<ul><li>Matemáticas para Técnico Superior en Administración de Empresas: Mención en Recursos Humanos </li></ul>Profesora: ...
LOGICA La lógica ocupa un lugar de primera importancia en el quehacer humano y en particular en Matemáticas. Una sentencia...
ELEMENTOS DE LOGICA - Definiciones y conceptos 1.- Lógica: es la ciencia que trata de las leyes, modos y formas del razocí...
Características y clasificación <ul><li>El carácter fundamental de un enunciado  es que o bien es verdadero o falso, pero ...
Los  enunciados se designan con las letras p, q, r, ..s, t  Ejemplos: 1.- Las rosas son rojas  (enunciado simple) 2.- Las ...
1.- Conjunción:  / El conectivo “ y” para formar el enunciado compuesto se llama “conjunción” y su símbolo es el indicado ...
<ul><li>V1 : Si “p” y “q” son verdaderos entonces: </li></ul><ul><li>p / q </li></ul><ul><li>también es verdadero  </li></...
2.- Disyunción:  / <ul><li>Dos enunciados se pueden combinar por medio de la palabra “o” (y/o) para formar un nuevo enunci...
Tabla de verdad  <ul><li>P/q significa:  p o q ;  p y/o q, que tiene un  sentido incluyente, p o q,  o ambas . </li></ul><...
V2: si “p” es verdadero o “q” es verdadero, o si “p y q” son verdaderos, entonces: p/q es verdadero. 3.- Negación:  //  <u...
V3: si “p” es verdadero, entonces  “ - p”  es falso.  Si “p” es falso, entonces “-  p”   es verdadero. El valor de verdad ...
Su tabla de verdad es: p  -  p v  f f  v Ejemplos: 1.- Si el enunciado p dice: p: París está en Francia.  (es verdadero.) ...
4.- Condicional:  p  q ( significa: p implica  q) Muchos enunciados matemáticos son de la forma: a)  Si p entonces q b)  S...
Su tabla de verdad es: p  q  p  q v  v  v v  f  f f  v  v f  f  v  Ejemplos: 1.- Si París está en Francia, entonces 2+2 = ...
5.- Bicondicional:  p  q Otro enunciado corriente es de la forma “p si, y solamente si, q”. O en forma abreviada se expres...
Su tabla de verdad es: p  q  p  q v  v  v v  f  f f  v  f f  f  v  Ejemplos: 1.- París está en Francia, si y solo si 2+2 =...
PROPOSICIONES Y TABLAS DE VERDAD Existe un paralelo entre una “función algebraica, con sus respectivas variables” y la lla...
El “valor de verdad” de una proposición P(p,q.....) evaluados sobre enunciados cualesquiera, es función solamente de los “...
p  q  -q  p  /  -q  -(p /  -q) v  v  f  f  v v  f  v  v  f f  v  f  f  v f  f  v  f  v  El valor de verdad de esta proposi...
Tautologías  y Contradición   1.- Una Tautología es una proposición compuesta, cuyos “valores de verdad” son verdaderos en...
Ejemplo 2:  p  (p/q) p  q  p/q  p  (p/q) v  v  v  v v  f  v  v f  v  v  v f  f  f  v luego es una Tautología
Ejemplo 3.-( p  q)  ( p  /  - q) Tabla de verdad: p  q  -q  p  / - q  p  q  ( p / - q ) v  v  f  f  f v  f  v  v  f f  v  ...
Equivalencia lógica: Dos proposiciones P y Q se dicen lógicamente equivalentes si sus tablas de verdad son idénticas. O se...
Tabla de verdad del segundo miembro: p  q  p  q v  v  v f  v  f v  f  f f  f  v Luego es una equivalencia, puesto que la t...
Una equivalencia lógica también se puede demostrar en una sola tabla como se ve en el ejemplo siguiente: Demuestre que: - ...
La dificultad que presentan las tablas de verdad, es la gran cantidad de operaciones que hay que hacer  para una proposici...
Las tablas de verdad de esta álgebra de proposiciones se aplica en los diseños de circuitos conmutadores que hacen posible...
Se define un interruptor A de la manera siguiente: cerrado(pasa corriente)  A  =  < abierto (no pasa corriente) Dada una p...
Podemos interpretar la “conjunción  y la disyunción como sigue:  A  B  p / q  =>  circuito en serie  abierto y cerrado  A ...
En estos circuitos, se interpretan los valores de verdad con 1 y 0. Valor 1: corriente eléctrica o circuito cerrado ( V ) ...
Tablas de verdad de los circuitos en serie y // son: A  B  A / B  A  B  A / B 1  1  1  1  1  1 1  0  0  1  0  1 0  1  0  0...
