0
k
i i
i
A

 
 
 
 in permutation form
1
1 1( ),0( ),1( )
1
11 0 1
1
( , )
Let , , be any nonnegative integers, , fixed such that , and . Then
(a)
!( )!( )! if ,
(b)
k r
k r r r k j j r
k rk r
i ir r k j j r
i
v v
j r
r
v v P
j k r j k j r k r
A
r r k j j r A A j k

  


    

  




 
  
     
    





1
1 1( ),0( ),1( )
1
10 1
( , )
( )! !( )! if .j r
j r r j k r k r
j r
i ij k r k r
i
v v
v v P
A
r j k r k r A A j k

 

    

  


 
    
    



Proof
(a) And (b) follow from (9) with 2i  replaced by 1i   and noting that the superscript triples
, , ;r r k j j r   , ,r j k r k r   are all nonnegative and therefore feasible. Moreover they are
consistent with (9) as they sum to k +r and j +r in (a) and (b) respectively. This completes the proof.
From above we have the following relations:
1
1
1
1
11 0 1
1
11 0 1
1( ),0( ),1( )
1 1( ),0(
( , )
( , )
1
(12)
!( )!( )!
1
( )! !( )!
k r
j r
k r
k rk r
i i v vr r k j j r
i
j rj r
i i v vr j k r k r
i
r r k j j r
j r r j k
v v P
v v P
A A A
r r k j j r
A A A
r j k r k r

  

  




  


  

   
   


  
        
  
        
 





),1( )
(13)
r k r

Now sum over to get:{1, , 1} in (12)r j 
1
1 1( ),0( ),1( )
1 1
1 11 0 1
1
1 ( , )
1
!( )!( )!
(14)k r
k r r r k j j r
k rk rj
i ir r k j j r
r i
j
r
v v
v v P
A
r r k j j r
A A

  

    

  
 

 
  
        

 
 

Now sum over in (13) to get{1, , 1}, :r k 
1
1
1 1
1 11 0 1
1
1 1( ),0( ),1( )( , )
1
( )! !( )!
(15)j r
j r
j rj rk
i ir j k r k r
r i
k
v v
r r j k r k rv v P
A
r j k r k r
A A

  



  
 

    
  
        

 
 

Therefore, we have proved the following lemma.
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 6 | P a g e
3.4 Lemma expressing components of ( )kQ jh as a sum of partial derivatives of
2
0
k
i i
i
A

 
 
 

1
1
1 1
1 11 0 1
1
1 1( ),0( ),1( )( , )
Let , , be any nonnegative integers, and fixed such that and , 0.Then:
1
(a)
!( )!( )!
;k r
k r
k rk rj
i ir r k j j r
r i
j
r r r k j j r
v v
v v P
j k r j k j r k r j k
A
r r k j j r
A A k

  



  
 

    
   
  
        
 
 
 
 (16)j
1
1
1 1
1 11 0 1
1
1 1( ),0( ),1( )( , )
1
(b)
( )! !( )!
; (17)j r
j r
j rj rk
i ir j k r k r
r i
k
r r j k r k r
v v
v v P
A
r j k r k r
A A j k

  



  
 

    
  
        
 
 
 

 
1
1 1( ),0( )
1
1 0( ),1( )
0
11 0
1
00 1
1,11 1
( , )
( , )
1
(c) (18)
! !
1
(d) , if (19)
( )! !
1
(e)
( )! !
j k
j k j k
k
k k j j
j kj k
i ij k
i
kk
i ik j j
i
j
i ij k j
i
v v
v v P
v v
v v P
A A A
j k
A A A k j
k j j
A
j k k

 

 

 

 






 


  
    
  
      

  
 
 





1
1 1( ),1( )( , )
, if (20)j
k
j
j k k
v v
v v P
A A j k
 

  
  


Proof
Analogous to the proof of corollary 3.6.9 of [10], the superscripts are all feasible and consistent with (9);
consequently the lemma is proved. Note that min{ , } 2j k  for explicit computational feasibility of (a) and (b).
Further, the following result is needed to achieve our objective:
3.5 Lemma relating
1 2
1
{ , } 1
1 2 1 2to ; , { 1,0,1},
k k
i i i i
i i i i
A A i i i i 
 
   
     
  
  in triple
summations
1
2 2
1 0 1
1 1
1
1
1 1
), 0( ),1(2 2
0 1
0
2
2 2
0 0 ( , )
( )
1
(a)
,
0
k k
i i i i
r j k r k j r
k
kv v
i i
r j k r k j r
A A
k j
k
A
j r v v P
kA
 

  

   


 
   



  
  


   
   
   
   
 
  

 
 
 

 

1
2 2
1 0 1
1 1
1
1), 0( ),1(2 2
1 1
00 1
2
2 2
, 1
0 0 ( , ) 0( )
(b)
k k
i i i i
r j k r k j r
k
kv v
r j k r k j r
A A
i i
k j
k
A A k
j r v v P
 

  


   


   

 

  
   
   
   
   
   
 
  

 
 
 


 
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 7 | P a g e
0
2 2
1 0 1
1 1
1
0
{ 1,1} 1
0
), 0( ),1(2 2
1
0
2
2
2
, 1
0 ( , ) 0( )
(c) i i i i
r j k r k j r
k
kv v
i i
j
r j k r k j r
k k
A A
k
k j
A A k
r v v P
 

  

   


  

   



   
  
   
      
   
 
  
 
 

 



Proof
1
1
First, note from theorem 3.2 of [11] and theorem 3.6.8 of [10], that
k
i i
i
A

