SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
International Refereed Journal of Engineering and Science (IRJES)
ISSN (Online) 2319-183X, (Print) 2319-1821
Volume 2, Issue 10 (October 2013), PP. 15-20

A Study on the Effect of Prosody on the Temporal
Realization of Segments in Chinese
Maolin Wang, Guangling Zi
(College of Chinese Language and Culture, Jinan University, China)
Abstract:- In this study the prosodic effect on the temporal realization of segments in Chinese is analyzed. The
test segments are in the form of `C1V1#C2V2', with `14' varied to be prosodic word boundary and prosodic
phrase boundary, and C2 varied to be labial, alveolar and velar stop. The subjects are fourteen native
speakers of standard Chinese. The VOT of the consonants and the durations of the vowels are analyzed.
Results show that the effect of prosody on the duration of the preceding vowel is great, and there is also an
effect of place of articulation of the second consonant on the duration of the first vowel, the VOT of the second
consonant and the duration of the second vowel.
Keywords:- Duration, prosody, speech, VOT, vowel.

I.

INTRODUCTION

It has been shown from researches on prosodic organization that phonological units are organized in
hierarchically nested prosodic structure, where lower prosodic constituents are grouped into immediately higher
levels [1, 2], and it has been shown that prosodic structure affects the fme acoustic details of segment
realizations. A well-known acoustic correlate of prosodic structure is 'final lengthening': domain-final syllables
are longer than the medial ones. Phrase-final lengthening has been extensively discussed in the speech
production literature [3]. Typically, the last vowel before a large phrasal boundary is lengthened, and other units
such as final consonants, final syllables, and final words have been identified as subject to domain -final
lengthening as well.
Besides final lengthening, there is also an effect on the initial segment: consonants show more linguopalatal contact, stops show longer closures and longer Voice Onset Time (VOT), and vowels are more often
glottalized and show greater resistance to vowel-to-vowel coarticulation [4-7]. A lot of studies on acoustic
effects of prosodic structure have investigated duration. Fougeron and Keating [8] reported that the duration of
individual segments at the edges of prosodic boundaries increases with increasing strength of the boundary. In
terms of temporal effects of prosodic and linguistic structure in general, research in this area has a relatively
long tradition. For example, Lehiste [9] examined what has come to be known as phrase -final lengthening,
whereby syllables are lengthened at the end of a prosodic phrase.
Regarding Chinese prosody, there has been much research work in recent years. For example, Li [10]
pointed out that in Chinese, the prosodic units of an utterance are intonational phrase, prosodic phrase and
prosodic word. Lin [11] reported that at higher prosodic boundaries, there tends to be a pause, syllable
lengthening, or FO reset. Wang et al. [12] found that the acoustics correlates of prosodic word boundary are preboundary lengthening and discontinuation of the bottom line of intonation. And those of prosodic phrase and
intonational phrase are pitch reset of bottom line of intonation and insertion of silence.
In nowaday speech synthesis technology, improving the naturalness of synthesized speech so as to have
the expressive variability of actual speech is an important issue in speech engineering. The study of prosodic
feature is the crucial work for synthesizing speech samples of high naturalness and high intelligibility, as well as
for recognizing natural speech. In this study, the effect of prosody on the temporal realization of segments in
different prosodic contexts will be investigated. To be specific, the VOT of the consonants and the durations of
the vowels in the prosodic word (PW) boundary and the prosodic phrase (PP) boundary will be analyzed.

II.

METHOD

2.1 Speakers, stimuli, and recording
Fourteen native speakers of Standard Chinese, seven male and seven female, were recorded in a soundProof recording room. The acoustic data were recorded directly into the computer at a sampling rate of 16 kHz
using the software of Cool Edit Pro, and saved as way files.
The key syllables of the stimuli are in the form of `C 1 V 1 C 2 V2 ', where 'CNC is always `da', and
C2 varies to be one of the three consonants of /b d g/ in Chinese, with V2 varying to be one of the two vowels
of /a u/. They are embedded in two prosodic contexts, one in PW boundary context and the other in PP boundary
context. The carrying sentences are as follow, with the type of prosodic contexts in parentheses and the

www.irjes.com

15 | Page
A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese
translation below.
(1)
Jingli chuanda bushu le gongzuo jihua. (PW boundary) The manager transmitted and disposed the
working plan.
(2)
Wu ban de nage Li Da bu shi Sichuan ren. (PP boundary) Li Da in Class 5 is not from Sichuan.
The consonant in bold is varied to be one of /b d g/, and the vowel following the consonant is varied to be one
of /a u/. Therefore, there are totally 6 combinations (3 consonants x 2 vowels), with a total of 12
sentences (2 prosodic contexts x 6 combinations). The speakers produce 3 repetitions of the corpus (with the
recording order randomized), giving a total of 504 utterances (12 sentences x 3 repetitions x 14 speakers).
As C2 is varied to be one of the three consonants of /b d g/, which correspond to three places of
articulation: labial, alveolar, and velar, the effect of place of articulation on the temporal realization of the key
segments, C1, V1, C2, V2, will be analyzed.
Acoustic data were first segmented and labeled by a segmenting program, and then manually
verified in Praat [13], and all the data were organized according to the prosodic contexts and places of
articulation. Statistic analysis was done in SPSS.
2.2 Measurements
The measurements of this study are as follow,
1)
VOT of the consonants
VOT is a feature of the production of stop consonants. It is defined as the length of time between the release of
a stop and the onset of voicing. Fig. 1 displays the waveform and spectrogram of the key sy llables `da' and
`bu', in the PP boundary context. In Fig. 1, the interval between point 0 and A is the VOT of C 1, and that
between point C and D is the VOT of C2.
2)
Duration of the vowels
The durations of V1 and V2 are also measured in this study. As is shown in Fig. 1, the interval between
point A and B is the duration of Vi, and that between point D and E is the duration of V2.

