SlideShare una empresa de Scribd logo
1 de 57
Descargar para leer sin conexión
Composite Inelastic Dark Matter


                             Jay Wacker
                                     SLAC
                                Caltech
                              April 13, 2010

with P. Schuster, D. Alves, S. Behbahbani, M. Lisanti, A. Hook, E. Izaguirre
                arXiv: 0903.3945, 0911.1997, 0911.4483, 1003.4729....
Dark Matter
  Discovering its nature is a great open question
             80% of the Universe’s mass is unknown


                      What we know:
                          Cold/Massive
              Suppressed EM & Strong interactions
                  Isn’t strongly self-interacting


    WIMP Miracle drives a lot of the thinking
DM is a thermal relic for 1000 GeV weakly interacting particle


            Most DM model building links
            weak scale/hierarchy problem
Status of Dark Matter
    Not your grandfather’s DM Candidate

                  DAMA
                 PAMELA
                   ATIC
              FERMI Electrons
                WMAP Haze
                INTEGRAL
                  CoGeNT

Hints at non-trivial mass scales & interactions
Secluded Sectors
           “Hidden Valleys”


Standard                            Secluded
 Model      Weak Connection          Sector



         L = φsecluded Oportal
 Oportal = FY , |h|2, hL , jB−L ,
             µν              µ
                                    λY , etc
Secluded Sectors
           “Hidden Valleys”
             High Energy/Intensity


Standard                             Secluded
 Model      Weak Connection           Sector

            Slow decays back to SM

         L = φsecluded Oportal
 Oportal = FY , |h|2, hL , jB−L ,
             µν              µ
                                     λY , etc
Secluded Sectors
                “Hidden Valleys”
                  High Energy/Intensity


Standard                                        Secluded
 Model           Weak Connection                 Sector

                 Slow decays back to SM

         L = φsecluded Oportal
 Oportal = FY , |h|2, hL , jB−L ,
             µν              µ
                                                 λY , etc

       Ubiquitous in Top-Down Models
Hard part is getting rid of additional gauge groups & matter
      Dark Matter might be a secluded sector
Dark Matter Model Building
  Occam’s Razor                    vs.   Principle of Plentitude
“Plurality should not be posited         “No possibilities which remain eternally
      without necessity”                      possible will go unrealized”


 When searching in the dark, Occam’s Razor can lead to blind spots!
Dark Matter Model Building
     Occam’s Razor                    vs.   Principle of Plentitude
   “Plurality should not be posited         “No possibilities which remain eternally
         without necessity”                      possible will go unrealized”


    When searching in the dark, Occam’s Razor can lead to blind spots!


               Minimality may not be best guide to
                    Dark Matter’s existence
                Why should 20% of the mass, have all the fun?


Gauge theories appear in SM & many BSM constructions
         Models illustrate new mechanisms and new experiments
Plan of Talk

DAMA & Inelastic Dark Matter


Composite dark matter models


   Experimental Prospects


         Discussion
Direct Detection
                  χ
                                N



                  χ             N


    Dark matter scatters off nuclei in detectors


  Measure nuclear recoil spectrum
               [Counts/kg day/keV]

                                    
 dR    ρDM                   dσ
    =                           v
dER   mDM mN                dER        average over initial DM velocities



         Multiply by exposure [kg day]
Spectrum of Recoils
  Minimum DM velocity to scatter cause ER recoil
                    
                       mN E R
            vmin =
                         2µ2
                                     Boltzmann Distribution

           vesc
 dR               dσ
                   3   −v 2 /v0
                              2
                                          −ER /E0
dER
    ∝        d v
                 dER
                     ve             ∼e
         vmin


Average over initial DM velocities in the galactic halo

                                           2µ2 v0
                                                2
            Falling spectrum ∼ 25 keV E0 =
                                            mN
            Push to lower energy thresholds
DAMA




                                                        Residuals
                         NaI Experiment running for 13 years
                                                                                                                              Time (day)
                 Galactic Dark Matter                                                                 2-5 keV
                                                                                 Annual modulationkg intonyr)    WIMP signal




                                                        Residuals (cpd/kg/keV)
                                                                                           DAMA/LIBRA ! 250 (0.87
                           ⊙
                           v                                                                Φdm = ndm v




                                               summer
   winter




            E
            v                             E
                                          v
                                                                                      Amod = RSum − RWin
                                                                                   Modulation amplitude ~2.5% for
v ≤ vesc + |vE − v⊙ |
                              v ≤ vesc + |vE + v⊙ |
                                                                                        elastic scattering
                                                                                                                              Time (day)
                                                                                                      2-6 keV



                                                        Residuals (cpd/kg/keV)
                                                                                           DAMA/LIBRA =250 kg (0.87 (0.87 ton yr)
                                                                                               DAMA/LIBRA ! 250kg tonyr)




                                                                                                                              Time (day)
Current Limits
                                                      -5
                               10                                                          http://dmtools.brown.edu/


             Cross-section [pb] (normalised to nucleon)
                                                                               DAMA        Gaitskell,Mandic,Filippini
                                                                                                            2               Excluded
                                                                                                        LIN
                                                                                                    ZEP                     by a factor
                                                      -6
                                                                                                 RE
                                                                                                   SS
                                                                                                      T                       of 30
                               10                                                              C

                                                                        ZE
                                                                          PL
                                                                            IN 3
                                                               -5
                                                           XE




                                                       10
                                                      -7                                                 S
                                                                                                 http://dmtools.brown.edu/
                                                                                                     DM
[pb] (normalised to nucleon)




                               10
                                                               NO




                                                                                                   C
                                                                                                 Gaitskell,Mandic,Filippini
                                                                    N




                                                               -6
                                                       10
                                                      -8 090913122401                      spin-independent
                               10                          1                           2                                3
                                                          10                        10                            10
                                                                              WIMP Mass [GeV/c2]

                                                               -7
                                                          10
Inelastic Dark Matter
  Dark matter has two nearly degenerate states
                δm ∼ (100 keV)
                                  Tucker-Smith and Weiner, hep-ph/0101138.

