1
REPUBLICA BOLIVARIANA DE VENEZUELA
MIISTERIO DEL PODER POPULAR PARA LA EDUCACION SUPERIOR
POLITECNICO SANTIAGO MARIÑO
MA...
2
INTRODUCCION
Se define como calculo de probabilidad al conjunto de reglas que permiten
determinar si un fenómeno ha de p...
3
TEORÍA DE PROBABILIDAD
MODELOS MATEMÁTICOS
-Modelo determinístico: estipula que las condiciones en las que se
realiza un...
4
Ejemplo:
Determine el espacio muestral para los siguientes experimentos
aleatorios:
- Exp.= Lanzar una moneda.
S = {C, S...
5
- Eventos no Excluyentes: Son aquellos eventos entre los que si hay
intersección, E1 ∩ E2 ≠ Ø. Lo que significa que E1 ∩...
6
Entonces se hace la siguiente pregunta: ¿cómo se puede asociar un
número con el evento E que mida de alguna manera la po...
7
PosiblesCasosdeTotal
(E)aFavorablesCasos
)(
°
°
=
N
N
EP
AXIOMAS DE PROBABILIDAD
Suposición: espacio muestral finito, es...
8
REGLA DE LA ADICIÓN
Dado dos eventos A y B, la regla de la adición se utiliza cuando se
desea calcular la probabilidad d...
9
En general tenemos dos formas de calcular ( )ABP / :
a. Directamente, considerando la probabilidad de A respecto al espa...
10
Como ( ) ( )APEAP =/ , se concluye que los evento A y E son
independientes.
REGLA DE LA MULTIPLICACIÓN.
También conocid...
11
Nótese que las probabilidades de las segundas ramas son
probabilidades condicionales, ( )1/CBP es la probabilidad de se...
12
Éste es un experimento secuencial, primero se selecciona la caja y luego
se selecciona una esfera de dicha caja. Cuando...
13
CONCLUSION
El concepto de probabilidad se aplica a los elementos de una
Población homogénea. Supongamos una población f...
14
BIBLIOGRAFIA
http://www.vitutor.com/pro/2/a_1.html
teoría-probabilidades/teoria-probabilidades.shtml
http://es.scribd.c...
Próxima SlideShare
Cargando en…5
×

Teoriadeprobabilidad izquiel TRABAJO DE ESTADISTICA

190 visualizaciones

Publicado el

ENSAYO DE ESTADISTICA. ARIEXY IZQUIEL

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
190
En SlideShare
0
De insertados
0
Número de insertados
2
Acciones
Compartido
0
Descargas
0
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Teoriadeprobabilidad izquiel TRABAJO DE ESTADISTICA

  1. 1. 1 REPUBLICA BOLIVARIANA DE VENEZUELA MIISTERIO DEL PODER POPULAR PARA LA EDUCACION SUPERIOR POLITECNICO SANTIAGO MARIÑO MARACAIBO. EDO-ZULIA CATEDRA: ESTADISTICA ENSAYO “TEORIA DE LA PROBABILIDAD” RELIZADO POR: ARIEXY IZQUIEL C.I: 25.194.753
  2. 2. 2 INTRODUCCION Se define como calculo de probabilidad al conjunto de reglas que permiten determinar si un fenómeno ha de producirse fundado en la suposición en el calculo, las estadísticas y la teoría. En el presente informe se encuentra un breve resumen sobre la Teoría de la probabilidad, se espera que el mismo sirva como material de apoyo a los alumnos cursantes de la cátedra Estadística.
