SlideShare una empresa de Scribd logo
1 de 27
Descargar para leer sin conexión
Chapter 13
13-1
dP = 17/8 = 2.125 in
dG =
N2
N3
dP =
1120
544
(2.125) = 4.375 in
NG = PdG = 8(4.375) = 35 teeth Ans.
C = (2.125 + 4.375)/2 = 3.25 in Ans.
13-2
nG = 1600(15/60) = 400 rev/min Ans.
p = πm = 3π mm Ans.
C = [3(15 + 60)]/2 = 112.5 mm Ans.
13-3
NG = 20(2.80) = 56 teeth Ans.
dG = NGm = 56(4) = 224 mm Ans.
dP = NPm = 20(4) = 80 mm Ans.
C = (224 + 80)/2 = 152 mm Ans.
13-4 Mesh: a = 1/P = 1/3 = 0.3333 in Ans.
b = 1.25/P = 1.25/3 = 0.4167 in Ans.
c = b − a = 0.0834 in Ans.
p = π/P = π/3 = 1.047 in Ans.
t = p/2 = 1.047/2 = 0.523 in Ans.
Pinion Base-Circle: d1 = N1/P = 21/3 = 7 in
d1b = 7 cos 20° = 6.578 in Ans.
Gear Base-Circle: d2 = N2/P = 28/3 = 9.333 in
d2b = 9.333 cos 20° = 8.770 in Ans.
Base pitch: pb = pc cos φ = (π/3) cos 20° = 0.984 in Ans.
Contact Ratio: mc = Lab/pb = 1.53/0.984 = 1.55 Ans.
See the next page for a drawing of the gears and the arc lengths.
shi20396_ch13.qxd 8/29/03 12:16 PM Page 333
334 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
13-5
(a) AO =
2.333
2
2
+
5.333
2
2 1/2
= 2.910 in Ans.
(b) γ = tan−1
(14/32) = 23.63° Ans.
= tan−1
(32/14) = 66.37° Ans.
(c) dP = 14/6 = 2.333 in,
dG = 32/6 = 5.333 in Ans.
(d) From Table 13-3, 0.3AO = 0.873 in and 10/P = 10/6 = 1.67
0.873 < 1.67 ∴ F = 0.873 in Ans.
13-6
(a) pn = π/5 = 0.6283 in
pt = pn/cos ψ = 0.6283/cos 30° = 0.7255 in
px = pt/tan ψ = 0.7255/tan 30° = 1.25 in
30Њ
P G
2
1
3
"
5
1
3
"
AO
⌫
␥
10.5Њ
Arc of approach ϭ 0.87 in Ans.
Arc of recess ϭ 0.77 in Ans.
Arc of action ϭ 1.64 in Ans.
Lab ϭ 1.53 in
10Њ
O2
O1
14Њ 12.6Њ
P
BA
shi20396_ch13.qxd 8/29/03 12:16 PM Page 334
Chapter 13 335
(b) pnb = pn cos φn = 0.6283 cos 20° = 0.590 in Ans.
(c) Pt = Pn cos ψ = 5 cos 30° = 4.33 teeth/in
φt = tan−1
(tan φn/cos ψ) = tan−1
(tan 20°/cos 30◦
) = 22.8° Ans.
(d) Table 13-4:
a = 1/5 = 0.200 in Ans.
b = 1.25/5 = 0.250 in Ans.
dP =
17
5 cos 30°
= 3.926 in Ans.
dG =
34
5 cos 30°
= 7.852 in Ans.
13-7
φn = 14.5°, Pn = 10 teeth/in
(a) pn = π/10 = 0.3142 in Ans.
pt =
pn
cos ψ
=
0.3142
cos 20°
= 0.3343 in Ans.
px =
pt
tan ψ
=
0.3343
tan 20°
= 0.9185 in Ans.
(b) Pt = Pn cos ψ = 10 cos 20° = 9.397 teeth/in
φt = tan−1 tan 14.5°
cos 20°
= 15.39° Ans.
(c) a = 1/10 = 0.100 in Ans.
b = 1.25/10 = 0.125 in Ans.
dP =
19
10 cos 20°
= 2.022 in Ans.
dG =
57
10 cos 20°
= 6.066 in Ans.
G
20Њ
P
shi20396_ch13.qxd 8/29/03 12:16 PM Page 335
336 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
13-8 From Ex. 13-1, a 16-tooth spur pinion meshes with a 40-tooth gear, mG = 40/16 = 2.5.
Equations (13-10) through (13-13) apply.
(a) The smallest pinion tooth count that will run with itself is found from Eq. (13-10)
NP ≥
4k
6 sin2
φ
1 + 1 + 3 sin2
φ
≥
4(1)
6 sin2
20°
1 + 1 + 3 sin2
20°
≥ 12.32 → 13 teeth Ans.
(b) The smallest pinion that will mesh with a gear ratio of mG = 2.5, from Eq. (13-11) is
NP ≥
2(1)
[1 + 2(2.5)] sin2
20°
2.5 + 2.52 + [1 + 2(2.5)] sin2
20°
≥ 14.64 → 15 pinion teeth Ans.
(c) The smallest pinion that will mesh with a rack, from Eq. (13-12)
NP ≥
4k
2 sin2
φ
=
4(1)
2 sin2
20°
≥ 17.097 → 18 teeth Ans.
(d) The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-13) is
NG ≤
N2
P sin2
φ − 4k2
4k − 2NP sin2
φ
≤
132
sin2
20° − 4(1)2
4(1) − 2(13) sin2
20°
≤ 16.45 → 16 teeth Ans.
13-9 From Ex. 13-2, a 20° pressure angle, 30° helix angle, pt = 6 teeth/in pinion with 18 full
depth teeth, and φt = 21.88°.
(a) The smallest tooth count that will mesh with a like gear, from Eq. (13-21), is
NP ≥
4k cos ψ
6 sin2
φt
1 + 1 + 3 sin2
φt
≥
4(1) cos 30°
6 sin2
21.88°
1 + 1 + 3 sin2
21.88°
≥ 9.11 → 10 teeth Ans.
(b) The smallest pinion-tooth count that will run with a rack, from Eq. (13-23), is
NP ≥
4k cos ψ
2 sin2
φt
≥
4(1) cos 30◦
2 sin2
21.88°
≥ 12.47 → 13 teeth Ans.
shi20396_ch13.qxd 8/29/03 12:16 PM Page 336
Chapter 13 337
(c) The largest gear tooth possible, from Eq. (13-24) is
NG ≤
N2
P sin2
φt − 4k2
cos2
ψ
4k cos ψ − 2NP sin2
φt
≤
102
sin2
21.88° − 4(12
) cos2
30°
4(1) cos 30° − 2(10) sin2
21.88°
≤ 15.86 → 15 teeth Ans.
13-10 Pressure Angle: φt = tan−1 tan 20°
cos 30°
= 22.796°
Program Eq. (13-24) on a computer using a spreadsheet or code and increment NP. The