Scattering off SM transitions between states
           χ2                 q



           χ1                 q
Higher threshold velocity necessary to scatter,
        Higher typical recoil energies
                                      
                1        mN ER
   vmin = √                       + δm
             2mN ER         µ

       Lighter nuclei, higher threshold
Inelastic Dark Matter
                   Threshold behavior




            Rate
                    Recoil Energy (keV)

                    3 Consequences

(1) Scatters off of heavier nuclei -- CDMS ineffective

(2) Large recoil energy -- ZEP3  Xe10 didn’t initialy look

(3) Large modulation fraction -- absolute signal is smaller

               3 Coincidences
    XENON10, CRESST II, ZEPLIN2 all had events
Larger Modulation Fraction
                                                           Smaller rate
                                         One reason for apparent tension
                              3.5

                              3.0
                                                                                                    Summer scattering



                  v 2 f (v)/10−4
                              2.5

                              2.0
                                                                                                    Winter scattering
                              1.5
                                                            v0
                              1.0                                                                   Boost f(v) into Earth’s frame
                              0.5
                                                                                       vesc
                              0.0
                                 0            100    200      300         400   500     600


                                   0     100        200      300     400        500     600
            1.2                                              velocity

            1.0
                                                            elastic
            0.8                                                                                      2.5% modulation
  # of Events




            0.6


            0.4


            0.2                                       inelastic
                                                                                                     100% modulation
                0.0                     0.2           0.4           0.6          0.8          1.0
                                       June 2              Dec 2                June 2

                Factor of 40 difference in translating
                  modulated to unmodulated rate!
Recent Experiments
   Inelastic DM has a lot in common with Mark Twain
      “The report of my death was
           an exaggeration”


     XENON100 reported 0 events
      ... but ran in late Oct through early Nov.


       CRESST reported exclusion
         ... but had 40 keV upper threshold
       ... and won’t release their raw results

CoGeNT reported anomalous low energy events
    ... points to low mass dark matter (not iDM)
Inelastic Dark Matter
     A new number to explain:
            δm
               ∼ 10−6
             m
   Sign of dark sector dynamics?
         First of many splittings
      New interactions to discover
  Changes which questions are interesting



Will be confirmed/refuted in 2010!
               XENON100
Hyperfine Splittings
   Magnetic moment splitting
  Can give very small energy differences




   HHF ∼ µ1 · µ2 δ (r)
                           3

                g 
              µ S
              
                m

Occurs in all bound state systems
      Fermions + Gauge interactions
Hyperfine Splittings
            Weakly Coupled:

          Hydrogen
                                   s=1
                     m2
          ∆E ∼ α   4
                    mp
                      e
                              1s   s=0    1 µeV



            Strongly Coupled:

Heavy Flavor Mesons (B, B*)
         Λ2                        s=1
                              1s
          QCD
    ∆E ∼                           s=0   45 MeV
          mb
Open Questions
  Can engineer systems with 100 keV mass splittings



       Coupling to Standard Model?

Inelastic transitions dominate over elastic?

           Cosmology constraints?

             How will we know?
Plan of Talk

DAMA  Inelastic Dark Matter


Composite dark matter models


   Experimental Prospects


         Discussion
Anatomy of Composite Inelastic Dark Matter
          Simple Setup, Rich Dynamics

          dark quarks           kinetic mixing
             qH                  Fd µν FY   µν
  SU(N)                 U(1)d                     SM
             qL

          Start with left and move right
Composite Inelastic Dark Matter
                                    Alves, Behbahani, Schuster, JW, 0903.3945.

                1
     Ldark   = − Tr G2 + q iD q + m¯q
                         ¯        q
                2    µν

    New SU(Nc) gauge sector confines at scale Λd
                                    
                               2π
           Λdark ∼ exp −
                            b0 αdark



          Two dark quarks qH qL
               mH  Λdark , mL

       No flavor changing effects: stabilizes DM
Cosmology of CiDM
                                    Alves, Behbahani, Schuster, JW: 0903.3945 + 1003.4729



     A primordial cosmological dark quark asymmetry
                     (nH − nH ) = −(nL − nL ) = 0
                            ¯             ¯
More heavy quarks than antiquarks             More light antiquarks than quarks

        Given up Wimp Miracle for asymmetric DM
                 Driven off of SM’s baryon asymmetry?
                           nDM      5 GeV
                                  
                          nbaryon    mDM
Cosmology of CiDM
                                    Alves, Behbahani, Schuster, JW: 0903.3945 + 1003.4729



     A primordial cosmological dark quark asymmetry
                     (nH − nH ) = −(nL − nL ) = 0
                            ¯             ¯
More heavy quarks than antiquarks             More light antiquarks than quarks

        Given up Wimp Miracle for asymmetric DM
                 Driven off of SM’s baryon asymmetry?
                           nDM      5 GeV
                                  
                          nbaryon    mDM

                                      ¯
   When T  Λd , dark matter is in qH qL bound state
                                qH
                                  ¯
                                  qL
States of CiDM
                                      Alves, Behbahani, Schuster, JW, 1003.4729.


              Heavy quarks can bind together
                              2
               EBind ∼ αdark mH
Heavy
Quarks    0             1             2                 3               4

Mesons


Baryons




                 More deeply bound
          Dark Matter Synthesis occurs
(1)
                                             number density of dark matter is the πd state and there are other com
                                  Dark Matter Synthesis
                                             of the dark matter to discover.

                                     A chainIV:, Arrested The completeexothermic a few percent in the form
                                     Region
                                              reaction, increasingly densities, with unsynthesized compon
                                         and πd share comparable mass
                                                                           synthesized and

                                         pions, πd and π1 → 2 + 0 step of Q = 2EB − mlightπd → πd π
                                                     1 + d . The first
                                                 (2)      (3)                                       (1) (1) (2)
                                                                              the synthesis chain, πd
                                         bottleneck much like deuterium formation slows BBN in the Standard M
                                                     2+1→3+0                  Q = 10E has mlight
                                                                                              −
                                         only occurs for a brief period, but once the πd B formed, it processe
                                                                                        (2)

                                         into BH . 2 + 2 → 4 + 0              Q = 32EB
                                     Region V: Inhibited The3 + 1             Q = 8EB
                                                     2 + 2 → first step of the synthesis chain is strongly supre
                                                                                    (1)
                                         the CiDM 3 + 1 → 4 is dominatedQ = d24E
                                                     composition + 0            by π . Region V is the cosmolo
                                                                                            B
                                             in [7]. The heavy baryon component mostly arises through the primor
                                 First reaction is potential bottleneck
                                             formation described in Sec. 3.2.