0A
CD
da
bu
Fig. 1 The waveform and spectrogram of the key syllables `da' and `bu'

RESULTS
3.1 VOT of C1
Fig. 2 graphs the VOT of C1, broken down by prosodic contexts, PW and PP boundary, and contexts of
place of articulation of C2, labial, alveolar and velar. It is shown from repeated measures ANOVA results that
there is no significant effect for place of articulation of C2: F(2, 166) = 2.53, p = 0.083. However, the effect of
prosody is significant: F(1, 83) = 77.9, p < 0.001, with VOT preceding PP boundary longer than that preceding
PW boundary.
There is no significant prosody x place of articulation interactive effect either: F(2, 166) = 2.73, p =
0.068. No interactive effect exists for the two factors.

Fig. 2 VOT of C1 broken down by contexts of prosody and place of articulation

www.irjes.com

16 | Page
A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese
3.2 Duration of V1
Fig. 3 displays the duration of V 1, broken down by contexts of prosody and of place of articulation.
From Fig. 3 it can be seen that the prosodic effect is obvious. Repeated measures ANOVA results show that the
effect of prosody is significant: F(1, 83) = 301, p < 0.001. Vowels preceding the PP boundary are longer than
that in preceding the PW boundary.
As for the context of place of articulation of C2, for the duration of Vi, there is significant effect: F(2,
166) = 26.9, p < 0.001. Vowel preceding the alveolar consonant is longer than that preceding the labial: F(1, 83)
= 15.3, p <0.001; and that preceding the velar consonant is longer than that preceding the alveolar: F(1, 83) =
12.1, p = 0.001.
Further observation shows that there is a significant prosody x place of articulation interaction: F(2,
166) = 11.4, p < 0.001, which is attributable to the disproportionate effect of prosody in different contex ts of
place of articulation.

Fig. 3 Duration of V1 broken down by contexts of prosody and place of articulation
3.3 VOT of C2
Fig. 4 graphs the VOT of C2, broken down by contexts of prosody and place of articulation. From
Fig. 4 it is shown that the effect of place of articulation is obvious. Repeated measures ANOVA results display
that there is significant effect for place of articulation: F(2, 166) = 89.5, p < 0.001. The VOT of velar is longer
than those of labial and alveolar, velar vs. labial: F(1, 83) = 90.4, p < 0.001; velar vs. alveolar: F(1, 83) = 108, p
<
0.001
In regard to prosody, as far as VOT of C2 is concerned, there is no significant effect: F(1, 83) = 1.77,
p = 0.187. VOT of C2 is not affected by prosody.
As for the prosody x place of articulation interactive effect, it is significant: F(2, 166) = 5.18, p = 0.007,
which is due to the asymmetric effect of prosody in different contexts of place of articulation.

Fig. 4 VOT of C2 broken down by contexts of prosody and place of articulation
3.4 Duration of V2
Fig. 5 displays the duration of V2, broken down by contexts of prosody and of place of articulation.
Repeated measures ANOVA results show that the effect of prosody is significant: F(1, 83) = 71.3, p < 0.001.
Vowels following PW boundary are longer than those following PP boundary.
Regarding the context of place of articulation, there is also significant effect: F(2, 166) = 11.5, p <

www.irjes.com

17 | Page
A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese
0.001. Vowels following labial are longer than those following velar: F(1, 83) = 17.6, p < 0.001, while there is
no significant difference between the durations of vowels following labial and alveolar.
There is also a significant prosody x place of articulation interactive effect: F(2, 166) = 49.1, p <0.001, which is
due to the asymmetrical effect of prosody in different contexts of place of articulation.

Fig. 5 Duration of V2 broken down by contexts of prosody and place of articulation

IV.