 
 
 
 equals the right-hand side
without the evaluations at 0iu  , if ' 2'i  is replaced by ' 1'i   and j is replaced by j .
1
1 1
1
0
1
The proof is immediate, observing that ' 0 ' annihilates all the terms containing
,thereby yielding the equivalent expression for ;
(b) ' 0 ' zeroes out all the terms containin
(a)
i i
i
k
A A

 



 
 
 


1 1
0 0 0
{ 1,1}
1
0
g ,thereby yielding the equivalent
expression for ;
(c) ' 0 ' eliminates all the terms containing ,thereby yielding the equivalent
expression for .
i
i i
i
i i
k
k
A
A
A
A


 

 
 

 
 
 

 
  
 


In the sequel, set
1
1
i i
i
F A

 
By the generalized Cayley-Hamilton theorem,
1 1
0 1
( ) ,
kn
n l
k i i
k i
F A  


 
 
  
 
 
1 0 1where the ( ) arepolynomials of degree with respect to the ; ( , , ).k is n l k s        
The stage is now set to prove the equality of ranks of some concatenated determining matrices for finite and
infinite horizons, using lemmas 3.4, 3.5 and the generalized Cayley-Hamilton theorem.
3.6 Theorem on Rank Equality of some concatenated determining matrices
Let:
 1 0 1 1 1
ˆ ( ) ( ) , ( ) , , ( ) : [0, ), 0, , ,( 1) , (21)n nQ t Q s B Q s B Q s B s t s h n h    
where ( )kQ s is a determining matrix for the free part of (1) and is defined by (7)
Then:
1 1
ˆ ˆrank ( ) rank ( ) (22)nQ t Q t
      
In the sequel, set
1
1
i i
i
F A

 
Generalized Cayley-Hamilton theorem, Lew (1966, pp. 650-3):
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 8 | P a g e
1 1
0 1
( ) ,
kn
n l
k i i
k i
F A  


 
 
  
 
 
1 0 1where the ( ) arepolynomials of degree with respect to the ; ( , , ).k is n l k s        
By lemma 3.4:
1 1
1 11( ),0( )
0
1 { 1,1}1 0 0 1
1 1
1 11 0 1
( , ) ( , )
1 1
(23)
! ! ( )! !
1
( )! !( )!
j k j
jj k j k
jj kj k j
i i i ij k j k k
i i
j rj rk
i ir j k r k r
r i
v v v v
v v P v v P
A A
j k j k k
A
r j k r k r
A A A A
 
   

  

 


  

  
 
 
   
          
  
         
 
 
 
 
  1
11( ),1( ) 1( ),0( ),1( )
1
1 ( , )
( ); (24)
j r
j rj k k r j k r k r
k
v v
r
k
v v P
A A
Q jh j k

     

 

 
  

11
1 11( ),0( )
0 1
1 01 0 0 1
1 1
1 11 0 1
( , ) ( , )
Also:
1 1
(25)
! ! ( )! !
1
!( )!( )!
kj k
j k j k k
j k kj k k
i i i ij k k j j
i i
k rk rj
i ir r k j j r
r i
v vv v
v v P v v
A A
j k k j j
A
r r k j j r
A A A A
 
   

  

 


 

  
 
 
    
          
  
         
 
 
 
 
  1
10( ),1( ) 1( ),0( ),1( )
1
1 ( , )
( ); (26)
k r
k j j k r r r k j j r
j
v
r
k
v
P v v P
A A
Q jh k j

     

 

 
  

Hence for every non-negative integer ,p we have:
1
0
11 0
[ ]
{ 1,1}0 1
1 1
[ ]
1 11 0 1
1
( ) (27)
!( )!
1
( [ ])![ ]!
1
( [ ])! !( )!
n p jn p j
n p i ij n p
i
j
j
i ij n p n p
i
j rj rn p
i ir j n p r n p r
r i
v
Q jh A
j n p
A
j n p n p
A
r j n p r n p r
A

 

 

  
  
 

  
 
 
    
 
  
      
 
  
      
  
           



 
1
1
1
1
1 11( ),0( ) 1( [ ]),1( )
1 1( [ ]),0( ),1( )
( , ) ( , )
( , )
, if , (28)
jj n p
j r
v v
n p
r
j n p jj n p j n p n p
j r r j n p r n p r
v
v v
v v P v v P
v v P
A A A
A A j n p
 

 

       
      
 


  
 
 
 

 

Relationships among determining matrices, partials of indices of…
www.ijmsi.org 9 | P a g e
0 11 1
( )
!( )! ( )! !1 01 0 0 1
1 11
( !( )!( )!1 11 0 1
(29)
n p j n p
n p j j
Q jh A An p j n p n p j ji i i ij n p n p j ji i
n p r
j n p r
Ai ir n p j j rr r n p j j r rr i
Av
 
   

  
   
   
   
   
      
 
 
 
 
  
  
  
           
 
              

1
1
1
1 1( ),0( ),1( )
,1( ),0(
( , )
)1 ) 0( ),1( )
1 1( , ) (
1
if . (30),
j
r
k r
k r r r n p j j r
v v jj n p
v v
v v P
P P n p j j
A A Av v vj n p kv vj n p
n p jA A



     


  
 
  
   


 


Now, using the generalized Cayley-Hamilton theorem in the same spirit as in theorem 3.6, we can prove that
1 1
ˆ ˆrank[ ( )] rank[ ( )].kQ t Q t  Indeed, by the generalized Cayley- Hamilton theorem:
0 1 0 1 1 1
1 0 1 0 0 0
1 1 1
1 0 1
( ) , ( ) (31)
( ) (32)
for some polynomials ( ), ( ), ( ) of d
n p j k n p kn n
i i k i i i i k i i
i k i i k i
n p r kn
i i k i i
i k i
k k k
A A A A
A A
       
   
     
   
     
  
  
       
        
       
   
   
   