                                     A quantitative description lightest dark hadron one of these regions is sum
                                      Depends on mass of of the abundances in each
                                     in Table 3.
                                 !m=95keV

                                                       Region    ρπ(1) /ρDM    ρπ(2) /ρDM      ρπ(3) /ρDM   ρBH /ρDM
                                                                   d             d               d
                      III
                                            mH (GeV)




                                                                10−4 − 0.1%   10−4 − 0.2%     10−3 − 0.9%
d (MeV)




                                                          I                                                    99%
                                                         II      0.1% − 4%     0.2% − 5%      0.9% − 11%    80% − 99%
                                   IV                   III      4% − 57%      5% − 24%       11% − 17%     9% − 80%
               II                                       IV      57% − 99%          5%            5%       1% − 30%
                                    V                    V          99%          10−5           10−5        1%
           I
                                     Table 3: The relations on the fractional mass densities that define the region
                    mlight /d       matter synthesis in Fig. 1.
Splitting of Ground State
               Mass difference in meson states arises from hyperfine splitting

                                                     Coulombic limit
                        mH
                        mL                     qH               α4 m2
                                                 ¯          δm ∼ d L
Energy




                        Λd                       qL              mH
                                                 For U(1): Atomic Dark Matter
                                                                D. E. Kaplan, et al (2009)
                                                        (Susy version in progress )

         spin 0      spin 1



   dark pion dark rho
          πd           ρd
Splitting of Ground State
               Mass difference in meson states arises from hyperfine splitting

                                                     Coulombic limit
                        mH
                        mL                     qH               α4 m2
                                                 ¯          δm ∼ d L
Energy




                        Λd                       qL              mH
                        mL                       For U(1): Atomic Dark Matter
                                                                D. E. Kaplan, et al (2009)
                                                        (Susy version in progress )

         spin 0      spin 1                              Confined

                                               qH                    Λ2
                                                                      d
   dark pion dark rho                            ¯
                                                 qL             δm ∼
          πd           ρd                                            mH
Spin Temperature
   Need to explain why iDM is in ground state

Self interaction keeps DM in equilibrium
               ρ d ρ d → πd πd
         Solves de-excitation problem
             nρd
                  = exp(−δm/Tspin )
             n πd

 Kinetically decouple late, smaller spin temperature

                Tspin  10 keV
                      ∼

       Still Satisfy Self-Interaction Limits
           σ  −2 cm2             1 bn
           m  ∼ 10       g
                             ∼
                                100 GeV
Dark Matter Couplings
                   Couples to a secluded U(1)

                     Axial-Vector Coupling
                µ
               Jd = qH γ µ γ 5 qH − qL γ µ γ 5 qL
                    ¯               ¯

          Forbids quark masses until U(1)d Higgsed

        How does the U(1) couple to mesons?
                                     Dark Matter Scattering
          ¯
       qH qL               ρµ
                            d
                                   elastic         inelastic
mass




                           πd      πd→πd            πd→ρd

               spin 0 meson            spin 1 meson
               πd → −πd            ρdµ → (−1)µ ρdµ
Axial Coupling to Mesons

                   Elastic
                   πd→πd
Forbidden




                  †
                 πd ∂µ πd Aµ
  Parity




                           d
              1 †             µν
                 πd ∂µ πd ∂ν Fd
              Λ2
               d

              1 †
   Vanishes




                             ˜ µν
               2 πd ∂µ πd ∂ν Fd
              Λd
Axial Coupling to Mesons

                   Elastic                              Inelastic
                   πd→πd                                    πd→ρd




                                       Suppressed
                                        Velocity
Forbidden




                  †
                 πd ∂µ πd Aµ                          mπd    †
                                                            πd ρ µ d    µ
                                                                       Ad
  Parity




                           d
              1 †             µν
                 πd ∂µ πd ∂ν Fd
              Λ2
               d



                                           Dominant
              1 †                                      1 † µ ν
   Vanishes




                             ˜ µν
               2 πd ∂µ πd ∂ν Fd
              Λd                                       Λd
                                                          πd ∂ ρd Fdµν




                             Near purely Inelastic
Coupling to Standard Model
         Kinetically mix U(1)d with U(1)Y

               U (1)d          U (1)Y
        DM                              SM
                        ψgut
           1 µν      1 µν     µν       1
LU(1)   = − Fd Fdµν − B Bµν − Fd Bµν → − F
           4         4       2          4
Coupling to Standard Model
          Kinetically mix U(1)d with U(1)Y

                U (1)d          U (1)Y
        DM                               SM
                         ψgut
           1 µν      1 µν     µν       1
LU(1)   = − Fd Fdµν − B Bµν − Fd Bµν → − F
           4         4       2          4
        Higgs U(1)d near the electroweak scale
        LHiggs = |Dµ φd |2 − V (φd ) → m2 A2
                                        d d
                   md = 2gd vφ
Coupling to Standard Model
          Kinetically mix U(1)d with U(1)Y

                U (1)d          U (1)Y
        DM                               SM
                         ψgut
           1 µν      1 µν     µν       1
LU(1)   = − Fd Fdµν − B Bµν − Fd Bµν → − F
           4         4       2          4
        Higgs U(1)d near the electroweak scale
        LHiggs = |Dµ φd |2 − V (φd ) → m2 A2
                                        d d
                   md = 2gd vφ
               Gives mass to fermions
    LYuk =               +c
                 yL q L q L φ            c †
                                 yH q H qH φ
                   mf = yf vφ
Coupling to Standard Model
                                                        Holdom 1985
                  Kinetically mix U(1)d with U(1)Y

                        U (1)d            U (1)Y
                DM                                 SM
                                   ψgut
After EWSB:
 L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad
       2    2
                            A d
                     kinetic mixing
              redefine SM photon    AEM → AEM − Ad
Coupling to Standard Model
                                                         Holdom 1985
                   Kinetically mix U(1)d with U(1)Y

                         U (1)d            U (1)Y
                 DM                                 SM
                                    ψgut
After EWSB:
 L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad
       2    2
                            A d
                      kinetic mixing
               redefine SM photon    AEM → AEM − Ad
      L = −Fd − FEM + m2 A2 + JEM (AEM − Ad ) + Jd Ad
            2    2
                       A d

                                      µ
                        Lint ∝      Jem Adµ
      SM is milli-charged under dark U(1), DM is neutral under EM
Current Limits on ε
    10-1
             (g − 2)µ
                                    Υ decays
    10-2


   10-3 E774




                                    M
                                  D
                                Ci
    10-4   E141
    10-5 E137
           10 MeV     100 MeV       1 GeV   10 GeV   100 GeV

                                 mAd
    Model independent limits not known for 1 GeV to 200 GeV
                    Precision EW + High energy Bounds
                                2
                                              2 2
                                                        (w/ A. Hook  E. Izaguirre)
                            e                 q
                    α(q ) =
                        2
                                        1+ 2
                            4π            q + mAd
CP-Violation
                                         ˜
Θ term in dark QCD sector Lcpv = Θd TrGd Gd
                Not necessarily small
 Leads to mixing between states of different parity
                  e.g. πd ↔ a0d

