Normal

769 visualizaciones

Publicado el

Actividad Grupo simulaciones

0 comentarios
1 recomendación
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
769
En SlideShare
0
De insertados
0
Número de insertados
28
Acciones
Compartido
0
Descargas
27
Comentarios
0
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.
  • La Empresa A consume en
    promedio 85 mil  cm3  de combustible con un desvío de  
    7 mil cm3
    La Empresa B consume en promedio 90 mil  cm3  de combustible con un desvío de  
    7 mil cm3
  • La Empresa A consume en
    promedio 85 mil  cm3  de combustible con un desvío de  
    7 mil cm3
    La Empresa C consume en promedio 85 mil  cm3  de combustible con un desvío de  
    9 mil cm3
  • Los esquemas quedarían señalados de la siguiente manera pudiéndose sombrear la región de la izquierda.
    (van los 4 gráficos siguientes en otra diapositiva)
  • La respuesta correcta es:
    Si conocen la propiedad pueden asociar cada uno de los puntos con una desviación estándar del problema y con 1 en la Normal Estándar (la tabulada) e ir directamente a la tabla y buscar la probabilidad acumulada hasta uno. Expresando los resultados de la siguiente manera.
    P(XA < 92)  = P(XB < 97)  = P(XC < 94)  = P( z < 1)  =  0,8413
  • Normal

    1. 1. Análisis de la distribución Normal o de Gauss Grupo Simulaciones
    2. 2. La distribución Normal La curva de Gauss
    3. 3. La distribución Normal La campana de Gauss, curva de Gauss o curva normal, es la representación gráfica de una función de probabilidad continua, simétrica, cuyo máximo coincide con la media (μ) y que tiene dos puntos de inflexión situados a ambos lados de la media, a una distancia de un desvío estándar (σ) de ella.
    4. 4. Muchas características de fenómenos siguen el Modelo Normal
    5. 5. Los parámetros son: La media poblacional, μ La varianza poblacional, σ2 Representación Gráfica Valor de la media
    6. 6. Comparaciones de algunas distribuciones de Gauss con distintos parámetros En las siguintes representaciones se observa cómo influyen los valores de la media y de la varianza en la forma que adopta la curva.
    7. 7. De acuerdo a las representaciones gráficas del cuadro anterior: • Qué influencia tiene la media (µ) en la “forma y ubicación” de la curva de Gauss? • Qué influencia tiene la desviación típica (σ) o la varianza, en la “forma y en la ubicación” de la campana de Gauss? • Qué influencia tiene la media y la desviación típica (varianza) en el área encerrada por la curva y el eje real? Para analizar:
    8. 8. Comparación y Análisis De acuerdo a las representaciones gráficas –diapositiva 6- correspondientes a distribuciones con distintos parámetros se puede concluir que : • El valor de la media influye en la ubicación del gráfico, a mayor valor de la media (µ) la campana de Gauss se desplaza hacia la derecha en el eje real alejándose de 0 y a menor media se corre hacia la izquierda acercándose al origen de coordenadas. • la desviación típica (σ) o la varianza (σ2 ) influye directamente en la “forma” de la campana de Gauss, a menor dispersión la curva se empina y sus valores están más concentrados alrededor de la media y a mayor desvío la curva se aplana desparramándose más hacia los costados. • Para responder la tercer pregunta se ha diseñado una actividad concreta con los alumnos.
    9. 9. Propuesta de Trabajo El objetivo de la clase es que los alumnos observen que, cuando se trata de la distribución normal, la escala en que se miden las áreas que representan medidas de probabilidades es precisamente una desviación estándar y que una de las características de las curvas de Gauss es que todas encierran un área igual a 1 entre la curva y el eje real. Y más aún, todas encierran el mismo área entre la media y un múltiplo de la desviación estándar; si se toman intervalos de amplitudes iguales a un múltiplo de este parámetro en todas y cada una de ellas, la probabilidad de que la variable tome un valor entre los extremos de ese intervalo es la misma porque bajo la curva se halla encerrado el mismo área. Y es eso juntamente lo que hace posible el manejo de tabla de la normal estándar para calcular probabilidades (igual al área correspondiente). Para comprobar, no demostrar, tal afirmación se analizan y comparan varias distribuciones del consumo de combustible de las maquinarias de empresas del mismo rubro y tamaño.
    10. 10. Problema - ejemplo • Analizar y comparar las distribuciones del consumo de combustible de las máquinas que utilizan empresas textiles. • Se seleccionan tres empresas textiles de igual tamaño averiguándose el consumo medio de combustible, la varianza y el desvío estándar de cada una. • Seguidamente se pueden observar las distintas situaciones del consumo de combustible de las empresas seleccionadas.
    11. 11. Distribución del consumo de combustibles de las empresas A y B Empresa “A” Empresa “B” μ = 90 σ = 7 μ = 85 σ = 7
    12. 12. Distribucíón del consumo de combustible de las empresas A y C Empresa A Empresa C μ = 85 σ = 7 μ = 85 σ = 9
    13. 13. Ejercicio 1.      -  Representar gráficamente, de a dos, las  distribuciones de cada una de las empresas teniendo  en cuenta seleccionar aquellas que tengan en común  uno de los parámetros.  - Ubicar en cada uno de los gráficos el punto que  supera a la media en exactamente una desviación  estándar (el punto de inflexión de la derecha: 92 para  la curva de Empresa “A”, 97 para la “B” y 94 en la  curva de Empresa “C”). 
    14. 14. Ejercicio 2.  Calcular las probabilidades de que en un  mes cualquiera la empresa A consuma menos de 92  mil cm3 , la empresa B menos de 97 mil cm3 y la C  menos de 94 mil cm3  (área encerrada bajo la curva  desde menos infinito hasta cada uno de esos puntos). Ejercicio 3. Calcular las probabilidades de que en un  mes cualquiera en la empresa A se consuma entre de  78 y 92 mil cm3 , en la empresa B entre de 83 mil cm3   y 97 mil cm3 y en la C entre 76 mil cm3  y 94 mil cm3 .
    15. 15. Ejercicio 4. Calcular las probabilidades de que en  un mes cualquiera en la empresa A se consuma  entre de 81,50 y 92 mil cm3 , en la empresa B  entre de 86,50 mil cm3  y 97 mil cm3 y en la C  entre 80,50 mil cm3 y 94 mil cm3 . Ejercicio 5.  Comparar y analizar los resultados  obtenidos en 2, 3 y 4. 
    16. 16. Resolución de las actividades Ejercicio 1. Los alumnos tendrían que representar las curvas de las Empresas “A” y “ B”, como la s que figuran en la diapositiva n° 6 y las de las Empresas “A” y “C” como las de la diapositiva n° 7. Luego repiten los mismos gráficos marcando el punto que se ubica a la derecha de μ en 7 o 9 unidades (una desviación estándar).
    17. 17. Ejercicio 2
    18. 18. Ejercicio 3   
    19. 19. Ejercicio 4  
    20. 20. Ejercicio 5. Comparar y analizar los resultados obtenidos en 2, 3 y 4. Los alumnos, a partir de los gráficos y cálculo de las probabilidades realizadas pueden enunciar algunas relaciones fundamentales de la distribución normal.

    ×