first value of NP that can be doubled is NP = 10 teeth, where NG ≤ 26.01 teeth. So NG =
20 teeth will work. Higher tooth counts will work also, for example 11:22, 12:24, etc.
Use 10:20 Ans.
13-11 Refer to Prob. 13-10 solution. The first value of NP that can be multiplied by 6 is
NP = 11 teeth where NG ≤ 93.6 teeth. So NG = 66 teeth.
Use 11:66 Ans.
13-12 Begin with the more general relation, Eq. (13-24), for full depth teeth.
NG =
N2
P sin2
φt − 4 cos2
ψ
4 cos ψ − 2NP sin2
φt
Set the denominator to zero
4 cos ψ − 2NP sin2
φt = 0
From which
sin φt =
2 cos ψ
NP
φt = sin−1 2 cos ψ
NP
For NP = 9 teeth and cos ψ = 1
φt = sin−1 2(1)
9
= 28.126° Ans.
13-13
(a) pn = πmn = 3π mm Ans.
pt = 3π/cos 25° = 10.4 mm Ans.
px = 10.4/tan 25° = 22.3 mm Ans.
18T 32T
␺ ϭ 25Њ, ␾n ϭ 20Њ, m ϭ 3 mm
shi20396_ch13.qxd 8/29/03 12:16 PM Page 337
338 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
(b) mt = 10.4/π = 3.310 mm Ans.
φt = tan−1 tan 20°
cos 25°
= 21.88° Ans.
(c) dP = 3.310(18) = 59.58 mm Ans.
dG = 3.310(32) = 105.92 mm Ans.
13-14 (a) The axial force of 2 on shaft a is in the negative direction. The axial force of 3 on
shaft b is in the positive direction of z. Ans.
The axial force of gear 4 on shaft b is in the positive z-direction. The axial force of
gear 5 on shaft c is in the negative z-direction. Ans.
(b) nc = n5 =
14
54
16
36
(900) = +103.7 rev/min ccw Ans.
(c) dP2 = 14/(10 cos 30°) = 1.6166 in
dG3 = 54/(10 cos 30°) = 6.2354 in
Cab =
1.6166 + 6.2354
2
= 3.926 in Ans.
dP4 = 16/(6 cos 25°) = 2.9423 in
dG5 = 36/(6 cos 25°) = 6.6203 in
Cbc = 4.781 in Ans.
13-15 e =
20
40
8
17
20
60
=
4
51
nd =
4
51
(600) = 47.06 rev/min cw Ans.
5
4
c
b
z
a
3
z
2
b
shi20396_ch13.qxd 8/29/03 12:16 PM Page 338
Chapter 13 339
13-16
e =
6
10
18
38
20
48
3
36
=
3
304
na =
3
304
(1200) = 11.84 rev/min cw Ans.
13-17
(a) nc =
12
40
·
1
1
(540) = 162 rev/min cw about x. Ans.
(b) dP = 12/(8 cos 23°) = 1.630 in
dG = 40/(8 cos 23°) = 5.432 in
dP + dG
2
= 3.531 in Ans.
(c) d =
32
4
= 8 in at the large end of the teeth. Ans.
13-18 (a) The planet gears act as keys and the wheel speeds are the same as that of the ring gear.
Thus
nA = n3 = 1200(17/54) = 377.8 rev/min Ans.
(b) nF = n5 = 0, nL = n6, e = −1
−1 =
n6 − 377.8
0 − 377.8
377.8 = n6 − 377.8
n6 = 755.6 rev/min Ans.
Alternatively, the velocity of the center of gear 4 is v4c ∝ N6n3 . The velocity of the
left edge of gear 4 is zero since the left wheel is resting on the ground. Thus, the ve-
locity of the right edge of gear 4 is2v4c ∝ 2N6n3. This velocity, divided by the radius
of gear 6 ∝ N6, is angular velocity of gear 6–the speed of wheel 6.
∴ n6 =
2N6n3
N6
= 2n3 = 2(377.8) = 755.6 rev/min Ans.
(c) The wheel spins freely on icy surfaces, leaving no traction for the other wheel. The
car is stalled. Ans.
13-19 (a) The motive power is divided equally among four wheels instead of two.
(b) Locking the center differential causes 50 percent of the power to be applied to the
rear wheels and 50 percent to the front wheels. If one of the rear wheels, rests on
a slippery surface such as ice, the other rear wheel has no traction. But the front
wheels still provide traction, and so you have two-wheel drive. However, if the rear
differential is locked, you have 3-wheel drive because the rear-wheel power is now
distributed 50-50.
shi20396_ch13.qxd 8/29/03 12:16 PM Page 339
340 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
13-20 Let gear 2 be first, then nF = n2 = 0. Let gear 6 be last, then nL = n6 = −12 rev/min.
e =
20
30
16
34
=
16
51
, e =
nL − nA
nF − nA
(0 − nA)
16
51
= −12 − nA
nA =
−12
35/51
= −17.49 rev/min (negative indicates cw) Ans.
Alternatively, since N ∝ r, let v = Nn (crazy units).
v = N6n6 N6 = 20 + 30 − 16 = 34 teeth
vA
N4
=
v
N4 − N5
⇒ vA =
N4 N6n6
N4 − N5
nA =
vA
N2 + N4
=
N4 N6n6
(N2 + N4)(N4 − N5)
=
30(34)(12)
(20 + 30)(30 − 16)
= 17.49 rev/min cw Ans.
13-21 Let gear 2 be first, then nF = n2 = 180 rev/min. Let gear 6 be last, then nL = n6 = 0.
e =
20
30
16
34
=
16
51
, e =
nL − nA
nF − nA
(180 − nA)
16
51
= (0 − nA)
nA = −
16
35
180 = −82.29 rev/min
The negative sign indicates opposite n2 ∴ nA = 82.29 rev/min cw Ans.