   In limit mL → 0    chiral rotation removes Θ term


           Parity violating mixing   sin θp

         Scalar states neutral under U(1)d
                 sin θp †           µν
        Leads to       πd ∂µ πd ∂ν Fd
                   Λd
                    2
ansition                                             Charge Radius Scattering
                                                               parity!
         gd µνσρ            sin θp † †          µν
int   =                           πd ∂µ πd ∂ν Fd
                     Fdark µν2 ρd σ ∂ρ πd
                              Λd
        Λdark Neutral composite states with charged constituents
                                                                        velocity suppressed
                                                                                    −6 smaller (ER )
                                                                                           Fdm
                                                   Form-factor suppression from   10 πd
sition                                       interaction with background field
                                                                                                     q
                                              gd            µν      †
Lint =                                        2 Lcr∂µFdm (ER )¯ieAdν πd
                                                         F        π ∂
                                                       = dark q d  q
                                            Λdark                                                                                             γd
                                                   Fdm (0) = 0 + rc ER
                                                                   2                                                                                     q
                                                                                                                          MDMπ200 GeV,
im 6 elastic Charge Radius scattering
           M 200 GeV, M 1 GeV
                                    0.030
                                                     DM                    A                                                  d              125 keV, MA 1 GeV
       Count Rate arbitraty units




                                                                                                                  0.030

                                    0.025
                                                        Charged Elastic Scattering
                                                        Charged Radius Elastic Scattering
                                              elastic
                                                                                                                  0.025




w                                                                                                    cpd kg keV
                                    0.020
                                                                                                                  0.020
       Rate




                                    0.015                                  charge-radius                Charge-radius scattering difficult to
                                                                                                                  0.015




                                    0.010
                                                                                                        distinguish from inelastic scattering
                                                                                                                  0.010


                                                                                                                  0.005

                                    0.005
                                                                                                                  0.000


                                    0.000
                                              20          40          60          80        100
                                                                                                  ER recoil
                                                                                                  E               0.005
                                                                                                                           1   2   3     4      5    6       7   8

                                                               ER KeVee                                                                ER KeVee
Plan of Talk

DAMA  Inelastic Dark Matter


Composite dark matter models


   Experimental Prospects


         Discussion
Standard Halo Model
                        N-body simulations indicate that density falls off more
                                       steeply at larger radii


                 3.5

                  3
                 3.0                                        isothermal, isotropic,  Gaussian
                                                                                             
v 2 f (v)/10−4




                 2.5                                                       2              2
                                                      f (v) ∝ e−(v/v0 ) − e−(vesc /v0 )        Θ(vesc − v)
                  2
                 2.0                  v0
                 1.5

                  1
                 1.0

                 0.5
                                                                        vesc
                  0
                 0.0
                    0    100    200          300      400         500      600
                   0    100    200          300       400         500      600
                                           velocity
Modified SHM
                                           Will use modified ansatz
                                                   2α               2α
                                                                        
                                   f (v) ∝ e−(v/v0 ) − e−(vesc /v0 )      Θ(vesc − v)

                 3.5
                                                                 α parameterizes variation in the
                  3
                 3.0     α=1.1                                        tail of the distribution
                               )
v 2 f (v)/10−4




                 2.5
                                                        α=0.8     captures qualitative behavior of
                  2
                 2.0                       v0              )            N-body simulations
                 1.5

                  1
                 1.0

                 0.5                                                     600
                                                                       vesc
                  0
                 0.0
                    0    100         200          300      400   500      600
                   0    100         200          300       400   500      600
                                                velocity
Marginalizing over Uncertainties
     How do current experiments constrain parameters?
       Usually astrophysical parameters are benchmarked

                                                                         0.8 ≤ α ≤ 1.25
               particle physics            astrophysics
                                                                         200 ≤ v0 ≤ 300
                    mπd , δm, σ                v0 , vesc , α             500 ≤ vesc ≤ 600

                                                                   2
                                                   pred
                                                   Xi         obs
                                                           − Xi
              χ (m, δ, σ, v0 , ve , α) =
                2
                                                           σi

  Minimize χ2 over 6 parameters using results from direct detection experiments

                       Fit to DAMA recoil spectrum
                 No experiment rules out point at 95% CL
Parameter Space
θp = 0, 4%, 6%, 8%

                       Best fit
                     mπd ∼ 70 GeV
                      δm ∼ 95 keV




                           Slow halos
                          v0 ∼ 200 km/s
                             α  1.0
                               ∼
Global Fit
                        gd2    2
                              gd                              gd mπd
                                              mAd    gd vφ 
                          4
                            → 4                                 yH
                        q    mAd
      0.010
      0.005


      0.001
    5  104          DAMA Regions
Ε




    1  104
    5  105
                        θp = 0, 6%, 8%
    1  105
                          Dark Photon Mass GeV
               0.01    0.1            1            10        100
DAMA
                                              Best fits
                                            Modulation Amplitude

                      0.03                                     θp =c0%, 8%
                                                                    el/cin=0

                                                                         cel/cin=0.15
countskgdaykeVee




                      0.02



                      0.01



                      0.00




                                             Recoil Energy keVee
                             0          2             4              6                  8


                                 Difficult to distinguish from DAMA
                                  mixed elastic-inelastic scattering
Xenon100
                              100 kg Liquid Xe detectors (upgrade for Xenon10)
                                   Will see a large number of events

                                   DAMA rate: 0.02/kg d/keV

                            Nevents  0.5                                                  Nevents  40
            0.25
                                                                           0.25
            0.20
                                                                           0.20




                                                               Frequency
Frequency




            0.15
                                                                           0.15
            0.10                                                           0.10
            0.05                                                           0.05
            0.00                                                           0.00
                   0   20     40      60      80   100   120                      0   20   40      60      80   100   120
                                Events Observed                                             Events Observed




                                                                             (1000 kg-day exposure ~ 1 month!)
             Tail down to small  5 events
Xenon100
                                Recoil Spectrum
             5.00
                                                       1000 kg· day
                                                          : summer
             1.00
                                                         : winter
             0.50
countskeV




             0.10

             0.05




                                Recoil Energy keV
                 0        20         40           60          80



             Elastic subcomponent apparent but distorts spectrum,
                       inelastic kinematics get washed out

                     Directional detection experiments key
Plan of Talk

DAMA  Inelastic Dark Matter


Composite dark matter models


   Experimental Prospects


         Discussion
Future Work
Susy: New Hierarchy Problem
  SM might be mediator of DM SSB
      Nearly Susy bound states
  Possible DM forming MACHOS

Discovering other components
          Light Baryons
 Heavy Baryons  Multicore Mesons

   Generating Asymmetry
      Decays  Annihilations
       Cosmic Ray Signals

     Collider Signatures
           Lepton Jets
Collider Signatures

                 +
                         −
                                   +
                                                 Light mesons
                         ωD   ηD        −         √
                                   ωD                 s     ΛD
                                                    23-4/5-))'
                                                  0/-(*5506)'!-7')
      !#$%'()*#
       +*,'#-.               qD
     +!#*/01)0*/
                                                   √
                                                       s     ΛD
p
e−                                  p+
                                    e             #*89+5:-;+'#0(5-
                                                       ''/)
                 ¯
                 qD
                                                                            γ