     
  
egrees , ,
respectively, if .
n p j k n p k n p r k
n p j
       
 
Hence:
1 0
0 11 0
1 1
0 00 1
1 1
0 1 11 0 1
( )
1
( )
!( )!
1
( )
( )! !
1
( )
( !( )!( )!
n p
kn p jn
k i ij n p
k i
kn pn
k i in p j j
k i
kn p rjn
k i ir r n p j j r
k r i
Q jh
A
j n p
A
n p j j
A
r r n p j j r
  
 
  
 
  
  

 

 

 
 
 
   
  
  
      
  
       
  
          
 
 
 
1
(33)
if .n p j

 

By lemma3.5,
Relationships among determining matrices, partials of indices of…
www.ijmsi.org 10 | P a g e
1 1
2 2
0 1 0
0
1
1 1( ),0( ),1(2 2 )
2
2
1
2
0
00
( , , )
( )
1
!( )!
( )
*
k
n p j
j n p
k j r
k
k
n p
r j k
k r j k r k j r
k j
r
v v
k
j
r
v v P
j n p
A A
Q jh
 
   



 

 
 

 
    
 
  



 



  
  
  
  
  
  
  
  
  
      



 
   






1 10 1
1
1
2 2
0 0
1
1
1 )
2
0
0
2
2
( ),0( ),1(2 2
)1
1
( )
( )! !
1
( !(
)
( 0
(34)
, ,
n p
kn p j j
n
n
k j r
k
k
r j k
k
j
r k
k j
r
v v
r j k r k j r
A An p j j
r
vv P

   




 


 


 



 
  
   
 

 

 

  
  
  
  
  
  
  
  
  

 

  




   


1 1
1 0 1
11
2 2
0
0 1
2
0 0
1
2
2
1 )
( )
( ),0( ),1(2 2
)!( )!
1( , )
if .
*k
n p r
r r n p j j r
jn
k j r
k r
r j k
k
j r
k
k j
r
v v
k r j k r k j r
r n p j j r
A A
v v P
n p j
   
  

 
   


 
 
 
 
 
  
    
      

 

 
 
 
 
 
 
 
 
 
 
 

  
 


   


Relationships among determining matrices, partials of indices of…
www.ijmsi.org 11 | P a g e
1 1
1 )
1 0
( ),0( ),1(2 2
1
1
2 2
0
0
1
1
2
2 2
00
0
( , )
( )
1
( )!
1
( )
!( )!
*
n p j
n p kj n p
r j k r k j r
k
n
k j r
k
k
r j k
v v
k j
k
rj
r
A A
v v P
n p j j
Q jh
j n p

  
 


 
 

   
 
 
 
   
 

 





 


  
 
 
 
 
 
 
 
 
 
 
 
  


   
 

 





1 1
0 1
1
1
2 2
0
1
0
1
1 )
2
22
00
( ),0( ),1(2 21
!
0
1
( !( )!( )!
(
( , , )
) (35)
n p
n p j j
n p r
r
k
k j r
k
n
r j k
k
v v
k j
k
rj
r
r j k r k j rk
A A
r r n p j j r
v v P
  

 
 
  

 
 

 
 
 
 
 
 






   

 


     

 
 
 
 
 
 
 
 
  



 



   


1
1 1
0
0 1
1
2 2
0
1
1
,1 1 )
2
2 2
00
( ),0( ),1(2 2
( )
( )
if .
*
n
k
k
r n p j j r
k
k j r
j
r j k
r
v v
vk
k j
k
rj
r
r j k r k j r
A A
v P
n p j
   




   
 
 
 
 
 
 




   


 
 
 
 
 
 
 
 
 
  
 


 




   

1
0 1 2
0 1 2 1 1
It follows immediately that the sum of the powers of , and
, and [ ], 0
in every permutation involving
ˆ ˆis at most 1.Consequently rank ( )] [ ( ) and for
every integer 0,lead
rankn p n
A A A
A A A tn Q t Q t
p
 


1 1[ ˆ ˆing to the conclusion that rank ( )] [ ( )],as desired.rankn p nQ t Q t 
IV CONCLUSION
This paper exploited the results in [1] to establish appropriate and relevant relationships among determining
matrices, indices of control systems matrices and systems coefficients with respect to single-delay autonomous linear neutral
control systems. In the sequel the paper used these relationships in conjunction with the generalized Caley-Hamilton theorem
to prove that the associated controllability matrices for finite and infinite horizons have the same rank. The utility of these
results can be appreciated in the proof of necessary and sufficient conditions for the Euclidean controllability of system (1)
on the intervals 1 1
0[0, ], this;tt    will be discussed in a subsequent paper.
REFERENCES
[1] Ukwu, C. (2014h). The structure of determining matrices for single-delay autonomous linear neutral control systems.International
Journal of Mathematics and Statistics Inventions (IJMSI), Volume 2, Issue 3,March 2014, pp.31-47.
[2] Chidume, C. An Introduction to Metric Spaces (The Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy,
2003).
[3] Chidume, C. Applicable Functional Analysis (The Abdus Salam,International Centre for Theoretical Physics, Trieste, Italy, 2007).
[4] Royden, H.L.Real Analysis, 3rd
Ed. (Macmillan Publishing Co., New York, 1988).
[5] Chukwu, E.N.Stability and Time-optimal control of hereditary systems (Academic Press, New York, 1992).
[6] Chukwu, E.N. Differential Models and Neutral Systems for Controlling the Wealth of Nations. Series on Advances in Mathematics
for Applied Sciences (Book 54), World Scientific Pub Co Inc; 1st
edition, (2001).
[7] Hale, J. K., Theory of functional differential equations., Applied Mathematical Science, Vol. 3, Springer-Verlag, New York,(1977).
[8] Tadmore, G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous
controls. J. Differential equations, Vol. 51, No. 2, (1984) 151-181.
[9] Gabasov, R. and Kirillova, F., The qualitative theory of optimal processes (Marcel Dekker Inc., New York, 1976).
[10] Ukwu, C. On Determining Matrices,Controllability and Cores of Targets of Certain Classes of Autonomous Functional
Differential Systems with Software Development and Implementation.Doctor of Philosophy Thesis, UNIJOS(In progress),(2013a).
[11] Ukwu, C. (2014g). The structure of determining matrices for a class of double-delay control systems.International Journal of
Mathematics and Statistics Inventions (IJMSI)Volume 2, Issue 3, March 2014, pp. 14-30.