Alternatively, since N ∝ r, let v = Nn (crazy units).
vA
N5
=
v
N4 − N5
=
N2n2
N4 − N5
vA =
N5 N2n2
N4 − N5
nA =
vA
N2 + N4
=
N5 N2n2
(N2 + N4)(N4 − N5)
=
16(20)(180)
(20 + 30)(30 − 16)
= 82.29 rev/min cw Ans.
45
v ϭ 0
v ϭ N2n2
N2
vA
2
4
5
v
v ϭ 0
vA
2
shi20396_ch13.qxd 8/29/03 12:16 PM Page 340
Chapter 13 341
13-22 N5 = 12 + 2(16) + 2(12) = 68 teeth Ans.
Let gear 2 be first, nF = n2 = 320 rev/min. Let gear 5 be last, nL = n5 = 0
e =
12
16
16
12
12
68
=
3
17
, e =
nL − nA
nF − nA
320 − nA =
17
3
(0 − nA)
nA = −
3
14
(320) = −68.57 rev/min
The negative sign indicates opposite of n2 ∴ nA = 68.57 rev/min cw Ans.
Alternatively,
nA =
n2 N2
2(N3 + N4)
=
320(12)
2(16 + 12)
= 68.57 rev/min cw Ans.
13-23 Let nF = n2 then nL = n7 = 0.
e = −
24
18
18
30
36
54
= −
8
15
e =
nL − n5
nF − n5
= −
8
15
0 − 5
n2 − 5
= −
8
15
⇒ n2 = 5 +
15
8
(5) = 14.375 turns in same direction
13-24 (a) Let nF = n2 = 0, then nL = n5.
e =
99
100
101
100
=
9999
10 000
, e =
nL − nA
nF − nA
=
nL − nA
0 − nA
nL − nA = −enA
nL = nA(−e + 1)
nL
nA
= 1 − e = 1 −
9999
10 000
=
1
10 000
= 0.0001 Ans.
(b) d4 =
N4
P
=
101
10
= 10.1 in
d5 =
100
10
= 10 in
dhousing > 2 d4 +
d5
2
= 2 10.1 +
10
2
= 30.2 in Ans.
v ϭ 0
nA(N2 ϩ N3)
v ϭ n2N2
2nA(N2 ϩ 2N3 ϩ N4) ϭ n2N2 ϩ 2nA(N2 ϩ N3)
2nA(N2 ϩ 2N3 ϩ N4) Ϫ 2nA(N2 ϩ N3) ϭ n2N2
nA(N2 ϩ 2N3 ϩ N4)
shi20396_ch13.qxd 8/29/03 12:16 PM Page 341
342 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
13-25 n2 = nb = nF, nA = na, nL = n5 = 0
e = −
21
444
=
nL − nA
nF − nA
−
21
444
(nF − nA) = 0 − nA
With shaft b as input
−
21
444
nF +
21
444
nA +
444
444
nA = 0
nA
nF
=
na
nb
=
21
465
na =
21
465
nb, in the same direction as shaft b, the input. Ans.
Alternatively,
vA
N4
=
n2 N2
N3 + N4
vA =
n2 N2 N4
N3 + N4
na = nA =
vA
N2 + N3
=
n2 N2 N4
(N2 + N3)(N3 + N4)
=
18(21)(nb)
(18 + 72)(72 + 21)
=
21
465
nb in the same direction as b Ans.
13-26 nF = n2 = na, nL = n6 = 0
e = −
24
18
22
64
= −
11
24
, e =
nL − nA
nF − nA
=
0 − nb
na − nb
−
11
24
=
0 − nb
na − nb
⇒
nb
na
=
11
35
Ans.
Yes, both shafts rotate in the same direction. Ans.
Alternatively,
vA
N5
=
n2 N2
N3 + N5
=
N2
N3 + N5
na, vA =
N2 N5
N3 + N5
na
nA = nb =
vA
N2 + N3
=
N2 N5
(N2 + N3)(N3 + N5)
na
nb
na
=
24(22)
(24 + 18)(22 + 18)
=
11
35
Ans.
nb rotates ccw ∴ Yes Ans.
13-27 n2 = nF = 0, nL = n5 = nb, nA = na
e = +
20
24
20
24
=
25
36
3
5
v ϭ 0
vA
n2N2
2
3
4
2
v ϭ 0
vA
n2N2
shi20396_ch13.qxd 8/29/03 12:16 PM Page 342
Chapter 13 343
25
36
=
nb − na
0 − na
nb
na
=
11
36
Ans.
Same sense, therefore shaft b rotates in the same direction as a. Ans.
Alternatively,
v5
N3 − N4
=
(N2 + N3)na
N3
v5 =
(N2 + N3)(N3 − N4)n
N3
nb =
v5
N5
=
(N2 + N3)(N3 − N4)na
N3 N5
nb
na
=
(20 + 24)(24 − 20)
24(24)
=
11
36
same sense Ans.
13-28 (a) ω = 2πn/60
H = Tω = 2πTn/60 (T in N · m, H in W)
So T =
60H(103
)
2πn
= 9550H/n (H in kW, n in rev/min)
Ta =
9550(75)
1800
= 398 N · m
r2 =
mN2
2
=
5(17)
2
= 42.5 mm
So
Ft
32 =
Ta
r2
=
398
42.5
= 9.36 kN
F3b = −Fb3 = 2(9.36) = 18.73 kN in the positive x-direction. Ans.
See the figure in part (b) on the following page.
9.36
2
a
Ta2
398 N•m
Ft
32
3
4
v5
v ϭ 0
(N2 ϩ N3)na
shi20396_ch13.qxd 8/29/03 12:16 PM Page 343
344 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
(b) r4 =
mN4
2
=
5(51)
2
= 127.5 mm
Tc4 = 9.36(127.5) = 1193 N · m ccw
∴ T4c = 1193 N · m cw Ans.
Note: The solution is independent of the pressure angle.
13-29
d =
N
6
d2 = 4 in, d4 = 4 in, d5 = 6 in, d6 = 24 in
e =
24
24
24
36
36
144
= 1/6, nP = n2 = 1000 rev/min
nL = n6 = 0
e =
nL − nA
nF − nA
=
0 − nA
1000 − nA
nA = −200 rev/min
2 4
5
6
9.36
4
c
Tc4 ϭ 1193
b
9.36
O
3
Ft
43
9.36
18.73
Ft
23
Fb3
shi20396_ch13.qxd 8/29/03 12:16 PM Page 344
Chapter 13 345
Input torque: T2 =
63 025H
n
T2 =
63 025(25)
1000
= 1576 lbf · in
For 100 percent gear efficiency
Tarm =
63 025(25)
200
= 7878 lbf · in
Gear 2
Wt
=
1576
2
= 788 lbf
Fr
32 = 788 tan 20° = 287 lbf
Gear 4
FA4 = 2Wt
= 2(788) = 1576 lbf
Gear 5
Arm
Tout = 1576(9) − 1576(4) = 7880 lbf · in Ans.
13-30 Given: P = 2 teeth/in, nP = 1800 rev/min cw, N2 = 18T, N3 = 32T, N4 = 18T,
N5 = 48T.
Pitch Diameters: d2 = 18/2 = 9 in; d3 = 32/2 = 16 in; d4 = 18/2 = 9 in; d5 =
48/2 = 24 in.
4" 5"
1576 lbf
1576 lbf
Tout
ϩϩϩ
5 Wt
ϭ 788 lbf
Fr
ϭ 287 lbf
2Wt