Próxima SlideShare
Cargando en…5
×

Copia (3) de logica colores azul 2008

457 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
457
En SlideShare
0
De insertados
0
Número de insertados
2
Acciones
Compartido
0
Descargas
7
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Copia (3) de logica colores azul 2008

  1. 1. <ul><li>Matemáticas para Técnico Superior en Administración de Empresas: Mención en Recursos Humanos </li></ul>Profesora: Jeanett Peña Ovalle
  2. 2. LOGICA La lógica ocupa un lugar de primera importancia en el quehacer humano y en particular en Matemáticas. Una sentencia lógica está sujeta a dos valores: VERDADERO (V) o FALSO (F) Reciben el nombre de “valores de verdad”
  3. 3. ELEMENTOS DE LOGICA - Definiciones y conceptos 1.- Lógica: es la ciencia que trata de las leyes, modos y formas del razocínio, algo legítimo y natural. 2.- Enunciado:es toda expresión que tenga sentido y de la cual se puede afirmar que es verdadera o falsa.
  4. 4. Características y clasificación <ul><li>El carácter fundamental de un enunciado es que o bien es verdadero o falso, pero no ambas cosas. </li></ul><ul><li>Se clasifican en: simples y compuestos. </li></ul><ul><li>Los enunciados simples son aquellos que no están vinculados con otros. </li></ul><ul><li>Los enunciados compuestas están formados por uno o más enunciados simples vinculados entre si a través de los llamados conectivos lógicos. </li></ul>
  5. 5. Los enunciados se designan con las letras p, q, r, ..s, t Ejemplos: 1.- Las rosas son rojas (enunciado simple) 2.- Las rosas son rojas y las violetas son azules. (enunciado compuesto)
  6. 6. 1.- Conjunción: / El conectivo “ y” para formar el enunciado compuesto se llama “conjunción” y su símbolo es el indicado “/” Sea “p” :las rosas son rojas sea “q” :las violetas son azules
  7. 7. <ul><li>V1 : Si “p” y “q” son verdaderos entonces: </li></ul><ul><li>p / q </li></ul><ul><li>también es verdadero </li></ul><ul><li>Tabla de verdad de p/q </li></ul><ul><li>p q p/q </li></ul><ul><li>v v v </li></ul><ul><li>v f f </li></ul><ul><li>f v f </li></ul><ul><li>f f f </li></ul>
  8. 8. 2.- Disyunción: / <ul><li>Dos enunciados se pueden combinar por medio de la palabra “o” (y/o) para formar un nuevo enunciado. </li></ul><ul><li>Su símbolo es: / </li></ul><ul><li>Ejemplo: </li></ul><ul><li>sea p: él estudió francés en la universidad </li></ul><ul><li>q: él vivió en Francia </li></ul>
  9. 9. Tabla de verdad <ul><li>P/q significa: p o q ; p y/o q, que tiene un sentido incluyente, p o q, o ambas . </li></ul><ul><li>Tabla de verdad de p / q </li></ul><ul><li>p q p / q </li></ul><ul><li>v v v </li></ul><ul><li>v f v </li></ul><ul><li>f v v </li></ul><ul><li>f f f </li></ul>
  10. 10. V2: si “p” es verdadero o “q” es verdadero, o si “p y q” son verdaderos, entonces: p/q es verdadero. 3.- Negación: // <ul><li>Dado un enunciado “p” se puede formar otro que recibe el nombre de “negación”de p. </li></ul><ul><li>Su símbolo es: // </li></ul><ul><li>El valor de la negación de un enunciado depende de la siguiente condición: </li></ul>
  11. 11. V3: si “p” es verdadero, entonces “ - p” es falso. Si “p” es falso, entonces “- p” es verdadero. El valor de verdad de la negación, es siempre opuesto del valor de verdad del enunciado.
  12. 12. Su tabla de verdad es: p - p v f f v Ejemplos: 1.- Si el enunciado p dice: p: París está en Francia. (es verdadero.) La negación de este enunciado - p es: - p: París no está en Francia. (es falso)
  13. 13. 4.- Condicional: p q ( significa: p implica q) Muchos enunciados matemáticos son de la forma: a) Si p entonces q b) Si p implica q c) Si p solamente si q d) p es suficiente para q V4: El condicional p q es verdadero, a menos que p sea verdadero y q falso, es decir un enunciado verdadero no puede implicar uno falso.