                                                  mA          ΛD
ωD
                     ωD                     Lepton Jets
                                                =**)'!-;#*!8()-
+
    −
        ωD                                        #'(*05-*-;+*)*/
                          −                                      ηD
         +   −       +                                                 ωD
Signal Simulation
                          (w/ A. Haas  Y. Gershtein)




  Need Hadron
Spectrum + Decays                Dark Showering
                                     Sherpa  Herwig



                              Dark Hadronization
                                      Sherpa  Herwig

                                Cascading to SM
DarkSpecGen             (w/ S. Behbehani)

               An interface to produce semi-realistic
               hadronic final spectra and decay tables
                 and interface to Sherpa  Herwig



    Gauge
SU(N), Sp(2N), SO(N)                                Partons
                                                   Reps (Fund, Adj)
                                                   Nf, Masses, Spins




                                                    Strong Decays
Weak Decays                                                  Flavor/CP
 SM Neutral Portals
Conclusions
Inelastic DM is an elegant explanation for
        DAMA vs the Rest of the World


 New scale to explain: New Dynamics

   Discovery or Refutation Imminent
               Within the year

         iDM sensitive to halo:
          Need to go beyond SHM

    New measurements are important
             Directional Detection
          Finding DM subcomponents
           Measuring Halo properties

Más contenido relacionado

La actualidad más candente

Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark MatterJay Wacker
 
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Colm Connaughton
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problemColm Connaughton
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...Colm Connaughton
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationColm Connaughton
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resourceManuel Silva
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationColm Connaughton
 

La actualidad más candente (12)

Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark Matter
 
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
 
Hq3114621465
Hq3114621465Hq3114621465
Hq3114621465
 
Feature
FeatureFeature
Feature
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problem
 
FISIKA DASAR 2
FISIKA DASAR 2 FISIKA DASAR 2
FISIKA DASAR 2
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentation
 
Multiphysics design of materials
Multiphysics design of materialsMultiphysics design of materials
Multiphysics design of materials
 
Interference
InterferenceInterference
Interference
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
 

Similar a Composite Inelastic Dark Matter

Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark MatterJay Wacker
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...SEENET-MTP
 
Astrophysical constraints on dark matter
Astrophysical constraints on dark matterAstrophysical constraints on dark matter
Astrophysical constraints on dark matterCamille Sigrid Vasquez
 
Dissecting Holography with Higher Spins
Dissecting Holography with Higher SpinsDissecting Holography with Higher Spins
Dissecting Holography with Higher Spinsxiyin
 
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...Eastern Mediterranean University
 
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009accatagliato
 
R Vazquez Showers Signatures
R Vazquez  Showers SignaturesR Vazquez  Showers Signatures
R Vazquez Showers SignaturesMiguel Morales
 
Quantum dot laser
Quantum dot laserQuantum dot laser
Quantum dot laserAhmed Amer
 
Jets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJay Wacker
 

Similar a Composite Inelastic Dark Matter (20)

Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark Matter
 
Dark Forces
Dark ForcesDark Forces
Dark Forces
 
Aem Lect12
Aem Lect12Aem Lect12
Aem Lect12
 
Exeter_2011
Exeter_2011Exeter_2011
Exeter_2011
 
Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis
 
Neutrinos
NeutrinosNeutrinos
Neutrinos
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Astrophysical constraints on dark matter
Astrophysical constraints on dark matterAstrophysical constraints on dark matter
Astrophysical constraints on dark matter
 
Dissecting Holography with Higher Spins
Dissecting Holography with Higher SpinsDissecting Holography with Higher Spins
Dissecting Holography with Higher Spins
 
Workshop problems solving
Workshop problems solvingWorkshop problems solving
Workshop problems solving
 
Variation of Fundamental Constants
Variation of Fundamental ConstantsVariation of Fundamental Constants
Variation of Fundamental Constants
 
CHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALSCHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALS
 
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
 
8m atoms _nuclei
8m atoms _nuclei8m atoms _nuclei
8m atoms _nuclei
 
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
[L'angolo del PhD] Alessandro Palma - XXII Ciclo - 2009
 
R Vazquez Showers Signatures
R Vazquez  Showers SignaturesR Vazquez  Showers Signatures
R Vazquez Showers Signatures
 
Quantum dot laser
Quantum dot laserQuantum dot laser
Quantum dot laser
 
Plasma medium
Plasma mediumPlasma medium
Plasma medium
 
Jets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJets and Missing Energy at the LHC
Jets and Missing Energy at the LHC
 

Más de Jay Wacker

The SIMP Miracle
The SIMP MiracleThe SIMP Miracle
The SIMP MiracleJay Wacker
 
Philosophy Of Simplified Models
Philosophy Of Simplified ModelsPhilosophy Of Simplified Models
Philosophy Of Simplified ModelsJay Wacker
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jay Wacker
 
LHC Jets and MET
LHC Jets and METLHC Jets and MET
LHC Jets and METJay Wacker
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009Jay Wacker
 
Leptonic FInal State Boost Summary
Leptonic FInal State Boost SummaryLeptonic FInal State Boost Summary
Leptonic FInal State Boost SummaryJay Wacker
 
Discovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon PairsDiscovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon PairsJay Wacker
 
Jets and Missing Energy at CDF
Jets and Missing Energy at CDFJets and Missing Energy at CDF
Jets and Missing Energy at CDFJay Wacker
 

Más de Jay Wacker (8)

The SIMP Miracle
The SIMP MiracleThe SIMP Miracle
The SIMP Miracle
 
Philosophy Of Simplified Models
Philosophy Of Simplified ModelsPhilosophy Of Simplified Models
Philosophy Of Simplified Models
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
 
LHC Jets and MET
LHC Jets and METLHC Jets and MET
LHC Jets and MET
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009
 
Leptonic FInal State Boost Summary
Leptonic FInal State Boost SummaryLeptonic FInal State Boost Summary
Leptonic FInal State Boost Summary
 
Discovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon PairsDiscovering the Higgs with Low Mass Muon Pairs
Discovering the Higgs with Low Mass Muon Pairs
 
Jets and Missing Energy at CDF
Jets and Missing Energy at CDFJets and Missing Energy at CDF
Jets and Missing Energy at CDF
 