ϭ 1576 lbf
Wt
Fr
4
n4
FA4
Wt
Wt
Fr
Fr
2
T2 ϭ 1576 lbf•inn2
Ft
a2
Wt
Fr
a2 Fr
42
shi20396_ch13.qxd 8/29/03 12:16 PM Page 345
346 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Gear 2
Ta2 = 63 025(200)/1800 = 7003 lbf · in
Wt
= 7003/4.5 = 1556 lbf
Wr
= 1556 tan 20° = 566 lbf
Gears 3 and 4
Wt
(4.5) = 1556(8), Wt
= 2766 lbf
Wr
= 2766 tan 20◦
= 1007 lbf
Ans.
13-31 Given: P = 5 teeth/in, N2 = 18T, N3 = 45T, φn = 20°, H = 32 hp, n2 =
1800 rev/min.
Gear 2
Tin =
63 025(32)
1800
= 1120 lbf · in
dP =
18
5
= 3.600 in
dG =
45
5
= 9.000 in
Wt
32 =
1120
3.6/2
= 622 lbf
Wr
32 = 622 tan 20° = 226 lbf
Ft
a2 = Wt
32 = 622 lbf, Fr
a2 = Wr
32 = 226 lbf
Fa2 = (6222
+ 2262
)1/2
= 662 lbf
Each bearing on shaft a has the same radial load of RA = RB = 662/2 = 331lbf.
2
a
Tin
Wt
32
Wr
32
Fr
a2
Ft
a2
b
3
4
y
x
Wr
ϭ 566 lbf
Wt
ϭ 1556 lbf
Wt
ϭ 2766 lbf
Wr
ϭ 1007 lbf
2
a
Wt
ϭ 1556 lbf
Wr
ϭ 566 lbf
Ta2 ϭ 7003 lbf•in
shi20396_ch13.qxd 8/29/03 12:16 PM Page 346
Chapter 13 347
Gear 3
Wt
23 = Wt
32 = 622 lbf
Wr
23 = Wr
32 = 226 lbf
Fb3 = Fb2 = 662 lbf
RC = RD = 662/2 = 331 lbf
Each bearing on shaft b has the same radial load which is equal to the radial load of bear-
ings, A and B. Thus, all four bearings have the same radial load of 331 lbf. Ans.
13-32 Given: P = 4 teeth/in, φn = 20◦
, NP = 20T, n2 = 900 rev/min.
d2 =
NP
P
=
20
4
= 5.000 in
Tin =
63 025(30)(2)
900
= 4202 lbf · in
Wt
32 = Tin/(d2/2) = 4202/(5/2) = 1681 lbf
Wr
32 = 1681 tan 20◦
= 612 lbf
The motor mount resists the equivalent forces and torque. The radial force due to torque
Fr
=
4202
14(2)
= 150 lbf
Forces reverse with rotational
sense as torque reverses.
C
D
A
B
150
14"
150
150
4202 lbf•in
150
y
2 612 lbf
4202 lbf•in
1681 lbf
z
Equivalent
y
z 2
Wt
32 ϭ 1681 lbf
Wr
32 ϭ 612 lbf
Load on 2
due to 3
3
2
y
x
y
z
3
Tout ϭ Wt
23r3
ϭ 2799 lbf•in
b Fb
t
3
Wt
23
Wr
23
Fb
r
3
shi20396_ch13.qxd 8/29/03 12:16 PM Page 347
348 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
The compressive loads at A and D are absorbed by the base plate, not the bolts. For Wt
32 ,
the tensions in C and D are
MAB = 0 1681(4.875 + 15.25) − 2F(15.25) = 0 F = 1109 lbf
If Wt
32 reverses, 15.25 in changes to 13.25 in, 4.815 in changes to 2.875 in, and the forces
change direction. For A and B,
1681(2.875) − 2F1(13.25) = 0 ⇒ F1 = 182.4 lbf
For Wr
32
M = 612(4.875 + 11.25/2) = 6426 lbf · in
a = (14/2)2 + (11.25/2)2 = 8.98 in
F2 =
6426
4(8.98)
= 179 lbf
At C and D, the shear forces are:
FS1 = [153 + 179(5.625/8.98)]2 + [179(7/8.98)]2
= 300 lbf
At A and B, the shear forces are:
FS2 = [153 − 179(5.625/8.98)]2 + [179(7/8.98)]2
= 145 lbf
C
a
D
153 lbf
153 lbf
F2
F2F2
F2
612
4
ϭ 153 lbf
4.875
11.25
14
612 lbf
153 lbf
B
C
1681 lbf4.87515.25"
F
F
D
F1
F1
A
shi20396_ch13.qxd 8/29/03 12:16 PM Page 348
Chapter 13 349
The shear forces are independent of the rotational sense.
The bolt tensions and the shear forces for cw rotation are,
Tension (lbf) Shear (lbf)
A 0 145
B 0 145
C 1109 300
D 1109 300
For ccw rotation,
Tension (lbf) Shear (lbf)
A 182 145
B 182 145
C 0 300
D 0 300
13-33 Tin = 63 025H/n = 63 025(2.5)/240 = 656.5 lbf · in
Wt
= T/r = 656.5/2 = 328.3 lbf
γ = tan−1
(2/4) = 26.565°
= tan−1
(4/2) = 63.435°
a = 2 + (1.5 cos 26.565°)/2 = 2.67 in
Wr
= 328.3 tan 20° cos 26.565° = 106.9 lbf
Wa
= 328.3 tan 20° sin 26.565° = 53.4 lbf
W = 106.9i − 53.4j + 328.3k lbf
RAG = −2i + 5.17j, RAB = 2.5j
M4 = RAG × W + RAB × FB + T = 0
Solving gives
RAB × FB = 2.5Fz
Bi − 2.5Fx
Bk
RAG × W = 1697i + 656.6j − 445.9k
So
(1697i + 656.6j − 445.9k) + 2.5Fz
Bi − 2.5Fx
Bk + Tj = 0
Fz
B = −1697/2.5 = −678.8 lbf
T = −656.6 lbf · in
Fx
B = −445.9/2.5 = −178.4 lbf
y
2
2
1
2
B
A
G
WtWr
Wa
Tin
Not to scale
xz
a
F
y
A
Fz
A
Fz
B
Fx
A
Fx
B
shi20396_ch13.qxd 8/29/03 12:16 PM Page 349
350 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
So
FB = [(−678.8)2
+ (−178.4)2
]1/2
= 702 lbf Ans.
FA = −(FB + W)
= −(−178.4i − 678.8k + 106.9i − 53.4j + 328.3k)
= 71.5i + 53.4j + 350.5k
FA (radial) = (71.52
+ 350.52
)1/2
= 358 lbf Ans.
FA (thrust) = 53.4 lbf Ans.
13-34
d2 = 15/10 = 1.5 in, Wt
= 30 lbf, d3 =
25
10
= 2.5 in
γ = tan−1 0.75
1.25
= 30.96°, = 59.04°
DE =
9
16
+ 0.5 cos 59.04° = 0.8197 in
Wr
= 30 tan 20° cos 59.04° = 5.617 lbf