Más contenido relacionado

La actualidad más candente

Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...Shu Tanaka
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
Oscillation results for second order nonlinear neutral delay dynamic equation...
Oscillation results for second order nonlinear neutral delay dynamic equation...Oscillation results for second order nonlinear neutral delay dynamic equation...
Oscillation results for second order nonlinear neutral delay dynamic equation...inventionjournals
 
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...Shu Tanaka
 
A03401001005
A03401001005A03401001005
A03401001005theijes
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsAI Publications
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESurender Singh
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...IJRTEMJOURNAL
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671MatcontYu Zhang
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...ijtsrd
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqwRene Kotze
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur
 
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS ijitjournal
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Rene Kotze
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...ijfls
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theoriesSolo Hermelin
 

La actualidad más candente (19)

Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Oscillation results for second order nonlinear neutral delay dynamic equation...
Oscillation results for second order nonlinear neutral delay dynamic equation...Oscillation results for second order nonlinear neutral delay dynamic equation...
Oscillation results for second order nonlinear neutral delay dynamic equation...
 
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
 
A03401001005
A03401001005A03401001005
A03401001005
 
C02402023032
C02402023032C02402023032
C02402023032
 
Stability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problemsStability analysis for nonlinear impulsive optimal control problems
Stability analysis for nonlinear impulsive optimal control problems
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
Ma2002 1.12 rm
Ma2002 1.12 rmMa2002 1.12 rm
Ma2002 1.12 rm
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD Thesis
 
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 

Similar a A02402001011

Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricKomal Goyal
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)paperpublications3
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletScientific Review SR
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceKomal Goyal
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...IOSR Journals
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...ijtsrd
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationTELKOMNIKA JOURNAL
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditionsresearchinventy
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...Wireilla
 
On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -FunctionsIJMER
 

Similar a A02402001011 (20)

F023064072
F023064072F023064072
F023064072
 
D023031047
D023031047D023031047
D023031047
 
D023031047
D023031047D023031047
D023031047
 
D025030035
D025030035D025030035
D025030035
 
Stability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-MetricStability of Iteration for Some General Operators in b-Metric
Stability of Iteration for Some General Operators in b-Metric
 
D028036046
D028036046D028036046
D028036046
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
E028047054
E028047054E028047054
E028047054
 
B02404014
B02404014B02404014
B02404014
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed space
 
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
Research on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with ApplicationResearch on 4-dimensional Systems without Equilibria with Application
Research on 4-dimensional Systems without Equilibria with Application
 
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive ConditionsOn Convergence of Jungck Type Iteration for Certain Contractive Conditions
On Convergence of Jungck Type Iteration for Certain Contractive Conditions
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
 

Último

The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 

Último (20)