DISCUSSION

4.1 VOT of Ci
Results of this experiment show that, at first, the VOT of C 1 is not affected by the place of articulation
of C2, which is due to distance effect. In this study, the key segments are in the form of `C1V1#C2V2', with 'PP
varied to be PW and PP boundaries, and C2 varied to be labial, alveolar and velar. The immediate neighbor of
C2 is the prosodic boundary `#', and preceding which there is also vowel V 1. As a result, Ci is far from C2, and
the effect of C2 on Ci will be blocked by the boundary and Vi.
However, there is an effect of prosody on the VOT of C 1, with VOT preceding PP boundary
longer than that preceding PW boundary. Generally speaking, segments at the end of a prosodic domain tend to
be lengthened, especially vowels. In this study, there are two prosodic contexts, PW and PP boundaries, and it is
shown that VOT of the stop in the final syllable can also be affected by the following prosodic boundary.
Therefore, the effect of prosody on the preceding segments is great.
4.2 Duration of Vi
The effect of prosody on the duration of V1 is strong. Vowels preceding PP boundary are longer than
those preceding PW boundary. In Chinese, there is no length contrast for vowels. In English, there are 'long' vs
'short' vowels, like 'sheep' vs 'ship' and 'short' vs 'shot'. With this contrast, the lengthening effect of vowels in
English may be limited to some extent. As there are no phonologically contrastive 'long' or 'short' vowels in
Chinese, there is no limitation for the lengthening effect. Therefore, the phrase-final lengthening effect is strong
in Chinese.
The final-lengthening effect has the demarcative function: the lengthening of the final segment
indicates the end of a prosodic phrase. This effect is communicatively functional, so it has been observed by a
lot of researchers. As is mentioned in the first section of this paper, the effect of final lengthening has been
extensively reported [3, 8, 9].
There is also an effect of place of articulation of C2 on the duration of V 1. This is not strange, as
the two segments are immediate adjacent to each other. We speculate the reason for this is the starting time of
the following segment. The duration of a vowel may be affected by the starting time of the following segment.
A vowel may be a little shorter if the following segment starts quickly, whereas it may a little longer if
the following segment starts slowly.
In this study, C2 is varied to be /b d g/, which belongs to labial, alveolar and velar stop. When a stop is
produced, at first, a closure is created in the vocal tract by the lips, tongue blade, or tongue body. The closure
will be maintained for an interval of time, and then a release is followed. Generally speaking, for a small,
flexible articulator such as the lip or the tongue tip, it is likely to take less time to create the closure, whereas for
a larger, less flexible articulator such as the back of the tongue, it will require more time.
The articulators for the labial, alveolar, and velar are the lips, tongue tip and the back of the tongue
respectively. The time intervals for the creation of closure at these places are not the same: short for the lips and
alveolar, and long for the back of the tongue. Just because of this, the duration of the preceding vowel is affected:
short for that preceding labial and alveolar, and long for that preceding velar. As the lips are at the outer part of
the mouth, and the closure of the lips is quicker than the tongue tip, vowel preceding labial is shorter than that
preceding alveolar.

www.irjes.com

18 | Page
A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese
4.3 VOT of C2
There is an effect of place of articulation on the VOT of C2. VOT is short for labial and alveolar,
and long of velar. The reason for this is similar to the effect on the duration of V 1. VOT is affected by the
release time. The quicker the release is, the shorter the VOT will be. On the contrary, the slower the release
is, the longer the VOT will be. As is mentioned above, for a small, flexible articulator such as the lip or the
tongue tip, it is likely to take less time to create the closure, whereas for a larger, less flexible articulator such as
the back of the tongue, it will require more time. The temporal pattern for the release is similar to that of closure
creation. It may take less time to finish the release by a small, flexible articulator such as the lip or the tongue
tip, while it may take more time to do this by a larger, less flexible ariticulator like the back of the tongue.
Therefore VOT of labial and alveolar is short, and that of velar is long.
Results in the previous section show that there is no effect of prosody on the VOT of C2. The reason
for this is that C2 is varied to be three unaspirated stops /b d g/, and there is few articulatory and acoustic degree
of freedom for unaspirated stops in Chinese. VOT of unaspirated stops are short in Chinese, and they are
affected by place of articulation. Because of this, there is fewer variability for the unaspirated s tops in
Chinese. As a result, VOT of C2 is not affected by prosody.
4.4 Duration of V2
The duration of V2 is affected by the place of articulation of the preceding consonant, with vowels
following labial and alveolar longer than those following velar. We s peculate that this is because of the
compensation principle [14]. It is generally approved that languages can be classified typologically into 'stresstimed' languages and 'syllable-timed' ones [15]. Languages like English and German are of the first type, and
Chinese belongs to the second type. It is also believed that languages observe the isochrony principle [16]. For
stress-timed languages, intervals between the stressed syllables tend to be equal, and for syllable -timed
languages, syllables tend to be of equal length.
Results from the previous section show that VOT of labial and alveolar are short, and that of velar is
long. Chinese is a syllable-timed language, so syllables tend to be of same duration. The VOT of labial and
alveolar are short, vowels following them may tend to get longer to compensate the length. Therefore, vowels
following labial and alveolar are longer than those following velar.
The effect of prosody on the duration of V2 is significant, with vowels following PW boundary longer than
those following PP boundary. We speculate this is also due to the compensation principle. Vowel preceding PP
boundary is longer than that preceding PW boundary. In Chinese, syllables tend to be of equal length, so the
duration of the vowel following PP boundary will get reduced to guarantee isochrony of the syllables.

V.

CONCLUSION

In this study, the prosodic effect on the temporal realization of segments is analyzed. It is found that, as
the obstruction of the prosodic boundary and V 1, the VOT of C 1 is not affected by the context of place of
articulation. However, the effect of prosody is strong, and its effect extents to the consonant of preceding
syllable. Because of the final-lengthening effect, vowels preceding the PP boundary are much longer than those
preceding the PW boundary. As the time intervals for the creation of closure for labial, alveolar and velar are
different, there is also an effect of contexts of place of articulation on the duration of V 1. The VOT of C2 is
affected by the place of articulation, but as there is little articulatory and acoustic variability for the unaspirated
stops, there is no effect of prosody on it. Because of the compensation principle, the duration of V2 is affected
by the place of articulation of the preceding consonant, and the duration of V2 is also affected by prosody.
ACKNOWLEDGEMENTS
This work was supported in part by the Social Science Research Project of Guangdong Province, Grant
No. GD11CWW04, as well as the Humanity and Social Science Research Project for Colleges in Guangdong
Province, Grand No. 11WYXM012.

REFERENCES
[1].
[2].
[3].

[4].
[5].