  3. 3. 3 TEORÍA DE PROBABILIDAD MODELOS MATEMÁTICOS -Modelo determinístico: estipula que las condiciones en las que se realiza un experimento determina el resultado del mismo. -Modelo probabilístico (también conocido como modelo aleatorio, estocástico o no determinístico): las condiciones experimentales sólo determinan el comportamiento probable de los resultados observables. EXPERIMENTO ALEATORIO. ESPACIO MUESTRAL. EVENTOS Experimento: es la realización de un proceso que conduce a un resultado. Experimento Aleatorio. Si se efectúan experimentos repetidamente bajo condiciones aproximadamente idénticas y se obtienen resultados que pueden considerarse iguales, se trata de experimentos no aleatorios, llamados experimentos determinísticos. En el caso de experimentos determinísticos, para describir los fenómenos observados se utilizan modelos matemáticos determinísticos, donde las condiciones del experimento determinan los resultados. Por ejemplo el cálculo de la distancia recorrida por un vehiculo, manteniendo las variables tiempo y velocidad constantes. Sin embargo, en algunos experimentos aunque se repiten bajo condiciones aproximadamente idénticas los resultados no son los mismos, éstos son experimentos aleatorios. En el caso de experimentos aleatorios, para describir los fenómenos observados se utilizan modelos matemáticos probabilísticos. Un experimento aleatorio es aquel que proporciona diferentes resultados aún cuando se repite siempre de la misma manera. Ejemplo: Son experimentos aleatorios los siguientes: - Lanzar una moneda. - Lanzar un dado. - Inspeccionar un producto y evaluar si es aceptable o defectuoso. Espacio Muestral. El conjunto de todos los posibles resultados de un experimento aleatorio recibe el nombre de espacio muestral. El espacio muestral se denota con la letra S. Cada uno de los componentes del espacio muestral se denomina punto muestral. Un espacio muestral puede ser: Finito, si tiene un número finito de puntos. Infinito contable, si tiene tantos puntos como números naturales. Infinito, si tiene tantos puntos como hay en un intervalo del eje x.
  4. 4. 4 Ejemplo: Determine el espacio muestral para los siguientes experimentos aleatorios: - Exp.= Lanzar una moneda. S = {C, S} - Exp.= Lanzar un dado. S = {1, 2, 3, 4, 5, 6} - Exp.= Inspeccionar un producto y evaluar si es aceptable o defectuoso. S = {Aceptable, Defectuoso} Evento. Un evento es un subconjunto del espacio muestral S de un experimento aleatorio. Se dice que el evento ocurre si el experimento aleatorio da lugar a uno de los resultados que forman parte del evento. Se denota con la letra E. Operaciones con eventos Tratándose los eventos de subconjuntos del espacio muestral, es natural que satisfagan todas las características de los conjuntos. Sean A y B dos eventos pertenecientes a un espacio muestral S. La intersección, que se denota BA ∩ , es el evento que consta de todos los resultados en S que pertenecen tanto a A como a B. Por tanto, la intersección BA ∩ ocurre si y sólo si tanto A como B ocurren. La unión, que se denota BA ∪ , es el evento que consta de todos los resultados en S que pertenecen al menos a uno de estos eventos. Por lo tanto, la unión BA ∪ ocurre si y sólo si A y/o B ocurren. Evento Simple. Se refiere a cada uno de los elementos del espacio muestral. Evento Compuesto Está formado por varios eventos simples. Evento Complemento. Si se tiene un evento E, el evento complemento de E (respecto al espacio muestral S), denotado E′, es el conjunto que esta formado por los elementos del espacio muestral S que no forman parte del evento E. Tipos de Eventos. - Eventos Mutuamente Excluyentes: Si dos eventos E1 y E2 no tienen puntos muestrales en común se denominan mutuamente excluyentes. Dos eventos E1 y E2 tales que su intersección es el conjunto vacío, es decir, E1 ∩ E2 = Ø, son eventos mutuamente excluyentes. Lo que significa que E1 ∩ E2 no puede ocurrir. E1 E2 S