The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 

A02402001011

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 2 Issue 4 || April. 2014 || PP-01-11 www.ijmsi.org 1 | P a g e Relationships among determining matrices, partials of indices of control systems matrices and systems coefficients for single–delay linear neutral control systems. Ukwu Chukwunenye Department of Mathematics University of Jos P.M.B 2084 Jos, Nigeria ABSTRACT: This paper obtained various relationships among determining matrices, partial derivatives of indices of control systems matrices of all orders, as well as their relationships with systems coefficients for single – delay autonomous neutral linear differential systems through a sequence of lemmas, theorems and corollaries and the exploitation of key facts about permutations. The proofs were achieved using appropriate combinations of summation notations, multinomial distribution, change of variables techniques and deft deployment of skills in the differentiation of matrix functions of several variables. KEYWORDS- Determining, Feasible, Generalized, Index, Systems. I. INTRODUCTION The importance of the relationships among determining matrices, indices of control systems matrices and systems coefficient stems from the fact that these relationships pave the way for the determination of Euclidean controllability and compactness of cores of Euclidean targets. This paper brings fresh perspectives to bear on such relationships. The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) below on the interval 1[0, ],t using determining matrices depends on (i) Obtaining workable expressions for the determining equations of the n n matrices for 1: 0, 0, 1,j t jh k    (ii) Showing that = ( h),for j: where (iii) showing that is a linear combination of 0 1 1( ), ( ), , ( ); 0, , ( 1) .nQ s Q s Q s s h n h    Our objective is to prosecute task (ii) and (iii). Tasks (i) has been prosecuted in Ukwu [1]. II. IDENTIFICATION OF WORK-BASED DOUBLE-DELAY AUTONOMOUS CONTROL SYSTEM We consider the single-delay autonomous neutral control system:                 1 0 1 ; 0 (1) , , 0 , 0 (2) x t A x t h A x t A x t h B u t t x t t t h h              where 1 0 1, ,A A A are n n constant matrices with real entries, B is an n m constant matrix with real entries. The initial function  is in   , 0 , n C h R , the space of continuous functions from [ , 0]h into the real n-dimension Euclidean space, n R with norm defined by     , 0 sup t h t     , (the sup norm). The
  • 2. Relationships among determining matrices, partials of indices of… www.ijmsi.org 2 | P a g e control u is in the space   10, , n L t R , the space of essentially bounded measurable functions taking  0 1, t into n R with norm    ess u t t t sup ( ) [ , ]0 1 . Any control   10, , n u L t R will be referred to as an admissible control. For full discussion on the spaces 1 and (or )p p pC L L , {1,2,..., }p  , see Chidume [2 and 3] and Royden [4]. 1.2 Preliminaries on the partial derivatives ( , ) , 0,1, k k X t k       Let  t t, ,  0 1 . For fixed t, let  , t   satisfy the matrix differential equation:        1 0 1, , , , (3)X t X h t A X t A X h t A              for 0 , , 0,1,...t t k h k      where    ; 0;, nI t tX t     See Chukwu [5 and 6], Hale [7] and Tadmore [8] for properties of   t,  . Of particular importance is the fact that  ,t   is analytic on the intervals     t j h t j h j t j h1 1 11 01 1 0      , , , ,..., . Any such       t j h t j h1 11 , is called a regular point of     t, . Let    , k t denote  1, k k t      , the th k partial derivative of  1,t with respect to , where  is in   t j h t j h j r1 11 01   , ; , ,..., , for some integer r such that  t r h1 1 0   . Write      1 1 1, , k k t t         . Define:              1 1 1 1 1 1 1 1 , , , , , (4) for 0,1,...; 0,1,...; 0, k k k t jh t t t j h t t j h t k j t jh               where     1 1, k X t j h t   and     1 1 1, ,k X t t j h t   denote respectively the left and right hand limits of    1, k X t at   t j h1 . Hence:      ( ) 1 1 1 1 ( 1) 1 1 ( ) (5), lim ,k k X t jh t j h t jh X t jh t t                  1 ( ) 1 1 1 ( 1) 1 1 ,lim( ) , (6) k k X t jh t jh t j h tX t jh t            
  • 3. Relationships among determining matrices, partials of indices of… www.ijmsi.org 3 | P a g e 2.2 Definition, existence and uniqueness of Determining matrices for system (1) Let ( )kQ s be then n n matrix function defined by:        1 1 0 1 1 1 (7)k k k kQ s A Q s h A Q s AQ s h        for 1,2, ; 0,k s  with initial conditions:  0 0 (8)nQ I   0; 0 or 0 (9)kQ s k s   These initial conditions guarantee the unique solvability of (7). Cf.Gabasov and Kirillova [9]. III. MAIN RESULTS The investigation in this section will be carried out through the following sequence of results. 3.1 Theorem relating ( ) 1 1(( ), ) to ( )k kX t jh t Q jh  1 ( ) 1 1 For all nonnegative integers : 0, and for {0,1, ,}: ( , ) ( 1) ( ) (10)k k k j t jh k X t jh t Q jh         Proof ( ) 1 1 1 1 1 0If 0,then ( , ) ( , ) ( ) ( 1) ( ),with 0.k j k kk X t jh t X t jh t A Q jh Q jh k           1 ( ) ( 1) 1 1 1 1 1 0 0 1 (1) 1 1 1 1 1 0 0 1 1 0 1 1 By lemma 2.7 of [1], (( ), ) (( ( ( )) ), ) , 1 (( ), ) (( ( ( )) ), ) (( ( ) ), ) (( ( ( 1)) ), j k k r i r i j r i r i X t jh t X t j r i h t A A k X t jh t X t j r i h t A A X t j r h t A X t j r h t                                                 1 1 0 1 1 0 1 1 1 0 1 0 0 ) (( ( ) ), ) (( ( 1) ), ) j r r j j r r r r A A X t j r h t A A X t j r h t A A                             1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 (( ( ) ), ) (( ( 1) ), ) (since (( ( 1) , ) 0, for ) (by vii of lemma 2.4 of [1] ) j j r r r r j j j r r j r r r r j r j X t j r h t A A X t j r h t A A X t j r h t r j A A A A A A A A A                                                         1 1 0 1 1 1 1 1 0 1 1 ( 1) 1 1 1 0 1 0 1 1 1 1 0 0 1 ( 1) 1 0 1 0 1 1 1 1 0 1 0 0 (by change of variables) ( ) ( j j r r j r r r r j j j r j r r j r r r r j j r j r r j r r r A A A A A A A A A A A A A A A A A A A A A A A A A                                                                     1 ( 1) 1 1 1 1 0 ) ( ) (by change of variables ( 1) and then by iv, lemma 2.4 of [1]) j j r r A A Q jh r j r             Therefore, the theorem is true for {0, 1}.k 