M. Nespor and I. Vogel, Prosodic phonology. Dordrecht: Foris, 1986.
S. Shattuck-Hufnagel and A. E. Turk, "A prosody tutorial for investigators of auditory sentence
processing," Journal of Psycholinguistic Research, vol. 25, pp. 193-247, 1996.
C. W. Wightman, S Shattuck-Hufnagel, M. Ostendorf and P. J. Price, "Segmental durations in the
vicinity of prosodic phrase boundaries," Journal of the Acoustical Society of America, vol. 91, pp.17071717, 1992.
C. Fougeron, "Articulatory properties of initial segments in several prosodic constituents in French,"
Journal of Phonetics, vol. 29, pp. 109-135, 2001.
P. A. Keating, T. Cho, C. Fougeron and C.-S. Hsu, "Domain-initial articulatory strengthening in four
languages," In Papers in laboratory phonology, vol. VI, J. Local, R. Ogden, and R. Temple Eds.

www.irjes.com

19 | Page
A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese
[6].
[7].
[8].
[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].

Cambridge: Cambridge University Press, 2003, pp. 145-163.
T. Cho, "Prosodically conditioned strengthening and vowel-to-vowel coarticulation in English," Journal
of Phonetics, vol. 32, pp. 141-176, 2004.
M. Tabain, "Effects of prosodic boundary on /aC/ sequences: Acoustic results," I Acoust. Soc. Am. vol.
113, no. 1, pp. 516-531, 2003.
I. Lehiste, "The timing of uttera nces and linguistic boundaries," J. Acoust. Soc. Am., vol. 51, pp. 20182024, 1972.
C. Fougeron and P. Keating, "Articulatory strengthening at edges of prosodic domains," I Acoust. Soc.
Am., vol. 101, pp. 3728-3740, 1997.
A. Li, "The acoustic representation of the prosodic feature in Chinese dialogue," Chinese Linguistics,
vol. 6, pp. 525— 535, 2002.
M. Lin, "Prosodic structure and lines of FO top and bottom of utterances in Chinese," Contemporary
Linguistics, no. 4, pp. 254-265, 2002.
B. Wang, Y. Yang and S. Lu, "Acoustic analysis on prosodic hierachical boundaries of Chinese," Acta
Acustica, vol. 29, no. 1, pp. 29-36, 2004.
P. Boersma, "Praat, a system for doing phonetics by computer," Glot International, vol. 5, no. 9/10, pp.
341-345, 2001.
L. Feng, "The duration of onsets a nd rhymes in connected speech in Chinese," in Experimental Studies
in Chinese, Beijing: Beijing University Press, 1985.
K. L. Pike, The intonation of American English, Ann Arbor: University of Michigan Press, 1945.
J. Laver, Principles of phonetics, Cambridge: Cambridge University Press, 1994.

www.irjes.com

20 | Page

Más contenido relacionado

Similar a Prosody affects Chinese segment duration

The Effect of Carry-over Coarticulation of Disyllabic words in Chinese
The Effect of Carry-over Coarticulation of Disyllabic words in ChineseThe Effect of Carry-over Coarticulation of Disyllabic words in Chinese
The Effect of Carry-over Coarticulation of Disyllabic words in Chineseinventy
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Energy distribution in formant bands for arabic vowels
Energy distribution in formant bands for arabic vowelsEnergy distribution in formant bands for arabic vowels
Energy distribution in formant bands for arabic vowelsIJECEIAES
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...
COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...
COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...Hussein Ghaly
 
E0363040045
E0363040045E0363040045
E0363040045theijes
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER) ijceronline
 
DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...
DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...
DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...cscpconf
 
Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...
Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...
Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...IJERA Editor
 
A comparative acoustic study of Hanoi Vietnamese and general American English...
A comparative acoustic study of Hanoi Vietnamese and general American English...A comparative acoustic study of Hanoi Vietnamese and general American English...
A comparative acoustic study of Hanoi Vietnamese and general American English...NuioKila
 
[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...
[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...
[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...NuioKila
 

Similar a Prosody affects Chinese segment duration (20)

The Effect of Carry-over Coarticulation of Disyllabic words in Chinese
The Effect of Carry-over Coarticulation of Disyllabic words in ChineseThe Effect of Carry-over Coarticulation of Disyllabic words in Chinese
The Effect of Carry-over Coarticulation of Disyllabic words in Chinese
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
The Effect of Anticipatory Coariticulation in VCV Sequences in Chinese
The Effect of Anticipatory Coariticulation in VCV Sequences in ChineseThe Effect of Anticipatory Coariticulation in VCV Sequences in Chinese
The Effect of Anticipatory Coariticulation in VCV Sequences in Chinese
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
B110512
B110512B110512
B110512
 
B04651116
B04651116B04651116
B04651116
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Int journal 01
Int journal 01Int journal 01
Int journal 01
 
Energy distribution in formant bands for arabic vowels
Energy distribution in formant bands for arabic vowelsEnergy distribution in formant bands for arabic vowels
Energy distribution in formant bands for arabic vowels
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...
COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...
COMPUTATIONAL APPROACHES TO THE SYNTAX-PROSODY INTERFACE: USING PROSODY TO IM...
 
Confirmation Talk
Confirmation TalkConfirmation Talk
Confirmation Talk
 
Confirmation Talk
Confirmation TalkConfirmation Talk
Confirmation Talk
 
E0363040045
E0363040045E0363040045
E0363040045
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...
DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...
DETECTION OF AUTOMATIC THE VOT VALUE FOR VOICED STOP SOUNDS IN MODERN STANDAR...
 
Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...
Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...
Identification of Sex of the Speaker With Reference To Bodo Vowels: A Compara...
 
A comparative acoustic study of Hanoi Vietnamese and general American English...
A comparative acoustic study of Hanoi Vietnamese and general American English...A comparative acoustic study of Hanoi Vietnamese and general American English...
A comparative acoustic study of Hanoi Vietnamese and general American English...
 