  5. 5. 5 - Eventos no Excluyentes: Son aquellos eventos entre los que si hay intersección, E1 ∩ E2 ≠ Ø. Lo que significa que E1 ∩ E2 si puede ocurrir. Tablas de Contingencia Un método útil para clasificar los datos obtenidos en un recuento es mediante las tablas de contingencia. Ejemplo: Se sortea un viaje a Roma entre los 120 mejores clientes de una agencia de automóviles. De ellos, 65 son mujeres, 80 están casados y 45 son mujeres casadas. Realice una tabla de contingencia. HOMBRES MUJERES CASADOS 35 45 80 SOLTEROS 20 20 40 55 65 120 Diagramas de Árbol Un diagrama de árbol es una representación gráfica que muestra los resultados posibles de una serie de experimentos y sus respectivas probabilidades. Para la construcción de un diagrama en árbol se partirá poniendo una rama para cada una de las posibilidades, acompañada de su probabilidad. En el final de cada rama parcial se constituye a su vez, un nudo del cual parten nuevas ramas, según las posibilidades del siguiente paso, salvo si el nudo representa un posible final del experimento (nudo final). Hay que tener en cuenta: que la suma de probabilidades de las ramas de cada nudo ha de dar 1. DEFINICION DE PROBABILIDAD Conocidos los conceptos anteriores, se plantea lo siguiente: si E es un evento asociado con el experimento aleatorio y su espacio muestral S, no podemos indicar con certeza, en principio, si E ocurrirá o no. E1 E2 SE1 ∩ E2
  6. 6. 6 Entonces se hace la siguiente pregunta: ¿cómo se puede asociar un número con el evento E que mida de alguna manera la posibilidad de que E ocurra? Probabilidad. Enfoque Frecuentista. Suponga que un experimento aleatorio se repite n veces, donde n es muy grande. Sean A y B dos eventos (resultados) relacionados con el experimento. Sean nA y nB el número de veces que A y B ocurren respectivamente en las n repeticiones. Frecuencia relativa para el evento A se define como n n f A A = . Frecuencia Relativa para el evento B se define como n n f B B = . Ejemplo: Experimento: Lanzamiento de una moneda. El espacio muestral S = {C, S}. Considérese el evento A = sale cara, A = {C}. Observe esta realización particular del experimento, repetido varias veces: n 1 2 3 4 5 6 7 8 9 10 11 12 13 nA 0 0 1 1 2 3 4 5 6 6 6 6 7 fA 0 0 0.33 0.25 0.2 0.5 0.57 0.62 0.67 0.6 0.55 0.5 0.54 Si el experimento se repite un gran número de veces puede verse que empíricamente que la frecuencia relativa del evento A, A = sale cara, tiene un valor cercano a 0,5. Si se repite un experimento aleatorio en las mismas condiciones y se obtiene la frecuencia relativa de un evento, se observa que tiende a estabilizarse alrededor de un número entre cero y uno. Este valor recibe el nombre de probabilidad. Probabilidad. Enfoque Clásico. Si un evento puede ocurrir de h maneras diferentes de un número total de n maneras posibles, todas igualmente probables. Entonces la probabilidad del evento se calcula como n h . Dicho de otra manera, si todos los elementos del espacio muestral S son equiprobables (todos tienen la misma probabilidad de realizarse), se tiene que la probabilidad de un evento E es el cociente entre el número de resultados favorables a que ocurra el evento E en el experimento y el número de resultados posibles del experimento.