  • 4. Relationships among determining matrices, partials of indices of… www.ijmsi.org 4 | P a g e The rest of the proof is by induction on .k 1 1 ( 1) ( ) 1 1 1 1 1 0 0 Assume that the theorem is valid for for some integer , and for all such that t 0. Then, 2 , (( ), ) (( ( ( )) ), ) , (by lemma 2.7 of [1]). ( 1) ( j p p r i r i p p p j jh k p X t jh t X t j r i h t A A Q                          1 1 0 0 (by the induction hypothesis)[ ( )] ) j r i r i j r i h A A            1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 ( 1) ([ ( )] ) ( 1) ([ ] ) ([ 1] ) ( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1]) j j p r p r p i p p r i r j p r p p r Q j r i h A A Q j r h A Q j r h A A Q j r h Q j r h A A                                            1 0 1 1 0 1 1 1 1 1 0 ( 1) ([ ] ) ([ 1] ) ( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1]) Now we proceed to obtain the above sum by writing out the equivalent exp ressions j p r p p r j p r p p r Q j r h A Q j r h A A Q j r h Q j r h A A                             0 1 1 1 1 2 0 1 1 1 1 1 1 2 0 1 1 for each and then summing the equivalents: 0 ( ) ([ 1] ) ( ) ([ 1] ) 1 ( ([ 1] ) ([ 2] ) ) ([ 1] ) ([ 2] ) ) 2 ( ([ 2] ) ([ 3] ) ) p p p p p p p p p p p r r Q jh A Q j h A Q jh Q j h A r Q j h A Q j h A A Q j h A Q j h A r Q j h A Q j h A A Q                                2 2 1 1 1 1 3 3 3 0 1 1 1 1 1 1 ([ 2] ) ([ 3] ) 3 ( ([ 3] ) ([ 4] ) ) ([ 3] ) ([ 4] ) p p p p p j h A Q j h A r Q j h A Q j h A A Q j h A Q j h A                      1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 The process continues up to , yielding 1 ( ([ ( 1)] ) ([ ] ) ) ([ ( 1)] ) ([ ] ) ( ([ ] ) ([ ( 1)] ) ) ([ )] ) ([ ( 1)] ) j p p j j p p j p p j p p r j r j Q j j h A Q j j h A A Q j j h A Q j j h A r j Q j j h A Q j j h A A Q j j h A Q j j h A                                      1 1 j Adding up the terms on the right-hand side for 0,1,2, ,r j  , it follows that only the first term corresponding to 0r  and the last term corresponding to r j survive the summation; all other terms cancel out. Therefore: 3.2 Corollary to theorem 3.1         ( ) ( ) ( ) ( ) 1 1 Let for where Then: for ( , ) ( , ), . Let ( , ) ( , ) ( , ) (0, ), ( , ) ( , ). , 1 , (11) : 0, 0,1,... T n k k k k k k kk k c c X t c c c c c c c t jh c Q jh B j t jh k                                    R
  • 5. Relationships among determining matrices, partials of indices of… www.ijmsi.org 5 | P a g e Proof The proof is immediate by noting that        ( ) ( ) 1 1 (by the preceeding theorem). Hence for ( , ) ( , ) . , 1 , : 0, 0,1,... kkk T k kc c X t B c t jh c Q jh B j t jh k                The following sequence of lemmas is needed in the proof of theorem 3.6 3.3First Corollary to Eq. 9: Expressing the partials of 2 0 k i i i A         in permutation form 1 1 1( ),0( ),1( ) 1 11 0 1 1 ( , ) Let , , be any nonnegative integers, , fixed such that , and . Then (a) !( )!( )! if , (b) k r k r r r k j j r k rk r i ir r k j j r i v v j r r v v P j k r j k j r k r A r r k j j r A A j k                                         1 1 1( ),0( ),1( ) 1 10 1 ( , ) ( )! !( )! if .j r j r r j k r k r j r i ij k r k r i v v v v P A r j k r k r A A j k                               Proof (a) And (b) follow from (9) with 2i  replaced by 1i   and noting that the superscript triples , , ;r r k j j r   , ,r j k r k r   are all nonnegative and therefore feasible. Moreover they are consistent with (9) as they sum to k +r and j +r in (a) and (b) respectively. This completes the proof. From above we have the following relations: 1 1 1 1 11 0 1 1 11 0 1 1( ),0( ),1( ) 1 1( ),0( ( , ) ( , ) 1 (12) !( )!( )! 1 ( )! !( )! k r j r k r k rk r i i v vr r k j j r i j rj r i i v vr j k r k r i r r k j j r j r r j k v v P v v P A A A r r k j j r A A A r j k r k r                                                               ),1( ) (13) r k r  Now sum over to get:{1, , 1} in (12)r j  1 1 1( ),0( ),1( ) 1 1 1 11 0 1 1 1 ( , ) 1 !( )!( )! (14)k r k r r r k j j r k rk rj i ir r k j j r r i j r v v v v P A r r k j j r A A                                      Now sum over in (13) to get{1, , 1}, :r k  1 1 1 1 1 11 0 1 1 1 1( ),0( ),1( )( , ) 1 ( )! !( )! (15)j r j r j rj rk i ir j k r k r r i k v v r r j k r k rv v P A r j k r k r A A                                     Therefore, we have proved the following lemma.