[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...
[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...
[123doc] - a-comparative-acoustic-study-of-hanoi-vietnamese-and-general-ameri...
 

Más de irjes

Automatic Safety Door Lock System for Car
Automatic Safety Door Lock System for CarAutomatic Safety Door Lock System for Car
Automatic Safety Door Lock System for Carirjes
 
Squared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & OptimizationSquared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & Optimizationirjes
 
Analysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling ModelAnalysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling Modelirjes
 
Effects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface RoughnessEffects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface Roughnessirjes
 
Possible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constantsPossible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constantsirjes
 
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...irjes
 
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...irjes
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model irjes
 
Energy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart CitiesEnergy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart Citiesirjes
 
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...irjes
 
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...irjes
 
An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...irjes
 
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...irjes
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...irjes
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...irjes
 
The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...irjes
 
Understanding the Concept of Strategic Intent
Understanding the Concept of Strategic IntentUnderstanding the Concept of Strategic Intent
Understanding the Concept of Strategic Intentirjes
 
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...irjes
 
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of AgeRelation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Ageirjes
 
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block ArmorWave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armorirjes
 

Más de irjes (20)

Automatic Safety Door Lock System for Car
Automatic Safety Door Lock System for CarAutomatic Safety Door Lock System for Car
Automatic Safety Door Lock System for Car
 
Squared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & OptimizationSquared Multi-hole Extrusion Process: Experimentation & Optimization
Squared Multi-hole Extrusion Process: Experimentation & Optimization
 
Analysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling ModelAnalysis of Agile and Multi-Agent Based Process Scheduling Model
Analysis of Agile and Multi-Agent Based Process Scheduling Model
 
Effects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface RoughnessEffects of Cutting Tool Parameters on Surface Roughness
Effects of Cutting Tool Parameters on Surface Roughness
 
Possible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constantsPossible limits of accuracy in measurement of fundamental physical constants
Possible limits of accuracy in measurement of fundamental physical constants
 
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
 
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
Comparative Study of Pre-Engineered and Conventional Steel Frames for Differe...
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
 
Energy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart CitiesEnergy Awareness and the Role of “Critical Mass” In Smart Cities
Energy Awareness and the Role of “Critical Mass” In Smart Cities
 
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
A Firefly Algorithm for Optimizing Spur Gear Parameters Under Non-Lubricated ...
 
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
The Effect of Orientation of Vortex Generators on Aerodynamic Drag Reduction ...
 
An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...An Assessment of The Relationship Between The Availability of Financial Resou...
An Assessment of The Relationship Between The Availability of Financial Resou...
 
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
The Choice of Antenatal Care and Delivery Place in Surabaya (Based on Prefere...
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
 
The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...The Role of Community Participation in Planning Processes of Emerging Urban C...
The Role of Community Participation in Planning Processes of Emerging Urban C...
 
Understanding the Concept of Strategic Intent
Understanding the Concept of Strategic IntentUnderstanding the Concept of Strategic Intent
Understanding the Concept of Strategic Intent
 
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
The (R, Q) Control of A Mixture Inventory Model with Backorders and Lost Sale...
 
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of AgeRelation Between Stress And Menstrual Cycle At 18-21 Years Of Age
Relation Between Stress And Menstrual Cycle At 18-21 Years Of Age
 
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block ArmorWave Transmission on Submerged Breakwater with Interlocking D-Block Armor
Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor
 

Último

The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 

Último (20)