Composite Inelastic Dark Matter

  • 1. Composite Inelastic Dark Matter Jay Wacker SLAC Caltech April 13, 2010 with P. Schuster, D. Alves, S. Behbahbani, M. Lisanti, A. Hook, E. Izaguirre arXiv: 0903.3945, 0911.1997, 0911.4483, 1003.4729....
  • 2. Dark Matter Discovering its nature is a great open question 80% of the Universe’s mass is unknown What we know: Cold/Massive Suppressed EM & Strong interactions Isn’t strongly self-interacting WIMP Miracle drives a lot of the thinking DM is a thermal relic for 1000 GeV weakly interacting particle Most DM model building links weak scale/hierarchy problem
  • 3. Status of Dark Matter Not your grandfather’s DM Candidate DAMA PAMELA ATIC FERMI Electrons WMAP Haze INTEGRAL CoGeNT Hints at non-trivial mass scales & interactions
  • 4. Secluded Sectors “Hidden Valleys” Standard Secluded Model Weak Connection Sector L = φsecluded Oportal Oportal = FY , |h|2, hL , jB−L , µν µ λY , etc
  • 5. Secluded Sectors “Hidden Valleys” High Energy/Intensity Standard Secluded Model Weak Connection Sector Slow decays back to SM L = φsecluded Oportal Oportal = FY , |h|2, hL , jB−L , µν µ λY , etc
  • 6. Secluded Sectors “Hidden Valleys” High Energy/Intensity Standard Secluded Model Weak Connection Sector Slow decays back to SM L = φsecluded Oportal Oportal = FY , |h|2, hL , jB−L , µν µ λY , etc Ubiquitous in Top-Down Models Hard part is getting rid of additional gauge groups & matter Dark Matter might be a secluded sector
  • 7. Dark Matter Model Building Occam’s Razor vs. Principle of Plentitude “Plurality should not be posited “No possibilities which remain eternally without necessity” possible will go unrealized” When searching in the dark, Occam’s Razor can lead to blind spots!
  • 8. Dark Matter Model Building Occam’s Razor vs. Principle of Plentitude “Plurality should not be posited “No possibilities which remain eternally without necessity” possible will go unrealized” When searching in the dark, Occam’s Razor can lead to blind spots! Minimality may not be best guide to Dark Matter’s existence Why should 20% of the mass, have all the fun? Gauge theories appear in SM & many BSM constructions Models illustrate new mechanisms and new experiments
  • 9. Plan of Talk DAMA & Inelastic Dark Matter Composite dark matter models Experimental Prospects Discussion
  • 10. Direct Detection χ N χ N Dark matter scatters off nuclei in detectors Measure nuclear recoil spectrum [Counts/kg day/keV] dR ρDM dσ = v dER mDM mN dER average over initial DM velocities Multiply by exposure [kg day]
  • 11. Spectrum of Recoils Minimum DM velocity to scatter cause ER recoil mN E R vmin = 2µ2 Boltzmann Distribution vesc dR dσ 3 −v 2 /v0 2 −ER /E0 dER ∝ d v dER ve ∼e vmin Average over initial DM velocities in the galactic halo 2µ2 v0 2 Falling spectrum ∼ 25 keV E0 = mN Push to lower energy thresholds
  • 12. DAMA Residuals NaI Experiment running for 13 years Time (day) Galactic Dark Matter 2-5 keV Annual modulationkg intonyr) WIMP signal Residuals (cpd/kg/keV) DAMA/LIBRA ! 250 (0.87 ⊙ v Φdm = ndm v summer winter E v E v Amod = RSum − RWin Modulation amplitude ~2.5% for v ≤ vesc + |vE − v⊙ | v ≤ vesc + |vE + v⊙ | elastic scattering Time (day) 2-6 keV Residuals (cpd/kg/keV) DAMA/LIBRA =250 kg (0.87 (0.87 ton yr) DAMA/LIBRA ! 250kg tonyr) Time (day)
  • 13. Current Limits -5 10 http://dmtools.brown.edu/ Cross-section [pb] (normalised to nucleon) DAMA Gaitskell,Mandic,Filippini 2 Excluded LIN ZEP by a factor -6 RE SS T of 30 10 C ZE PL IN 3 -5 XE 10 -7 S http://dmtools.brown.edu/ DM [pb] (normalised to nucleon) 10 NO C Gaitskell,Mandic,Filippini N -6 10 -8 090913122401 spin-independent 10 1 2 3 10 10 10 WIMP Mass [GeV/c2] -7 10
  • 14. Inelastic Dark Matter Dark matter has two nearly degenerate states δm ∼ (100 keV) Tucker-Smith and Weiner, hep-ph/0101138. Scattering off SM transitions between states χ2 q χ1 q Higher threshold velocity necessary to scatter, Higher typical recoil energies 1 mN ER vmin = √ + δm 2mN ER µ Lighter nuclei, higher threshold
  • 15. Inelastic Dark Matter Threshold behavior Rate Recoil Energy (keV) 3 Consequences (1) Scatters off of heavier nuclei -- CDMS ineffective (2) Large recoil energy -- ZEP3 Xe10 didn’t initialy look (3) Large modulation fraction -- absolute signal is smaller 3 Coincidences XENON10, CRESST II, ZEPLIN2 all had events
  • 16. Larger Modulation Fraction Smaller rate One reason for apparent tension 3.5 3.0 Summer scattering v 2 f (v)/10−4 2.5 2.0 Winter scattering 1.5 v0 1.0 Boost f(v) into Earth’s frame 0.5 vesc 0.0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 1.2 velocity 1.0 elastic 0.8 2.5% modulation # of Events 0.6 0.4 0.2 inelastic 100% modulation 0.0 0.2 0.4 0.6 0.8 1.0 June 2 Dec 2 June 2 Factor of 40 difference in translating modulated to unmodulated rate!
  • 17. Recent Experiments Inelastic DM has a lot in common with Mark Twain “The report of my death was an exaggeration” XENON100 reported 0 events ... but ran in late Oct through early Nov. CRESST reported exclusion ... but had 40 keV upper threshold ... and won’t release their raw results CoGeNT reported anomalous low energy events ... points to low mass dark matter (not iDM)
  • 18. Inelastic Dark Matter A new number to explain: δm ∼ 10−6 m Sign of dark sector dynamics? First of many splittings New interactions to discover Changes which questions are interesting Will be confirmed/refuted in 2010! XENON100
  • 19. Hyperfine Splittings Magnetic moment splitting Can give very small energy differences HHF ∼ µ1 · µ2 δ (r) 3 g µ S m Occurs in all bound state systems Fermions + Gauge interactions