Wa
= 30 tan 20° sin 59.04° = 9.363 lbf
W = −5.617i − 9.363j + 30k
RDG = 0.8197j + 1.25i
RDC = −0.625j
MD = RDG × W + RDC × FC + T = 0
RDG × W = 24.591i − 37.5j − 7.099k
RDC × FC = −0.625Fz
Ci + 0.625Fx
Ck
T = 37.5 lbf · in Ans.
FC = 11.4i + 39.3k lbf Ans.
FC = (11.42
+ 39.32
)1/2
= 40.9 lbf Ans.
F = 0 FD = −5.78i + 9.363j − 69.3k lbf
FD (radial) = [(−5.78)2
+ (−69.3)2
]1/2
= 69.5 lbf Ans.
FD (thrust) = Wa
= 9.363 lbf Ans.
Wr
Wa
Wt
z
C
D
E
G
x
y
5"
8
0.8197"
1.25"
Not to scale
Fx
D
Fz
D
Fx
C Fz
C
F
y
D
1.25
0.75
␥
shi20396_ch13.qxd 8/29/03 12:16 PM Page 350
Chapter 13 351
13-35 Sketch gear 2 pictorially.
Pt = Pn cos ψ = 4 cos 30° = 3.464 teeth/in
φt = tan−1 tan φn
cos ψ
= tan−1 tan 20°
cos 30°
= 22.80°
Sketch gear 3 pictorially,
dP =
18
3.464
= 5.196 in
Pinion (Gear 2)
Wr
= Wt
tan φt = 800 tan 22.80° = 336 lbf
Wa
= Wt
tan ψ = 800 tan 30° = 462 lbf
W = −336i − 462j + 800k lbf Ans.
W = [(−336)2
+ (−462)2
+ 8002
]1/2
= 983 lbf Ans.
Gear 3
W = 336i + 462j − 800k lbf Ans.
W = 983 lbf Ans.
dG =
32
3.464
= 9.238 in
TG = Wt
r = 800(9.238) = 7390 lbf · in
13-36 From Prob. 13-35 solution,
Notice that the idler shaft reaction contains a couple tending to turn the shaft end-over-
end. Also the idler teeth are bent both ways. Idlers are more severely loaded than other
gears, belying their name. Thus be cautious.
800
336
462
4
800800
336336
4623
462
800
2
336
462
Wa
TG
Wr
Wt
x
3
yz
Wa
Wr
T
Wt
x
y
z
2
shi20396_ch13.qxd 8/29/03 12:16 PM Page 351
352 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
13-37
Gear 3:
Pt = Pn cos ψ = 7 cos 30° = 6.062 teeth/in
tan φt =
tan 20°
cos 30°
= 0.4203, φt = 22.8°
d3 =
54
6.062
= 8.908 in
Wt
= 500 lbf
Wa
= 500 tan 30° = 288.7 lbf
Wr
= 500 tan 22.8° = 210.2 lbf
W3 = 210.2i + 288.7j − 500k lbf Ans.
Gear 4:
d4 =
14
6.062
= 2.309 in
Wt
= 500
8.908
2.309
= 1929 lbf
Wa
= 1929 tan 30° = 1114 lbf
Wr
= 1929 tan 22.8° = 811 lbf
W4 = −811i + 1114j − 1929k lbf Ans.
13-38
Pt = 6 cos 30° = 5.196 teeth/in
d3 =
42
5.196
= 8.083 in
φt = 22.8°
d2 =
16
5.196
= 3.079 in
T2 =
63 025(25)
1720
= 916 lbf · in
Wt
=
T
r
=
916
3.079/2
= 595 lbf
Wa
= 595 tan 30° = 344 lbf
Wr
= 595 tan 22.8° = 250 lbf
W = 344i + 250j + 595k lbf
RDC = 6i, RDG = 3i − 4.04j
T3
C
AB
D
T2
y
3
2
x
z
y
x
Wt
Wr
Wa
Wt
Wr
Wa
r4
r3
shi20396_ch13.qxd 8/29/03 12:16 PM Page 352
Chapter 13 353
MD = RDC × FC + RDG × W + T = 0 (1)
RDG × W = −2404i − 1785j + 2140k
RDC × FC = −6Fz
Cj + 6F
y
Ck
Substituting and solving Eq. (1) gives
T = 2404i lbf · in
Fz
C = −297.5 lbf
F
y
C = −356.7 lbf
F = FD + FC + W = 0
Substituting and solving gives
Fx
C = −344 lbf
F
y
D = 106.7 lbf
Fz
D = −297.5 lbf
So
FC = −344i − 356.7j − 297.5k lbf Ans.
FD = 106.7j − 297.5k lbf Ans.
13-39 Pt = 8 cos 15° = 7.727 teeth/in
y
2
z
x
a
Fa
a2
Ft
a2
Fr
a2
Fa
32
Fr
32
Ft
32
G
C
D
x
z
y
Wr
Wa
Wt
4.04"
3"
3"
F
y
C
Fx
C
Fz
C
Fz
T
D
F
y
D
shi20396_ch13.qxd 8/29/03 12:16 PM Page 353
354 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
d2 = 16/7.727 = 2.07 in
d3 = 36/7.727 = 4.66 in
d4 = 28/7.727 = 3.62 in
T2 =
63 025(7.5)
1720
= 274.8 lbf · in
Wt
=
274.8
2.07/2
= 266 lbf
Wr
= 266 tan 20° = 96.8 lbf
Wa
= 266 tan 15° = 71.3 lbf
F2a = −266i − 96.8j − 71.3k lbf Ans.
F3b = (266 − 96.8)i − (266 − 96.8)j
= 169i − 169j lbf Ans.
F4c = 96.8i + 266j + 71.3k lbf Ans.
13-40
d2 =
N
Pn cos ψ
=
14
8 cos 30°
= 2.021 in, d3 =
36
8 cos 30°
= 5.196 in
d4 =
15
5 cos 15°
= 3.106 in, d5 =
45
5 cos 15°
= 9.317 in
C
x
y
z
b
Ft
23
Fr
23
Fa
23
Ft
54
Fa
54
Fr
54
D
G
H
3"
2"
3
2.6"R
1.55"R
4
3
1"
2
F
y
DFx
D
Fx
C
F
y
C
Fz
D
y
Fr
43
Fx
b3
F
y
b3
Fa
23
Fr
23
Ft
23
Ft
43
Fa
43
3
Fb3
z
x
b
y
Ft
c4
Fr
c4
Fa
c4
4
Fa
34
Fr
34
Ft
34
z
x
c
shi20396_ch13.qxd 8/29/03 12:16 PM Page 354
Chapter 13 355
For gears 2 and 3: φt = tan−1
(tan φn/cos ψ) = tan−1
(tan 20°/cos 30◦
) = 22.8°,
For gears 4 and 5: φt = tan−1
(tan 20°/cos 15°) = 20.6°,
Ft
23 = T2/r = 1200/(2.021/2) = 1188 lbf
Ft
54 = 1188
5.196
3.106
= 1987 lbf
Fr
23 = Ft
23 tan φt = 1188 tan 22.8° = 499 lbf
Fr
54 = 1986 tan 20.6° = 746 lbf
Fa
23 = Ft
23 tan ψ = 1188 tan 30° = 686 lbf
Fa
54 = 1986 tan 15° = 532 lbf
Next, designate the points of action on gears 4 and 3, respectively, as points G and H,
as shown. Position vectors are