The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 

Prosody affects Chinese segment duration

  • 1. International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 10 (October 2013), PP. 15-20 A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese Maolin Wang, Guangling Zi (College of Chinese Language and Culture, Jinan University, China) Abstract:- In this study the prosodic effect on the temporal realization of segments in Chinese is analyzed. The test segments are in the form of `C1V1#C2V2', with `14' varied to be prosodic word boundary and prosodic phrase boundary, and C2 varied to be labial, alveolar and velar stop. The subjects are fourteen native speakers of standard Chinese. The VOT of the consonants and the durations of the vowels are analyzed. Results show that the effect of prosody on the duration of the preceding vowel is great, and there is also an effect of place of articulation of the second consonant on the duration of the first vowel, the VOT of the second consonant and the duration of the second vowel. Keywords:- Duration, prosody, speech, VOT, vowel. I. INTRODUCTION It has been shown from researches on prosodic organization that phonological units are organized in hierarchically nested prosodic structure, where lower prosodic constituents are grouped into immediately higher levels [1, 2], and it has been shown that prosodic structure affects the fme acoustic details of segment realizations. A well-known acoustic correlate of prosodic structure is 'final lengthening': domain-final syllables are longer than the medial ones. Phrase-final lengthening has been extensively discussed in the speech production literature [3]. Typically, the last vowel before a large phrasal boundary is lengthened, and other units such as final consonants, final syllables, and final words have been identified as subject to domain -final lengthening as well. Besides final lengthening, there is also an effect on the initial segment: consonants show more linguopalatal contact, stops show longer closures and longer Voice Onset Time (VOT), and vowels are more often glottalized and show greater resistance to vowel-to-vowel coarticulation [4-7]. A lot of studies on acoustic effects of prosodic structure have investigated duration. Fougeron and Keating [8] reported that the duration of individual segments at the edges of prosodic boundaries increases with increasing strength of the boundary. In terms of temporal effects of prosodic and linguistic structure in general, research in this area has a relatively long tradition. For example, Lehiste [9] examined what has come to be known as phrase -final lengthening, whereby syllables are lengthened at the end of a prosodic phrase. Regarding Chinese prosody, there has been much research work in recent years. For example, Li [10] pointed out that in Chinese, the prosodic units of an utterance are intonational phrase, prosodic phrase and prosodic word. Lin [11] reported that at higher prosodic boundaries, there tends to be a pause, syllable lengthening, or FO reset. Wang et al. [12] found that the acoustics correlates of prosodic word boundary are preboundary lengthening and discontinuation of the bottom line of intonation. And those of prosodic phrase and intonational phrase are pitch reset of bottom line of intonation and insertion of silence. In nowaday speech synthesis technology, improving the naturalness of synthesized speech so as to have the expressive variability of actual speech is an important issue in speech engineering. The study of prosodic feature is the crucial work for synthesizing speech samples of high naturalness and high intelligibility, as well as for recognizing natural speech. In this study, the effect of prosody on the temporal realization of segments in different prosodic contexts will be investigated. To be specific, the VOT of the consonants and the durations of the vowels in the prosodic word (PW) boundary and the prosodic phrase (PP) boundary will be analyzed. II. METHOD 2.1 Speakers, stimuli, and recording Fourteen native speakers of Standard Chinese, seven male and seven female, were recorded in a soundProof recording room. The acoustic data were recorded directly into the computer at a sampling rate of 16 kHz using the software of Cool Edit Pro, and saved as way files. The key syllables of the stimuli are in the form of `C 1 V 1 C 2 V2 ', where 'CNC is always `da', and C2 varies to be one of the three consonants of /b d g/ in Chinese, with V2 varying to be one of the two vowels of /a u/. They are embedded in two prosodic contexts, one in PW boundary context and the other in PP boundary context. The carrying sentences are as follow, with the type of prosodic contexts in parentheses and the www.irjes.com 15 | Page
  • 2. A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese translation below. (1) Jingli chuanda bushu le gongzuo jihua. (PW boundary) The manager transmitted and disposed the working plan. (2) Wu ban de nage Li Da bu shi Sichuan ren. (PP boundary) Li Da in Class 5 is not from Sichuan. The consonant in bold is varied to be one of /b d g/, and the vowel following the consonant is varied to be one of /a u/. Therefore, there are totally 6 combinations (3 consonants x 2 vowels), with a total of 12 sentences (2 prosodic contexts x 6 combinations). The speakers produce 3 repetitions of the corpus (with the recording order randomized), giving a total of 504 utterances (12 sentences x 3 repetitions x 14 speakers). As C2 is varied to be one of the three consonants of /b d g/, which correspond to three places of articulation: labial, alveolar, and velar, the effect of place of articulation on the temporal realization of the key segments, C1, V1, C2, V2, will be analyzed. Acoustic data were first segmented and labeled by a segmenting program, and then manually verified in Praat [13], and all the data were organized according to the prosodic contexts and places of articulation. Statistic analysis was done in SPSS. 2.2 Measurements The measurements of this study are as follow, 1) VOT of the consonants VOT is a feature of the production of stop consonants. It is defined as the length of time between the release of a stop and the onset of voicing. Fig. 1 displays the waveform and spectrogram of the key sy llables `da' and `bu', in the PP boundary context. In Fig. 1, the interval between point 0 and A is the VOT of C 1, and that between point C and D is the VOT of C2. 2) Duration of the vowels The durations of V1 and V2 are also measured in this study. As is shown in Fig. 1, the interval between point A and B is the duration of Vi, and that between point D and E is the duration of V2. 0A CD da bu Fig. 1 The waveform and spectrogram of the key syllables `da' and `bu' RESULTS 3.1 VOT of C1 Fig. 2 graphs the VOT of C1, broken down by prosodic contexts, PW and PP boundary, and contexts of place of articulation of C2, labial, alveolar and velar. It is shown from repeated measures ANOVA results that there is no significant effect for place of articulation of C2: F(2, 166) = 2.53, p = 0.083. However, the effect of prosody is significant: F(1, 83) = 77.9, p < 0.001, with VOT preceding PP boundary longer than that preceding PW boundary. There is no significant prosody x place of articulation interactive effect either: F(2, 166) = 2.73, p = 0.068. No interactive effect exists for the two factors. Fig. 2 VOT of C1 broken down by contexts of prosody and place of articulation www.irjes.com 16 | Page