  14. 14. Su tabla de verdad es: p q p q v v v v f f f v v f f v Ejemplos: 1.- Si París está en Francia, entonces 2+2 = 5. (es F ) 2.- Si París está en Inglaterra entonces 2+2 = 4.(es V) 3.- Si París está en Francia, entonces 2+2 = 4. (es V) 4.- Si París está en Inglaterra, entonces 2+2 = 5.(es V)
  15. 15. 5.- Bicondicional: p q Otro enunciado corriente es de la forma “p si, y solamente si, q”. O en forma abreviada se expresa como “pssiq”. O “p si y sólo si q”, que es una doble implicación. Estos enunciados obedecen la siguiente condición: V5: Si p y q tienen el mismo valor de verdad entonces p q es verdadero. Si p y q tienen valores de verdad opuestos, entonces p q es falso
  16. 16. Su tabla de verdad es: p q p q v v v v f f f v f f f v Ejemplos: 1.- París está en Francia, si y solo si 2+2 =5 (es F) 2.- París está en Inglaterra, si y solo si 2+2 =4 (es F) 3.- París está en Francia, si y sólo si 2+2 = 4 (es V) 4.- París está en Inglaterra, si y sólo si 2+2 =5 (es V)
  17. 17. PROPOSICIONES Y TABLAS DE VERDAD Existe un paralelo entre una “función algebraica, con sus respectivas variables” y la llamada “Algebra de Proposiciones con sus proposiciones y enunciados, los que constituyen sus variables. 1:_ En álgebra se expresa: f(x,y) 2.- En álgebra de proposiciones se expresa: P(p,q)
  18. 18. El “valor de verdad” de una proposición P(p,q.....) evaluados sobre enunciados cualesquiera, es función solamente de los “valores de verdad” de los enunciados. Luego se habla del “valor de verdad” de cada una de las variables “p y q” y de la proposición “P(p,q)”. En la construcción de la tabla de verdad de una proposición el Nº de filas queda determinado por el Nº de combinaciones de “v y f” que pueden tener los enunciados. P, q, r. Dos enunciados se combinan de 4 maneras, tres enunciados de 8 maneras. Se determina con la expresión: 2n Por ejemplo: La tabla de verdad de la proposición: - (p / -q) se construye como sigue:
  19. 19. p q -q p / -q -(p / -q) v v f f v v f v v f f v f f v f f v f v El valor de verdad de esta proposición , queda indicado en la última columna. Son dos enunciados, p, q 4 filas: 2 Si son 3 los enunciados: p, q, r 8 filas : 2 = 8 El valor
  20. 20. Tautologías y Contradición 1.- Una Tautología es una proposición compuesta, cuyos “valores de verdad” son verdaderos en todos los casos de la tabla de verdad. 2.- Contradicción es una proposición compuesta, cuyos valores de verdad son falsos. Ejemplo 1: La proposición “p o no p” es: p/ -p su tabla de verdad es: p -p p /-p v f v Luego es una f v v Tautología
  21. 21. Ejemplo 2: p (p/q) p q p/q p (p/q) v v v v v f v v f v v v f f f v luego es una Tautología
  22. 22. Ejemplo 3.-( p q) ( p / - q) Tabla de verdad: p q -q p / - q p q ( p / - q ) v v f f f v f v v f f v f f f f f v v f Luego es una contradicción
  23. 23. Equivalencia lógica: Dos proposiciones P y Q se dicen lógicamente equivalentes si sus tablas de verdad son idénticas. O sea: P = Q Ejemplo: (p q) / (q p) = p q Tabla de verdad del I miembro: p q p q q p ( p q) / (q p) v v v v v f v f v f v f v f f f f v v v
  24. 24. Tabla de verdad del segundo miembro: p q p q v v v f v f v f f f f v Luego es una equivalencia, puesto que la tabla de verdad del primer miembro es idéntica a la del segundo miembro
  25. 25. Una equivalencia lógica también se puede demostrar en una sola tabla como se ve en el ejemplo siguiente: Demuestre que: - (p / q) - p / - q p q - p - q (p / q) - (p / q ) - p / -q v v f f v f f v f f v v f f f v v f v f f f f v v f v v 1 2 Tienen la misma tabla, por lo tanto son equivalentes
  26. 26. La dificultad que presentan las tablas de verdad, es la gran cantidad de operaciones que hay que hacer para una proposición con más de 4 variables. Para 4 variables se ocuparían 16 filas para todas las combinaciones de los enunciados p, q, r, s para este caso. Como las tablas de verdad se utilizan en la construcción de los algoritmos computacionales, esta dificultad ha sido magníficamente superada por la rapidez de los ordenadores por lo tanto no presenta ninguna dificultad. Un Algoritmos es una lista bien definida, ordenada y finita de operaciones que permiten hallar la solución de un problema.
  27. 27. Las tablas de verdad de esta álgebra de proposiciones se aplica en los diseños de circuitos conmutadores que hacen posible la construcción de aparatos capaces de realizar estas computaciones a velocidades increíbles llamadas por lo mismo computadoras u ordenadores. Por ejemplo sean a) a’) dos interruptores eléctricos que se pueden conectar en serie o en paralelo como se indica en la fig. A A B B conexión en serie: A / B conexión en //: A/ B
  28. 28. Se define un interruptor A de la manera siguiente: cerrado(pasa corriente) A = < abierto (no pasa corriente) Dada una proposición lógica” p” se identifica: p es F si el interruptor A está abierto p es V si el interruptor A está cerrado. Expresado como tabla de verdad: p A f abierto V cerrado
  29. 29. Podemos interpretar la “conjunción y la disyunción como sigue: A B p / q => circuito en serie abierto y cerrado A p / q => circuito en // B abierto o cerrado
  30. 30. En estos circuitos, se interpretan los valores de verdad con 1 y 0. Valor 1: corriente eléctrica o circuito cerrado ( V ) Valor 0: ausencia de corriente o circuito abierto ( f ) B Ejemplo 1: Dado el circuito: A C describir con los conectivos correspondientes. 1.- circuito en //: B / C => A / ( B/ c)
  31. 31. Tablas de verdad de los circuitos en serie y // son: A B A / B A B A / B 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 Tabla de verdad de la relación de los interruptores es: A A’ siendo A el interruptor cerrado y A’ el abierto 1 0 0 1

×