RCG = 1.553j − 3k
RC H = −2.598j − 6.5k
RC D = −8.5k
Force vectors are
F54 = −1986i − 748j + 532k
F23 = −1188i + 500j − 686k
FC = Fx
Ci + F
y
Cj
FD = Fx
Di + F
y
Dj + Fz
Dk
Now, a summation of moments about bearing C gives
MC = RCG × F54 + RC H × F23 + RC D × FD = 0
The terms for this equation are found to be
RCG × F54 = −1412i + 5961j + 3086k
RC H × F23 = 5026i + 7722j − 3086k
RC D × FD = 8.5F
y
Di − 8.5Fx
Dj
When these terms are placed back into the moment equation, the k terms, representing
the shaft torque, cancel. The i and j terms give
F
y
D = −
3614
8.5
= −425 lbf Ans.
Fx
D =
(13 683)
8.5
= 1610 lbf Ans.
Next, we sum the forces to zero.
F = FC + F54 + F23 + FD = 0
Substituting, gives
Fx
Ci + F
y
Cj + (−1987i − 746j + 532k) + (−1188i + 499j − 686k)
+ (1610i − 425j + Fz
Dk) = 0
shi20396_ch13.qxd 8/29/03 12:16 PM Page 355
356 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Solving gives
Fx
C = 1987 + 1188 − 1610 = 1565 lbf
F
y
C = 746 − 499 + 425 = 672 lbf
Fz
D = −532 + 686 = 154 lbf Ans.
13-41
VW =
πdW nW
60
=
π(0.100)(600)
60
= π m/s
WWt =
H
VW
=
2000
π
= 637 N
L = px NW = 25(1) = 25 mm
λ = tan−1 L
πdW
= tan−1 25
π(100)
= 4.550° lead angle
W =
WWt
cos φn sin λ + f cos λ
VS =
VW
cos λ
=
π
cos 4.550°
= 3.152 m/s
In ft/min: VS = 3.28(3.152) = 10.33 ft/s = 620 ft/min
Use f = 0.043 from curve A of Fig. 13-42. Then from the first of Eq. (13-43)
W =
637
cos 14.5°(sin 4.55°) + 0.043 cos 4.55°
= 5323 N
W y
= W sin φn = 5323 sin 14.5° = 1333 N
Wz
= 5323[cos 14.5°(cos 4.55°) − 0.043 sin 4.55°] = 5119 N
The force acting against the worm is
W = −637i + 1333j + 5119k N
Thus A is the thrust bearing. Ans.
RAG = −0.05j − 0.10k, RAB = −0.20k
MA = RAG × W + RAB × FB + T = 0
RAG × W = −122.6i + 63.7j − 31.85k
RAB × FB = 0.2F
y
Bi − 0.2Fx
Bj
Substituting and solving gives
T = 31.85 N · m Ans.
Fx
B = 318.5 N, F
y
B = 613 N
So FB = 318.5i + 613j N Ans.
B
G
A x
y
z
Worm shaft diagram
100
100
Wr
Wt
Wa
50
shi20396_ch13.qxd 8/29/03 12:16 PM Page 356
Chapter 13 357
Or FB = [(613)2
+ (318.5)2
]1/2
= 691 N radial
F = FA + W + RB = 0
FA = −(W + FB) = −(−637i + 1333j + 5119k + 318.5i + 613j)
= 318.5i − 1946j − 5119k Ans.
Radial Fr
A = 318.5i − 1946j N,
Fr
A = [(318.5)2
+ (−1946)2
]1/2
= 1972 N
Thrust Fa
A = −5119 N
13-42 From Prob. 13-41
WG = 637i − 1333j − 5119k N
pt = px
So dG =
NG px
π
=
48(25)
π
= 382 mm
Bearing D to take thrust load
MD = RDG × WG + RDC × FC + T = 0
RDG = −0.0725i + 0.191j
RDC = −0.1075i
The position vectors are in meters.
RDG × WG = −977.7i − 371.1j − 25.02k
RDC × FC = 0.1075 Fz
Cj − 0.1075F
y
Ck
Putting it together and solving
Gives
T = 977.7 N · m Ans.
FC = −233j + 3450k N, FC = 3460 N Ans.
F = FC + WG + FD = 0
FD = −(FC + WG) = −637i + 1566j + 1669k N Ans.
G
x
y
z
FD
FC
WG
D
C
72.5
191
35
Not to scale
shi20396_ch13.qxd 8/29/03 12:16 PM Page 357
358 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Radial Fr
D = 1566j + 1669k N
Or Fr
D = 2289 N (total radial)
Ft
D = −637i N (thrust)
13-43
VW =
π(1.5)(900)
12
= 353.4 ft/min
Wx
= WWt =
33 000(0.5)
353.4
= 46.69 lbf
pt = px =
π
10
= 0.314 16 in
L = 0.314 16(2) = 0.628 in
λ = tan−1 0.628
π(1.5)
= 7.59°
W =
46.7
cos 14.5° sin 7.59° + 0.05 cos 7.59°
= 263 lbf
W y
= 263 sin 14.5◦
= 65.8 lbf
Wz
= 263[cos 14.5◦
(cos 7.59◦
) − 0.05 sin 7.59◦
] = 251 lbf
So W = 46.7i + 65.8j + 251k lbf Ans.
T = 46.7(0.75) = 35 lbf · in Ans.
13-44
100:101 Mesh
dP =
100
48
= 2.083 33 in
dG =
101
48
= 2.104 17 in
x
y
z
WWt
G
0.75"
T
y
z
shi20396_ch13.qxd 8/29/03 12:16 PM Page 358
Chapter 13 359
Proper center-to-center distance:
C =
dP + dG
2
=
2.083 33 + 2.104 17
2
= 2.093 75 in
rbP = r cos φ =
2.0833
2
cos 20◦
= 0.9788 in
99:100 Mesh
dP =
99
48
= 2.0625 in
dG =
100
48
= 2.083 33 in
Proper: C =
99/48 + 100/48
2
= 2.072 917 in
rbP = r cos φ =
2.0625
2
cos 20◦
= 0.969 06 in
Improper: C =
dP + dG
2
=
dP + (100/99)dP
2
= 2.093 75 in
dP =
2(2.093 75)
1 + (100/99)
= 2.0832 in
φ = cos−1 rbP
dP/2
= cos−1 0.969 06
2.0832/2
= 21.5°
From Ex. 13-1 last line
φ = cos−1 rbP
dP/2
= cos−1 (dP/2) cos φ
dP/2
= cos−1 (NP/P) cos φ
(2C /(1 + mG))
= cos−1 (1 + mG)NP cos φ
2PC
Ans.
13-45 Computer programs will vary.
shi20396_ch13.qxd 8/29/03 12:16 PM Page 359