  • 3. A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese 3.2 Duration of V1 Fig. 3 displays the duration of V 1, broken down by contexts of prosody and of place of articulation. From Fig. 3 it can be seen that the prosodic effect is obvious. Repeated measures ANOVA results show that the effect of prosody is significant: F(1, 83) = 301, p < 0.001. Vowels preceding the PP boundary are longer than that in preceding the PW boundary. As for the context of place of articulation of C2, for the duration of Vi, there is significant effect: F(2, 166) = 26.9, p < 0.001. Vowel preceding the alveolar consonant is longer than that preceding the labial: F(1, 83) = 15.3, p <0.001; and that preceding the velar consonant is longer than that preceding the alveolar: F(1, 83) = 12.1, p = 0.001. Further observation shows that there is a significant prosody x place of articulation interaction: F(2, 166) = 11.4, p < 0.001, which is attributable to the disproportionate effect of prosody in different contex ts of place of articulation. Fig. 3 Duration of V1 broken down by contexts of prosody and place of articulation 3.3 VOT of C2 Fig. 4 graphs the VOT of C2, broken down by contexts of prosody and place of articulation. From Fig. 4 it is shown that the effect of place of articulation is obvious. Repeated measures ANOVA results display that there is significant effect for place of articulation: F(2, 166) = 89.5, p < 0.001. The VOT of velar is longer than those of labial and alveolar, velar vs. labial: F(1, 83) = 90.4, p < 0.001; velar vs. alveolar: F(1, 83) = 108, p < 0.001 In regard to prosody, as far as VOT of C2 is concerned, there is no significant effect: F(1, 83) = 1.77, p = 0.187. VOT of C2 is not affected by prosody. As for the prosody x place of articulation interactive effect, it is significant: F(2, 166) = 5.18, p = 0.007, which is due to the asymmetric effect of prosody in different contexts of place of articulation. Fig. 4 VOT of C2 broken down by contexts of prosody and place of articulation 3.4 Duration of V2 Fig. 5 displays the duration of V2, broken down by contexts of prosody and of place of articulation. Repeated measures ANOVA results show that the effect of prosody is significant: F(1, 83) = 71.3, p < 0.001. Vowels following PW boundary are longer than those following PP boundary. Regarding the context of place of articulation, there is also significant effect: F(2, 166) = 11.5, p < www.irjes.com 17 | Page
  • 4. A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese 0.001. Vowels following labial are longer than those following velar: F(1, 83) = 17.6, p < 0.001, while there is no significant difference between the durations of vowels following labial and alveolar. There is also a significant prosody x place of articulation interactive effect: F(2, 166) = 49.1, p <0.001, which is due to the asymmetrical effect of prosody in different contexts of place of articulation. Fig. 5 Duration of V2 broken down by contexts of prosody and place of articulation IV. DISCUSSION 4.1 VOT of Ci Results of this experiment show that, at first, the VOT of C 1 is not affected by the place of articulation of C2, which is due to distance effect. In this study, the key segments are in the form of `C1V1#C2V2', with 'PP varied to be PW and PP boundaries, and C2 varied to be labial, alveolar and velar. The immediate neighbor of C2 is the prosodic boundary `#', and preceding which there is also vowel V 1. As a result, Ci is far from C2, and the effect of C2 on Ci will be blocked by the boundary and Vi. However, there is an effect of prosody on the VOT of C 1, with VOT preceding PP boundary longer than that preceding PW boundary. Generally speaking, segments at the end of a prosodic domain tend to be lengthened, especially vowels. In this study, there are two prosodic contexts, PW and PP boundaries, and it is shown that VOT of the stop in the final syllable can also be affected by the following prosodic boundary. Therefore, the effect of prosody on the preceding segments is great. 4.2 Duration of Vi The effect of prosody on the duration of V1 is strong. Vowels preceding PP boundary are longer than those preceding PW boundary. In Chinese, there is no length contrast for vowels. In English, there are 'long' vs 'short' vowels, like 'sheep' vs 'ship' and 'short' vs 'shot'. With this contrast, the lengthening effect of vowels in English may be limited to some extent. As there are no phonologically contrastive 'long' or 'short' vowels in Chinese, there is no limitation for the lengthening effect. Therefore, the phrase-final lengthening effect is strong in Chinese. The final-lengthening effect has the demarcative function: the lengthening of the final segment indicates the end of a prosodic phrase. This effect is communicatively functional, so it has been observed by a lot of researchers. As is mentioned in the first section of this paper, the effect of final lengthening has been extensively reported [3, 8, 9]. There is also an effect of place of articulation of C2 on the duration of V 1. This is not strange, as the two segments are immediate adjacent to each other. We speculate the reason for this is the starting time of the following segment. The duration of a vowel may be affected by the starting time of the following segment. A vowel may be a little shorter if the following segment starts quickly, whereas it may a little longer if the following segment starts slowly. In this study, C2 is varied to be /b d g/, which belongs to labial, alveolar and velar stop. When a stop is produced, at first, a closure is created in the vocal tract by the lips, tongue blade, or tongue body. The closure will be maintained for an interval of time, and then a release is followed. Generally speaking, for a small, flexible articulator such as the lip or the tongue tip, it is likely to take less time to create the closure, whereas for a larger, less flexible articulator such as the back of the tongue, it will require more time. The articulators for the labial, alveolar, and velar are the lips, tongue tip and the back of the tongue respectively. The time intervals for the creation of closure at these places are not the same: short for the lips and alveolar, and long for the back of the tongue. Just because of this, the duration of the preceding vowel is affected: short for that preceding labial and alveolar, and long for that preceding velar. As the lips are at the outer part of the mouth, and the closure of the lips is quicker than the tongue tip, vowel preceding labial is shorter than that preceding alveolar. www.irjes.com 18 | Page