  • 6. Relationships among determining matrices, partials of indices of… www.ijmsi.org 6 | P a g e 3.4 Lemma expressing components of ( )kQ jh as a sum of partial derivatives of 2 0 k i i i A         1 1 1 1 1 11 0 1 1 1 1( ),0( ),1( )( , ) Let , , be any nonnegative integers, and fixed such that and , 0.Then: 1 (a) !( )!( )! ;k r k r k rk rj i ir r k j j r r i j r r r k j j r v v v v P j k r j k j r k r j k A r r k j j r A A k                                          (16)j 1 1 1 1 1 11 0 1 1 1 1( ),0( ),1( )( , ) 1 (b) ( )! !( )! ; (17)j r j r j rj rk i ir j k r k r r i k r r j k r k r v v v v P A r j k r k r A A j k                                        1 1 1( ),0( ) 1 1 0( ),1( ) 0 11 0 1 00 1 1,11 1 ( , ) ( , ) 1 (c) (18) ! ! 1 (d) , if (19) ( )! ! 1 (e) ( )! ! j k j k j k k k k j j j kj k i ij k i kk i ik j j i j i ij k j i v v v v P v v v v P A A A j k A A A k j k j j A j k k                                                      1 1 1( ),1( )( , ) , if (20)j k j j k k v v v v P A A j k            Proof Analogous to the proof of corollary 3.6.9 of [10], the superscripts are all feasible and consistent with (9); consequently the lemma is proved. Note that min{ , } 2j k  for explicit computational feasibility of (a) and (b). Further, the following result is needed to achieve our objective: 3.5 Lemma relating 1 2 1 { , } 1 1 2 1 2to ; , { 1,0,1}, k k i i i i i i i i A A i i i i                   in triple summations 1 2 2 1 0 1 1 1 1 1 1 1 ), 0( ),1(2 2 0 1 0 2 2 2 0 0 ( , ) ( ) 1 (a) , 0 k k i i i i r j k r k j r k kv v i i r j k r k j r A A k j k A j r v v P kA                                                               1 2 2 1 0 1 1 1 1 1), 0( ),1(2 2 1 1 00 1 2 2 2 , 1 0 0 ( , ) 0( ) (b) k k i i i i r j k r k j r k kv v r j k r k j r A A i i k j k A A k j r v v P                                                             
  • 7. Relationships among determining matrices, partials of indices of… www.ijmsi.org 7 | P a g e 0 2 2 1 0 1 1 1 1 0 { 1,1} 1 0 ), 0( ),1(2 2 1 0 2 2 2 , 1 0 ( , ) 0( ) (c) i i i i r j k r k j r k kv v i i j r j k r k j r k k A A k k j A A k r v v P                                                              Proof 1 1 First, note from theorem 3.2 of [11] and theorem 3.6.8 of [10], that k i i i A         equals the right-hand side without the evaluations at 0iu  , if ' 2'i  is replaced by ' 1'i   and j is replaced by j . 1 1 1 1 0 1 The proof is immediate, observing that ' 0 ' annihilates all the terms containing ,thereby yielding the equivalent expression for ; (b) ' 0 ' zeroes out all the terms containin (a) i i i k A A               1 1 0 0 0 { 1,1} 1 0 g ,thereby yielding the equivalent expression for ; (c) ' 0 ' eliminates all the terms containing ,thereby yielding the equivalent expression for . i i i i i i k k A A A A                           In the sequel, set 1 1 i i i F A    By the generalized Cayley-Hamilton theorem, 1 1 0 1 ( ) , kn n l k i i k i F A                1 0 1where the ( ) arepolynomials of degree with respect to the ; ( , , ).k is n l k s         The stage is now set to prove the equality of ranks of some concatenated determining matrices for finite and infinite horizons, using lemmas 3.4, 3.5 and the generalized Cayley-Hamilton theorem. 3.6 Theorem on Rank Equality of some concatenated determining matrices Let:  1 0 1 1 1 ˆ ( ) ( ) , ( ) , , ( ) : [0, ), 0, , ,( 1) , (21)n nQ t Q s B Q s B Q s B s t s h n h     where ( )kQ s is a determining matrix for the free part of (1) and is defined by (7) Then: 1 1 ˆ ˆrank ( ) rank ( ) (22)nQ t Q t        In the sequel, set 1 1 i i i F A    Generalized Cayley-Hamilton theorem, Lew (1966, pp. 650-3):
  • 8. Relationships among determining matrices, partials of indices of… www.ijmsi.org 8 | P a g e 1 1 0 1 ( ) , kn n l k i i k i F A                1 0 1where the ( ) arepolynomials of degree with respect to the ; ( , , ).k is n l k s         By lemma 3.4: 1 1 1 11( ),0( ) 0 1 { 1,1}1 0 0 1 1 1 1 11 0 1 ( , ) ( , ) 1 1 (23) ! ! ( )! ! 1 ( )! !( )! j k j jj k j k jj kj k j i i i ij k j k k i i j rj rk i ir j k r k r r i v v v v v v P v v P A A j k j k k A r j k r k r A A A A                                                                 1 11( ),1( ) 1( ),0( ),1( ) 1 1 ( , ) ( ); (24) j r j rj k k r j k r k r k v v r k v v P A A Q jh j k                  11 1 11( ),0( ) 0 1 1 01 0 0 1 1 1 1 11 0 1 ( , ) ( , ) Also: 1 1 (25) ! ! ( )! ! 1 !( )!( )! kj k j k j k k j k kj k k i i i ij k k j j i i k rk rj i ir r k j j r r i v vv v v v P v v A A j k k j j A r r k j j r A A A A                                                                 1 10( ),1( ) 1( ),0( ),1( ) 1 1 ( , ) ( ); (26) k r k j j k r r r k j j r j v r k v P v v P A A Q jh k j                  Hence for every non-negative integer ,p we have: 1 0 11 0 [ ] { 1,1}0 1 1 1 [ ] 1 11 0 1 1 ( ) (27) !( )! 1 ( [ ])![ ]! 1 ( [ ])! !( )! n p jn p j n p i ij n p i j j i ij n p n p i j rj rn p i ir j n p r n p r r i v Q jh A j n p A j n p n p A r j n p r n p r A                                                                         1 1 1 1 1 11( ),0( ) 1( [ ]),1( ) 1 1( [ ]),0( ),1( ) ( , ) ( , ) ( , ) , if , (28) jj n p j r v v n p r j n p jj n p j n p n p j r r j n p r n p r v v v v v P v v P v v P A A A A A j n p                                      