  • 20. Hyperfine Splittings Weakly Coupled: Hydrogen s=1 m2 ∆E ∼ α 4 mp e 1s s=0 1 µeV Strongly Coupled: Heavy Flavor Mesons (B, B*) Λ2 s=1 1s QCD ∆E ∼ s=0 45 MeV mb
  • 21. Open Questions Can engineer systems with 100 keV mass splittings Coupling to Standard Model? Inelastic transitions dominate over elastic? Cosmology constraints? How will we know?
  • 22. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Discussion
  • 23. Anatomy of Composite Inelastic Dark Matter Simple Setup, Rich Dynamics dark quarks kinetic mixing qH Fd µν FY µν SU(N) U(1)d SM qL Start with left and move right
  • 24. Composite Inelastic Dark Matter Alves, Behbahani, Schuster, JW, 0903.3945. 1 Ldark = − Tr G2 + q iD q + m¯q ¯ q 2 µν New SU(Nc) gauge sector confines at scale Λd 2π Λdark ∼ exp − b0 αdark Two dark quarks qH qL mH Λdark , mL No flavor changing effects: stabilizes DM
  • 25. Cosmology of CiDM Alves, Behbahani, Schuster, JW: 0903.3945 + 1003.4729 A primordial cosmological dark quark asymmetry (nH − nH ) = −(nL − nL ) = 0 ¯ ¯ More heavy quarks than antiquarks More light antiquarks than quarks Given up Wimp Miracle for asymmetric DM Driven off of SM’s baryon asymmetry? nDM 5 GeV nbaryon mDM
  • 26. Cosmology of CiDM Alves, Behbahani, Schuster, JW: 0903.3945 + 1003.4729 A primordial cosmological dark quark asymmetry (nH − nH ) = −(nL − nL ) = 0 ¯ ¯ More heavy quarks than antiquarks More light antiquarks than quarks Given up Wimp Miracle for asymmetric DM Driven off of SM’s baryon asymmetry? nDM 5 GeV nbaryon mDM ¯ When T Λd , dark matter is in qH qL bound state qH ¯ qL
  • 27. States of CiDM Alves, Behbahani, Schuster, JW, 1003.4729. Heavy quarks can bind together 2 EBind ∼ αdark mH Heavy Quarks 0 1 2 3 4 Mesons Baryons More deeply bound Dark Matter Synthesis occurs
  • 28. (1) number density of dark matter is the πd state and there are other com Dark Matter Synthesis of the dark matter to discover. A chainIV:, Arrested The completeexothermic a few percent in the form Region reaction, increasingly densities, with unsynthesized compon and πd share comparable mass synthesized and pions, πd and π1 → 2 + 0 step of Q = 2EB − mlightπd → πd π 1 + d . The first (2) (3) (1) (1) (2) the synthesis chain, πd bottleneck much like deuterium formation slows BBN in the Standard M 2+1→3+0 Q = 10E has mlight − only occurs for a brief period, but once the πd B formed, it processe (2) into BH . 2 + 2 → 4 + 0 Q = 32EB Region V: Inhibited The3 + 1 Q = 8EB 2 + 2 → first step of the synthesis chain is strongly supre (1) the CiDM 3 + 1 → 4 is dominatedQ = d24E composition + 0 by π . Region V is the cosmolo B in [7]. The heavy baryon component mostly arises through the primor First reaction is potential bottleneck formation described in Sec. 3.2. A quantitative description lightest dark hadron one of these regions is sum Depends on mass of of the abundances in each in Table 3. !m=95keV Region ρπ(1) /ρDM ρπ(2) /ρDM ρπ(3) /ρDM ρBH /ρDM d d d III mH (GeV) 10−4 − 0.1% 10−4 − 0.2% 10−3 − 0.9% d (MeV) I 99% II 0.1% − 4% 0.2% − 5% 0.9% − 11% 80% − 99% IV III 4% − 57% 5% − 24% 11% − 17% 9% − 80% II IV 57% − 99% 5% 5% 1% − 30% V V 99% 10−5 10−5 1% I Table 3: The relations on the fractional mass densities that define the region mlight /d matter synthesis in Fig. 1.
  • 29. Splitting of Ground State Mass difference in meson states arises from hyperfine splitting Coulombic limit mH mL qH α4 m2 ¯ δm ∼ d L Energy Λd qL mH For U(1): Atomic Dark Matter D. E. Kaplan, et al (2009) (Susy version in progress ) spin 0 spin 1 dark pion dark rho πd ρd
  • 30. Splitting of Ground State Mass difference in meson states arises from hyperfine splitting Coulombic limit mH mL qH α4 m2 ¯ δm ∼ d L Energy Λd qL mH mL For U(1): Atomic Dark Matter D. E. Kaplan, et al (2009) (Susy version in progress ) spin 0 spin 1 Confined qH Λ2 d dark pion dark rho ¯ qL δm ∼ πd ρd mH
  • 31. Spin Temperature Need to explain why iDM is in ground state Self interaction keeps DM in equilibrium ρ d ρ d → πd πd Solves de-excitation problem nρd = exp(−δm/Tspin ) n πd Kinetically decouple late, smaller spin temperature Tspin 10 keV ∼ Still Satisfy Self-Interaction Limits σ −2 cm2 1 bn m ∼ 10 g ∼ 100 GeV
  • 32. Dark Matter Couplings Couples to a secluded U(1) Axial-Vector Coupling µ Jd = qH γ µ γ 5 qH − qL γ µ γ 5 qL ¯ ¯ Forbids quark masses until U(1)d Higgsed How does the U(1) couple to mesons? Dark Matter Scattering ¯ qH qL ρµ d elastic inelastic mass πd πd→πd πd→ρd spin 0 meson spin 1 meson πd → −πd ρdµ → (−1)µ ρdµ
  • 33. Axial Coupling to Mesons Elastic πd→πd Forbidden † πd ∂µ πd Aµ Parity d 1 † µν πd ∂µ πd ∂ν Fd Λ2 d 1 † Vanishes ˜ µν 2 πd ∂µ πd ∂ν Fd Λd
  • 34. Axial Coupling to Mesons Elastic Inelastic πd→πd πd→ρd Suppressed Velocity Forbidden † πd ∂µ πd Aµ mπd † πd ρ µ d µ Ad Parity d 1 † µν πd ∂µ πd ∂ν Fd Λ2 d Dominant 1 † 1 † µ ν Vanishes ˜ µν 2 πd ∂µ πd ∂ν Fd Λd Λd πd ∂ ρd Fdµν Near purely Inelastic
  • 35. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → − F 4 4 2 4
  • 36. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → − F 4 4 2 4 Higgs U(1)d near the electroweak scale LHiggs = |Dµ φd |2 − V (φd ) → m2 A2 d d md = 2gd vφ
  • 37. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → − F 4 4 2 4 Higgs U(1)d near the electroweak scale LHiggs = |Dµ φd |2 − V (φd ) → m2 A2 d d md = 2gd vφ Gives mass to fermions LYuk = +c yL q L q L φ c † yH q H qH φ mf = yf vφ
  • 38. Coupling to Standard Model Holdom 1985 Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut After EWSB: L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad 2 2 A d kinetic mixing redefine SM photon AEM → AEM − Ad