  7. 7. 7 PosiblesCasosdeTotal (E)aFavorablesCasos )( ° ° = N N EP AXIOMAS DE PROBABILIDAD Suposición: espacio muestral finito, es decir S = {a1, a2,..., ak} Definiremos como evento simple o elemental al evento constituido por un sólo resultado, es decir Ai = {ai} para i = 1, ,k. Asignamos un número pi a cada Ai mediante P(Ai) = pi tal que: 1. Para todo evento A, ( ) 0≥AP 2. ( ) 1=SP 3. Para cualquier número de eventos mutuamente excluyentes A1, A2, ( ) ( ) ( ) ........... 2121 ++=∪∪ APAPAAP ALGUNOS TEOEMAS SOBRE PROBABILIDAD TEOREMA 1: Para todo evento A, ( ) 10 ≤≤ AP Es decir, la probabilidad es un número entre cero y uno. TEOREMA 2: ( ) 0=∅P Es decir, la probabilidad del conjunto vacío es cero. TEOREMA 3: Si A′ es el complemento de A, entonces: ( ) ( )APAP −=′ 1 TEOREMA 4: Si ( )nAAAA ∪∪∪= ......21 , donde A1, A2, .An son mutuamente excluyentes, entonces ( ) ( ) ( ) ( )nAPAPAPAP +++= .....21 En particular, si A=S, el espacio muestral, entonces ( ) ( ) ( ) 1.....21 =+++ nAPAPAP TEOREMA 5: Si el espacio muestral está formado por N posibles resultados, igualmente probables, ( )nAAAS ∪∪∪= ......21 , la probabilidad de cada uno de ellos será N 1 , ( ) N AP k 1 = , para k = 1, 2, 3, N
  8. 8. 8 REGLA DE LA ADICIÓN Dado dos eventos A y B, la regla de la adición se utiliza cuando se desea calcular la probabilidad de que ocurra el evento A, el evento B o ambos, es decir, la probabilidad de A unión B, ( )BAP ∪ ó ( )AoBP . - Para eventos no excluyentes: ( ) ( ) ( ) ( )BAPBPAPBAP ∩−+=∪ - Para eventos mutuamente excluyentes: ( ) ( ) ( )BPAPBAP +=∪ Ejemplo: Se tiene un juego de cartas españolas, determinar la probabilidad de elegir una al azar y sea: 1. Copa o Oro 2. Siete o Espada 1. O = {La carta sea de Copa o de Oro} ( ) ( ) ( ) ( )OPCPOCPOCP +=∪=ο ( ) 5,0 40 10 40 10 =+=∪ OCP Se utiliza la fórmula de la Regla de la Adición para eventos mutuamente excluyentes ya que no hay intersección entre el evento Copa y el evento Oro, dicho de otra manera no hay una carta que sea Oro y a la vez sea Copa. 2. S= {La carta sea de Siete o Espadas} ( ) ( ) ( ) ( )ESPEPSPESP ∩−+=∪ ( ) 325,0 40 13 40 1 40 10 40 4 ==−+=∪ ESP Se observa que existen 4 cartas número Siete de un total de 40, aparte hay 10 cartas de tipo Espada de un total de 40, pero también existe 1 carta que es tipo Espada y a la vez número Siete. Se utiliza la fórmula de la Regla de la Adición para eventos no excluyentes ya que hay intersección entre el evento Siete y el evento Espada. Se suman los dos primeros y se le resta la intersección existente. PROBABILIDAD CONDICIONAL La probabilidad condicional de un evento B dado que ocurrió un evento A, se denota ( )ABP / . Como ya ocurrió el evento A, éste es el nuevo espacio muestral. Probabilidad de ocurrencia del evento B, dado que ocurrió el evento A. ( ) ( ) ( )AP BAP ABP ∩ =/
  9. 9. 9 En general tenemos dos formas de calcular ( )ABP / : a. Directamente, considerando la probabilidad de A respecto al espacio muestral B. b. Usando la definición, donde ( )ABP / y P (B) se calculan respecto al espacio muestral original S. Ejemplo: Se tiene un juego de cartas españolas, si se selecciona una carta al azar. ¿Cuál es la probabilidad de que sea As dado que es Espada? A = {La carta se As} E = {La carta sea Espada} Se pide una probabilidad Condicional P (A/E) ( ) ( ) ( )EP EAP EAP ∩ =/ ( ) 40 1 =∩ EAP ( ) 40 10 =EP ( ) 1,0 10 1 40 10 40 1 / ===EAP EVENTOS DEPENDIENTES. EVENTOS INDEPENDIENTES. - Dos eventos son dependientes cuando la ocurrencia de uno afecta la probabilidad de ocurrencia de otros eventos sucesivos. ( ) ( )BPABP ≠/ - Dos eventos son independientes cuando la ocurrencia de uno no afecta la probabilidad de ocurrencia de otros eventos sucesivos. ( ) ( )BPABP =/ Ejemplo: Determine si los siguientes eventos A = {La carta se As} y E = {La carta sea Espada}, son dependientes o independientes. Se calcula ( )EAP / y ( )AP , para verificar si son iguales o diferentes ( ) 1,0/ =EAP , tomado del ejemplo anterior. ( ) 1,0 40 4 ==AP