Más contenido relacionado

La actualidad más candente

Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fimJhayson Carvalho
 
Design of machine elements - Helical gears
Design of machine elements - Helical gearsDesign of machine elements - Helical gears
Design of machine elements - Helical gearsAkram Hossain
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Capítulo 12 lubrificação e mancais de munhão
Capítulo 12   lubrificação e mancais de munhãoCapítulo 12   lubrificação e mancais de munhão
Capítulo 12 lubrificação e mancais de munhãoJhayson Carvalho
 
Buisness Statistical Formula ppt
Buisness Statistical Formula pptBuisness Statistical Formula ppt
Buisness Statistical Formula pptSahil Gautam
 
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam KassimaliSolution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam Kassimaliphysicsbook
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 

La actualidad más candente (14)

Deber corte
Deber corteDeber corte
Deber corte
 
Deber 9
Deber 9Deber 9
Deber 9
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fim
 
Design of machine elements - Helical gears
Design of machine elements - Helical gearsDesign of machine elements - Helical gears
Design of machine elements - Helical gears
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Capítulo 12 lubrificação e mancais de munhão
Capítulo 12   lubrificação e mancais de munhãoCapítulo 12   lubrificação e mancais de munhão
Capítulo 12 lubrificação e mancais de munhão
 
Buisness Statistical Formula ppt
Buisness Statistical Formula pptBuisness Statistical Formula ppt
Buisness Statistical Formula ppt
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam KassimaliSolution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Capítulo 16 embreagens
Capítulo 16   embreagensCapítulo 16   embreagens
Capítulo 16 embreagens
 
Maths book1 textbook answer
Maths book1 textbook answerMaths book1 textbook answer
Maths book1 textbook answer
 

Similar a Chapter 13 gear calculations and solutions

Similar a Chapter 13 gear calculations and solutions (20)

Shi20396 ch13
Shi20396 ch13Shi20396 ch13
Shi20396 ch13
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Budynas Sm Ch13
Budynas Sm Ch13Budynas Sm Ch13
Budynas Sm Ch13
 
Shi20396 ch14
Shi20396 ch14Shi20396 ch14
Shi20396 ch14
 
Shi20396 ch16
Shi20396 ch16Shi20396 ch16
Shi20396 ch16
 
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionShigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th edition
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
Shi20396 ch05
Shi20396 ch05Shi20396 ch05
Shi20396 ch05
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
Shi20396 ch12
Shi20396 ch12Shi20396 ch12
Shi20396 ch12
 
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
Modern power system analysis. By D.P. and Nagrath, I.J., 2003. Tata McGraw-Hi...
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Shi20396 ch18
Shi20396 ch18Shi20396 ch18
Shi20396 ch18
 
Chapter 16 solutions
Chapter 16 solutionsChapter 16 solutions
Chapter 16 solutions
 