  • 39. Coupling to Standard Model Holdom 1985 Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut After EWSB: L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad 2 2 A d kinetic mixing redefine SM photon AEM → AEM − Ad L = −Fd − FEM + m2 A2 + JEM (AEM − Ad ) + Jd Ad 2 2 A d µ Lint ∝ Jem Adµ SM is milli-charged under dark U(1), DM is neutral under EM
  • 40. Current Limits on ε 10-1 (g − 2)µ Υ decays 10-2 10-3 E774 M D Ci 10-4 E141 10-5 E137 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV mAd Model independent limits not known for 1 GeV to 200 GeV Precision EW + High energy Bounds 2 2 2 (w/ A. Hook E. Izaguirre) e q α(q ) = 2 1+ 2 4π q + mAd
  • 41. CP-Violation ˜ Θ term in dark QCD sector Lcpv = Θd TrGd Gd Not necessarily small Leads to mixing between states of different parity e.g. πd ↔ a0d In limit mL → 0 chiral rotation removes Θ term Parity violating mixing sin θp Scalar states neutral under U(1)d sin θp † µν Leads to πd ∂µ πd ∂ν Fd Λd 2
  • 42. ansition Charge Radius Scattering parity! gd µνσρ sin θp † † µν int = πd ∂µ πd ∂ν Fd Fdark µν2 ρd σ ∂ρ πd Λd Λdark Neutral composite states with charged constituents velocity suppressed −6 smaller (ER ) Fdm Form-factor suppression from 10 πd sition interaction with background field q gd µν † Lint = 2 Lcr∂µFdm (ER )¯ieAdν πd F π ∂ = dark q d q Λdark γd Fdm (0) = 0 + rc ER 2 q MDMπ200 GeV, im 6 elastic Charge Radius scattering M 200 GeV, M 1 GeV 0.030 DM A d 125 keV, MA 1 GeV Count Rate arbitraty units 0.030 0.025 Charged Elastic Scattering Charged Radius Elastic Scattering elastic 0.025 w cpd kg keV 0.020 0.020 Rate 0.015 charge-radius Charge-radius scattering difficult to 0.015 0.010 distinguish from inelastic scattering 0.010 0.005 0.005 0.000 0.000 20 40 60 80 100 ER recoil E 0.005 1 2 3 4 5 6 7 8 ER KeVee ER KeVee
  • 43. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Discussion
  • 44. Standard Halo Model N-body simulations indicate that density falls off more steeply at larger radii 3.5 3 3.0 isothermal, isotropic, Gaussian v 2 f (v)/10−4 2.5 2 2 f (v) ∝ e−(v/v0 ) − e−(vesc /v0 ) Θ(vesc − v) 2 2.0 v0 1.5 1 1.0 0.5 vesc 0 0.0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  • 45. Modified SHM Will use modified ansatz 2α 2α f (v) ∝ e−(v/v0 ) − e−(vesc /v0 ) Θ(vesc − v) 3.5 α parameterizes variation in the 3 3.0 α=1.1 tail of the distribution ) v 2 f (v)/10−4 2.5 α=0.8 captures qualitative behavior of 2 2.0 v0 ) N-body simulations 1.5 1 1.0 0.5 600 vesc 0 0.0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  • 46. Marginalizing over Uncertainties How do current experiments constrain parameters? Usually astrophysical parameters are benchmarked 0.8 ≤ α ≤ 1.25 particle physics astrophysics 200 ≤ v0 ≤ 300 mπd , δm, σ v0 , vesc , α 500 ≤ vesc ≤ 600 2 pred Xi obs − Xi χ (m, δ, σ, v0 , ve , α) = 2 σi Minimize χ2 over 6 parameters using results from direct detection experiments Fit to DAMA recoil spectrum No experiment rules out point at 95% CL
  • 47. Parameter Space θp = 0, 4%, 6%, 8% Best fit mπd ∼ 70 GeV δm ∼ 95 keV Slow halos v0 ∼ 200 km/s α 1.0 ∼
  • 48. Global Fit gd2 2 gd gd mπd mAd gd vφ 4 → 4 yH q mAd 0.010 0.005 0.001 5 104 DAMA Regions Ε 1 104 5 105 θp = 0, 6%, 8% 1 105 Dark Photon Mass GeV 0.01 0.1 1 10 100
  • 49. DAMA Best fits Modulation Amplitude 0.03 θp =c0%, 8% el/cin=0 cel/cin=0.15 countskgdaykeVee 0.02 0.01 0.00 Recoil Energy keVee 0 2 4 6 8 Difficult to distinguish from DAMA mixed elastic-inelastic scattering
  • 50. Xenon100 100 kg Liquid Xe detectors (upgrade for Xenon10) Will see a large number of events DAMA rate: 0.02/kg d/keV Nevents 0.5 Nevents 40 0.25 0.25 0.20 0.20 Frequency Frequency 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0 20 40 60 80 100 120 0 20 40 60 80 100 120 Events Observed Events Observed (1000 kg-day exposure ~ 1 month!) Tail down to small 5 events
  • 51. Xenon100 Recoil Spectrum 5.00 1000 kg· day : summer 1.00 : winter 0.50 countskeV 0.10 0.05 Recoil Energy keV 0 20 40 60 80 Elastic subcomponent apparent but distorts spectrum, inelastic kinematics get washed out Directional detection experiments key
  • 52. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Discussion
  • 53. Future Work Susy: New Hierarchy Problem SM might be mediator of DM SSB Nearly Susy bound states Possible DM forming MACHOS Discovering other components Light Baryons Heavy Baryons Multicore Mesons Generating Asymmetry Decays Annihilations Cosmic Ray Signals Collider Signatures Lepton Jets
  • 54. Collider Signatures + − + Light mesons ωD ηD − √ ωD s ΛD 23-4/5-))' 0/-(*5506)'!-7') !#$%'()*# +*,'#-. qD +!#*/01)0*/ √ s ΛD p e− p+ e #*89+5:-;+'#0(5- ''/) ¯ qD γ mA ΛD ωD ωD Lepton Jets =**)'!-;#*!8()- + − ωD #'(*05-*-;+*)*/ − ηD + − + ωD
  • 55. Signal Simulation (w/ A. Haas Y. Gershtein) Need Hadron Spectrum + Decays Dark Showering Sherpa Herwig Dark Hadronization Sherpa Herwig Cascading to SM
  • 56. DarkSpecGen (w/ S. Behbehani) An interface to produce semi-realistic hadronic final spectra and decay tables and interface to Sherpa Herwig Gauge SU(N), Sp(2N), SO(N) Partons Reps (Fund, Adj) Nf, Masses, Spins Strong Decays Weak Decays Flavor/CP SM Neutral Portals
  • 57. Conclusions Inelastic DM is an elegant explanation for DAMA vs the Rest of the World New scale to explain: New Dynamics Discovery or Refutation Imminent Within the year iDM sensitive to halo: Need to go beyond SHM New measurements are important Directional Detection Finding DM subcomponents Measuring Halo properties