  • 9. Relationships among determining matrices, partials of indices of… www.ijmsi.org 9 | P a g e 0 11 1 ( ) !( )! ( )! !1 01 0 0 1 1 11 ( !( )!( )!1 11 0 1 (29) n p j n p n p j j Q jh A An p j n p n p j ji i i ij n p n p j ji i n p r j n p r Ai ir n p j j rr r n p j j r rr i Av                                                                                 1 1 1 1 1( ),0( ),1( ) ,1( ),0( ( , ) )1 ) 0( ),1( ) 1 1( , ) ( 1 if . (30), j r k r k r r r n p j j r v v jj n p v v v v P P P n p j j A A Av v vj n p kv vj n p n p jA A                              Now, using the generalized Cayley-Hamilton theorem in the same spirit as in theorem 3.6, we can prove that 1 1 ˆ ˆrank[ ( )] rank[ ( )].kQ t Q t  Indeed, by the generalized Cayley- Hamilton theorem: 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 ( ) , ( ) (31) ( ) (32) for some polynomials ( ), ( ), ( ) of d n p j k n p kn n i i k i i i i k i i i k i i k i n p r kn i i k i i i k i k k k A A A A A A                                                                                 egrees , , respectively, if . n p j k n p k n p r k n p j           Hence: 1 0 0 11 0 1 1 0 00 1 1 1 0 1 11 0 1 ( ) 1 ( ) !( )! 1 ( ) ( )! ! 1 ( ) ( !( )!( )! n p kn p jn k i ij n p k i kn pn k i in p j j k i kn p rjn k i ir r n p j j r k r i Q jh A j n p A n p j j A r r n p j j r                                                                              1 (33) if .n p j     By lemma3.5,
  • 10. Relationships among determining matrices, partials of indices of… www.ijmsi.org 10 | P a g e 1 1 2 2 0 1 0 0 1 1 1( ),0( ),1(2 2 ) 2 2 1 2 0 00 ( , , ) ( ) 1 !( )! ( ) * k n p j j n p k j r k k n p r j k k r j k r k j r k j r v v k j r v v P j n p A A Q jh                                                                                       1 10 1 1 1 2 2 0 0 1 1 1 ) 2 0 0 2 2 ( ),0( ),1(2 2 )1 1 ( ) ( )! ! 1 ( !( ) ( 0 (34) , , n p kn p j j n n k j r k k r j k k j r k k j r v v r j k r k j r A An p j j r vv P                                                                                     1 1 1 0 1 11 2 2 0 0 1 2 0 0 1 2 2 1 ) ( ) ( ),0( ),1(2 2 )!( )! 1( , ) if . *k n p r r r n p j j r jn k j r k r r j k k j r k k j r v v k r j k r k j r r n p j j r A A v v P n p j                                                                                 
  • 11. Relationships among determining matrices, partials of indices of… www.ijmsi.org 11 | P a g e 1 1 1 ) 1 0 ( ),0( ),1(2 2 1 1 2 2 0 0 1 1 2 2 2 00 0 ( , ) ( ) 1 ( )! 1 ( ) !( )! * n p j n p kj n p r j k r k j r k n k j r k k r j k v v k j k rj r A A v v P n p j j Q jh j n p                                                                                      1 1 0 1 1 1 2 2 0 1 0 1 1 ) 2 22 00 ( ),0( ),1(2 21 ! 0 1 ( !( )!( )! ( ( , , ) ) (35) n p n p j j n p r r k k j r k n r j k k v v k j k rj r r j k r k j rk A A r r n p j j r v v P                                                                                     1 1 1 0 0 1 1 2 2 0 1 1 ,1 1 ) 2 2 2 00 ( ),0( ),1(2 2 ( ) ( ) if . * n k k r n p j j r k k j r j r j k r v v vk k j k rj r r j k r k j r A A v P n p j                                                                       1 0 1 2 0 1 2 1 1 It follows immediately that the sum of the powers of , and , and [ ], 0 in every permutation involving ˆ ˆis at most 1.Consequently rank ( )] [ ( ) and for every integer 0,lead rankn p n A A A A A A tn Q t Q t p     1 1[ ˆ ˆing to the conclusion that rank ( )] [ ( )],as desired.rankn p nQ t Q t  IV CONCLUSION This paper exploited the results in [1] to establish appropriate and relevant relationships among determining matrices, indices of control systems matrices and systems coefficients with respect to single-delay autonomous linear neutral control systems. In the sequel the paper used these relationships in conjunction with the generalized Caley-Hamilton theorem to prove that the associated controllability matrices for finite and infinite horizons have the same rank. The utility of these results can be appreciated in the proof of necessary and sufficient conditions for the Euclidean controllability of system (1) on the intervals 1 1 0[0, ], this;tt    will be discussed in a subsequent paper. REFERENCES [1] Ukwu, C. (2014h). The structure of determining matrices for single-delay autonomous linear neutral control systems.International Journal of Mathematics and Statistics Inventions (IJMSI), Volume 2, Issue 3,March 2014, pp.31-47. [2] Chidume, C. An Introduction to Metric Spaces (The Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy, 2003). [3] Chidume, C. Applicable Functional Analysis (The Abdus Salam,International Centre for Theoretical Physics, Trieste, Italy, 2007). [4] Royden, H.L.Real Analysis, 3rd Ed. (Macmillan Publishing Co., New York, 1988). [5] Chukwu, E.N.Stability and Time-optimal control of hereditary systems (Academic Press, New York, 1992). [6] Chukwu, E.N. Differential Models and Neutral Systems for Controlling the Wealth of Nations. Series on Advances in Mathematics for Applied Sciences (Book 54), World Scientific Pub Co Inc; 1st edition, (2001). [7] Hale, J. K., Theory of functional differential equations., Applied Mathematical Science, Vol. 3, Springer-Verlag, New York,(1977). [8] Tadmore, G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls. J. Differential equations, Vol. 51, No. 2, (1984) 151-181. [9] Gabasov, R. and Kirillova, F., The qualitative theory of optimal processes (Marcel Dekker Inc., New York, 1976). [10] Ukwu, C. On Determining Matrices,Controllability and Cores of Targets of Certain Classes of Autonomous Functional Differential Systems with Software Development and Implementation.Doctor of Philosophy Thesis, UNIJOS(In progress),(2013a). [11] Ukwu, C. (2014g). The structure of determining matrices for a class of double-delay control systems.International Journal of Mathematics and Statistics Inventions (IJMSI)Volume 2, Issue 3, March 2014, pp. 14-30.