  • 5. A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese 4.3 VOT of C2 There is an effect of place of articulation on the VOT of C2. VOT is short for labial and alveolar, and long of velar. The reason for this is similar to the effect on the duration of V 1. VOT is affected by the release time. The quicker the release is, the shorter the VOT will be. On the contrary, the slower the release is, the longer the VOT will be. As is mentioned above, for a small, flexible articulator such as the lip or the tongue tip, it is likely to take less time to create the closure, whereas for a larger, less flexible articulator such as the back of the tongue, it will require more time. The temporal pattern for the release is similar to that of closure creation. It may take less time to finish the release by a small, flexible articulator such as the lip or the tongue tip, while it may take more time to do this by a larger, less flexible ariticulator like the back of the tongue. Therefore VOT of labial and alveolar is short, and that of velar is long. Results in the previous section show that there is no effect of prosody on the VOT of C2. The reason for this is that C2 is varied to be three unaspirated stops /b d g/, and there is few articulatory and acoustic degree of freedom for unaspirated stops in Chinese. VOT of unaspirated stops are short in Chinese, and they are affected by place of articulation. Because of this, there is fewer variability for the unaspirated s tops in Chinese. As a result, VOT of C2 is not affected by prosody. 4.4 Duration of V2 The duration of V2 is affected by the place of articulation of the preceding consonant, with vowels following labial and alveolar longer than those following velar. We s peculate that this is because of the compensation principle [14]. It is generally approved that languages can be classified typologically into 'stresstimed' languages and 'syllable-timed' ones [15]. Languages like English and German are of the first type, and Chinese belongs to the second type. It is also believed that languages observe the isochrony principle [16]. For stress-timed languages, intervals between the stressed syllables tend to be equal, and for syllable -timed languages, syllables tend to be of equal length. Results from the previous section show that VOT of labial and alveolar are short, and that of velar is long. Chinese is a syllable-timed language, so syllables tend to be of same duration. The VOT of labial and alveolar are short, vowels following them may tend to get longer to compensate the length. Therefore, vowels following labial and alveolar are longer than those following velar. The effect of prosody on the duration of V2 is significant, with vowels following PW boundary longer than those following PP boundary. We speculate this is also due to the compensation principle. Vowel preceding PP boundary is longer than that preceding PW boundary. In Chinese, syllables tend to be of equal length, so the duration of the vowel following PP boundary will get reduced to guarantee isochrony of the syllables. V. CONCLUSION In this study, the prosodic effect on the temporal realization of segments is analyzed. It is found that, as the obstruction of the prosodic boundary and V 1, the VOT of C 1 is not affected by the context of place of articulation. However, the effect of prosody is strong, and its effect extents to the consonant of preceding syllable. Because of the final-lengthening effect, vowels preceding the PP boundary are much longer than those preceding the PW boundary. As the time intervals for the creation of closure for labial, alveolar and velar are different, there is also an effect of contexts of place of articulation on the duration of V 1. The VOT of C2 is affected by the place of articulation, but as there is little articulatory and acoustic variability for the unaspirated stops, there is no effect of prosody on it. Because of the compensation principle, the duration of V2 is affected by the place of articulation of the preceding consonant, and the duration of V2 is also affected by prosody. ACKNOWLEDGEMENTS This work was supported in part by the Social Science Research Project of Guangdong Province, Grant No. GD11CWW04, as well as the Humanity and Social Science Research Project for Colleges in Guangdong Province, Grand No. 11WYXM012. REFERENCES [1]. [2]. [3]. [4]. [5]. M. Nespor and I. Vogel, Prosodic phonology. Dordrecht: Foris, 1986. S. Shattuck-Hufnagel and A. E. Turk, "A prosody tutorial for investigators of auditory sentence processing," Journal of Psycholinguistic Research, vol. 25, pp. 193-247, 1996. C. W. Wightman, S Shattuck-Hufnagel, M. Ostendorf and P. J. Price, "Segmental durations in the vicinity of prosodic phrase boundaries," Journal of the Acoustical Society of America, vol. 91, pp.17071717, 1992. C. Fougeron, "Articulatory properties of initial segments in several prosodic constituents in French," Journal of Phonetics, vol. 29, pp. 109-135, 2001. P. A. Keating, T. Cho, C. Fougeron and C.-S. Hsu, "Domain-initial articulatory strengthening in four languages," In Papers in laboratory phonology, vol. VI, J. Local, R. Ogden, and R. Temple Eds. www.irjes.com 19 | Page
  • 6. A Study on the Effect of Prosody on the Temporal Realization of Segments in Chinese [6]. [7]. [8]. [9]. [10]. [11]. [12]. [13]. [14]. [15]. [16]. Cambridge: Cambridge University Press, 2003, pp. 145-163. T. Cho, "Prosodically conditioned strengthening and vowel-to-vowel coarticulation in English," Journal of Phonetics, vol. 32, pp. 141-176, 2004. M. Tabain, "Effects of prosodic boundary on /aC/ sequences: Acoustic results," I Acoust. Soc. Am. vol. 113, no. 1, pp. 516-531, 2003. I. Lehiste, "The timing of uttera nces and linguistic boundaries," J. Acoust. Soc. Am., vol. 51, pp. 20182024, 1972. C. Fougeron and P. Keating, "Articulatory strengthening at edges of prosodic domains," I Acoust. Soc. Am., vol. 101, pp. 3728-3740, 1997. A. Li, "The acoustic representation of the prosodic feature in Chinese dialogue," Chinese Linguistics, vol. 6, pp. 525— 535, 2002. M. Lin, "Prosodic structure and lines of FO top and bottom of utterances in Chinese," Contemporary Linguistics, no. 4, pp. 254-265, 2002. B. Wang, Y. Yang and S. Lu, "Acoustic analysis on prosodic hierachical boundaries of Chinese," Acta Acustica, vol. 29, no. 1, pp. 29-36, 2004. P. Boersma, "Praat, a system for doing phonetics by computer," Glot International, vol. 5, no. 9/10, pp. 341-345, 2001. L. Feng, "The duration of onsets a nd rhymes in connected speech in Chinese," in Experimental Studies in Chinese, Beijing: Beijing University Press, 1985. K. L. Pike, The intonation of American English, Ann Arbor: University of Michigan Press, 1945. J. Laver, Principles of phonetics, Cambridge: Cambridge University Press, 1994. www.irjes.com 20 | Page