  10. 10. 10 Como ( ) ( )APEAP =/ , se concluye que los evento A y E son independientes. REGLA DE LA MULTIPLICACIÓN. También conocido como Teorema de Multiplicación, se puede ver como una consecuencia de la definición de probabilidad condicional, indica que la probabilidad de la intersección de dos eventos cualesquiera A y B, ( )BAP ∩ ó ( )AyBP . -Para eventos dependientes: ( ) ( ) ( )APABPBAP ∗=∩ / -Para eventos independientes: ( ) ( ) ( )BPAPBAP ∗=∩ Ejemplo: Se tienen dos cajas: Caja 1 y Caja 2. Dentro de la Caja 1 hay tres esferas, una blanca y dos verdes. Dentro de la Caja 2 hay cuatro esferas, dos blancas y dos verdes. Una persona selecciona al azar una caja y luego selecciona una esfera. Calcular la probabilidad de que la persona haya seleccionado la caja 1 y una esfera verde. En primer lugar debe realizarse el diagrama de árbol, con sus respectivas probabilidades. C1 C2 B V B V P (C1)= ½ = 0,5 ( ) 3 1 1/ =CBP P (C2)= ½ = 0,5 ( ) 3 2 1/ =CVP ( ) 4 2 2/ =CBP ( ) 4 2 2/ =CVP
  11. 11. 11 Nótese que las probabilidades de las segundas ramas son probabilidades condicionales, ( )1/CBP es la probabilidad de seleccionar una esfera blanca dado que se selecciona la caja 1. Se pide la probabilidad de que la persona haya seleccionado la caja 1 y una esfera verde, esto es una intersección, es decir, ( )VCP ∩1 , se usa la regla de la multiplicación. )1/()1()1( CVPCPVCP ∗=∩ 3 1 3 2 2 1 )1( =∗=∩VCP TEOREMA DE BAYES Se refiere a la probabilidad condicional de A dado que ocurrió el evento B. Se aplica en eventos secuenciales. Se usa para determinar que un evento se debió a una causa específica. ( ) )( )|( BP BAP BAP ∩ = Sean A1, A2, ..Ak ( ) ( ) )( / )|( BP APABP BAP kk k ∗ = ( )BP es la probabilidad total ( ) ( ) ( ) ( ) ( ) ( ) ( )KK ABPAPABPAPABPAPBP /......// 2211 ∗+∗+∗= Ejemplo: Se tienen dos cajas: Caja 1 y Caja 2. Dentro de la Caja 1 hay tres esferas, una blanca y dos verdes. Dentro de la Caja 2 hay cuatro esferas, dos blancas y dos verdes. Una persona selecciona al azar una caja y luego selecciona una esfera. Calcular la probabilidad de que la persona haya seleccionado la caja 1 dado que la esfera es verde. C1 C2 B V B V P (C1)= ½ = 0,5 ( ) 3 1 1/ =CBP P (C2)= ½ = 0,5 ( ) 3 2 1/ =CVP ( ) 4 2 2/ =CBP ( ) 4 2 2/ =CVP
  12. 12. 12 Éste es un experimento secuencial, primero se selecciona la caja y luego se selecciona una esfera de dicha caja. Cuando se lee la pregunta se observa que es una probabilidad condicional por la palabra "dado" y que el sentido de la pregunta es contrario a como ocurre el experimento, dice: la probabilidad de que la persona haya seleccionado la caja 1 dado que la esfera es verde, es decir lo que ya ocurrió o ya se sabe es el color de la esfera que ocurre en segundo lugar en el experimento, y se pregunta por lo que sucede en primer lugar que es seleccionar la caja. En este caso hay que aplicar el Teorema de Bayes. )( )1()1/( )/1( VP CPCVP VCP ∗ = ( ) 3 2 1/ =CVP 2 1 )1( =CP P (V) es la probabilidad de que la esfera seleccionada sea verde, nótese en el diagrama de árbol que se puede seleccionar una esfera verde a partir de la caja 1 o de la caja 2.Entonces )2()1()( VCPVCPVP ∩+∩= , esto se conoce como probabilidad total )2/()2()1/()1()( CVPCPCVPCPVP ∗+∗= 58,0 12 7 ) 4 2 2 1 () 3 2 2 1 ()( ==∗+∗=VP Se calcula la probabilidad pedida 57,0 7 4 12 7 2 1 3 2 )/1( == ∗ =VCP
  13. 13. 13 CONCLUSION El concepto de probabilidad se aplica a los elementos de una Población homogénea. Supongamos una población finita con N elementos, k de los cuales tienen la característica A. Llamaremos “probabilidad de la característica A en la población” a la frecuencia relativa k / N. Se escribe: P ( A ) = k / N La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
  14. 14. 14 BIBLIOGRAFIA http://www.vitutor.com/pro/2/a_1.html teoría-probabilidades/teoria-probabilidades.shtml http://es.scribd.com/doc/33617018/Teoria-de-las-probabilidades-y- estadistica-matematica

×