Shi20396 ch10
Shi20396 ch10Shi20396 ch10
Shi20396 ch10
 
Shi20396 ch15
Shi20396 ch15Shi20396 ch15
Shi20396 ch15
 
Shi20396 ch06
Shi20396 ch06Shi20396 ch06
Shi20396 ch06
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
INJSO-2014-Solutions
INJSO-2014-SolutionsINJSO-2014-Solutions
INJSO-2014-Solutions
 

Más de Jhayson Carvalho

Capítulo 17 elementos mecânicos flexíveis
Capítulo 17   elementos mecânicos flexíveisCapítulo 17   elementos mecânicos flexíveis
Capítulo 17 elementos mecânicos flexíveisJhayson Carvalho
 
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolanteJhayson Carvalho
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensãoJhayson Carvalho
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticasJhayson Carvalho
 

Más de Jhayson Carvalho (7)

Capítulo 17 elementos mecânicos flexíveis
Capítulo 17   elementos mecânicos flexíveisCapítulo 17   elementos mecânicos flexíveis
Capítulo 17 elementos mecânicos flexíveis
 
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolante
 
Capítulo 09 solda
Capítulo 09   soldaCapítulo 09   solda
Capítulo 09 solda
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Capítulo 01 introdução
Capítulo 01   introduçãoCapítulo 01   introdução
Capítulo 01 introdução
 

Último

Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 

Último (20)

Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 

Chapter 13 gear calculations and solutions

  • 1. Chapter 13 13-1 dP = 17/8 = 2.125 in dG = N2 N3 dP = 1120 544 (2.125) = 4.375 in NG = PdG = 8(4.375) = 35 teeth Ans. C = (2.125 + 4.375)/2 = 3.25 in Ans. 13-2 nG = 1600(15/60) = 400 rev/min Ans. p = πm = 3π mm Ans. C = [3(15 + 60)]/2 = 112.5 mm Ans. 13-3 NG = 20(2.80) = 56 teeth Ans. dG = NGm = 56(4) = 224 mm Ans. dP = NPm = 20(4) = 80 mm Ans. C = (224 + 80)/2 = 152 mm Ans. 13-4 Mesh: a = 1/P = 1/3 = 0.3333 in Ans. b = 1.25/P = 1.25/3 = 0.4167 in Ans. c = b − a = 0.0834 in Ans. p = π/P = π/3 = 1.047 in Ans. t = p/2 = 1.047/2 = 0.523 in Ans. Pinion Base-Circle: d1 = N1/P = 21/3 = 7 in d1b = 7 cos 20° = 6.578 in Ans. Gear Base-Circle: d2 = N2/P = 28/3 = 9.333 in d2b = 9.333 cos 20° = 8.770 in Ans. Base pitch: pb = pc cos φ = (π/3) cos 20° = 0.984 in Ans. Contact Ratio: mc = Lab/pb = 1.53/0.984 = 1.55 Ans. See the next page for a drawing of the gears and the arc lengths. shi20396_ch13.qxd 8/29/03 12:16 PM Page 333
  • 2. 334 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-5 (a) AO = 2.333 2 2 + 5.333 2 2 1/2 = 2.910 in Ans. (b) γ = tan−1 (14/32) = 23.63° Ans. = tan−1 (32/14) = 66.37° Ans. (c) dP = 14/6 = 2.333 in, dG = 32/6 = 5.333 in Ans. (d) From Table 13-3, 0.3AO = 0.873 in and 10/P = 10/6 = 1.67 0.873 < 1.67 ∴ F = 0.873 in Ans. 13-6 (a) pn = π/5 = 0.6283 in pt = pn/cos ψ = 0.6283/cos 30° = 0.7255 in px = pt/tan ψ = 0.7255/tan 30° = 1.25 in 30Њ P G 2 1 3 " 5 1 3 " AO ⌫ ␥ 10.5Њ Arc of approach ϭ 0.87 in Ans. Arc of recess ϭ 0.77 in Ans. Arc of action ϭ 1.64 in Ans. Lab ϭ 1.53 in 10Њ O2 O1 14Њ 12.6Њ P BA shi20396_ch13.qxd 8/29/03 12:16 PM Page 334
  • 3. Chapter 13 335 (b) pnb = pn cos φn = 0.6283 cos 20° = 0.590 in Ans. (c) Pt = Pn cos ψ = 5 cos 30° = 4.33 teeth/in φt = tan−1 (tan φn/cos ψ) = tan−1 (tan 20°/cos 30◦ ) = 22.8° Ans. (d) Table 13-4: a = 1/5 = 0.200 in Ans. b = 1.25/5 = 0.250 in Ans. dP = 17 5 cos 30° = 3.926 in Ans. dG = 34 5 cos 30° = 7.852 in Ans. 13-7 φn = 14.5°, Pn = 10 teeth/in (a) pn = π/10 = 0.3142 in Ans. pt = pn cos ψ = 0.3142 cos 20° = 0.3343 in Ans. px = pt tan ψ = 0.3343 tan 20° = 0.9185 in Ans. (b) Pt = Pn cos ψ = 10 cos 20° = 9.397 teeth/in φt = tan−1 tan 14.5° cos 20° = 15.39° Ans. (c) a = 1/10 = 0.100 in Ans. b = 1.25/10 = 0.125 in Ans. dP = 19 10 cos 20° = 2.022 in Ans. dG = 57 10 cos 20° = 6.066 in Ans. G 20Њ P shi20396_ch13.qxd 8/29/03 12:16 PM Page 335
  • 4. 336 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-8 From Ex. 13-1, a 16-tooth spur pinion meshes with a 40-tooth gear, mG = 40/16 = 2.5. Equations (13-10) through (13-13) apply. (a) The smallest pinion tooth count that will run with itself is found from Eq. (13-10) NP ≥ 4k 6 sin2 φ 1 + 1 + 3 sin2 φ ≥ 4(1) 6 sin2 20° 1 + 1 + 3 sin2 20° ≥ 12.32 → 13 teeth Ans. (b) The smallest pinion that will mesh with a gear ratio of mG = 2.5, from Eq. (13-11) is NP ≥ 2(1) [1 + 2(2.5)] sin2 20° 2.5 + 2.52 + [1 + 2(2.5)] sin2 20° ≥ 14.64 → 15 pinion teeth Ans. (c) The smallest pinion that will mesh with a rack, from Eq. (13-12) NP ≥ 4k 2 sin2 φ = 4(1) 2 sin2 20° ≥ 17.097 → 18 teeth Ans. (d) The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-13) is NG ≤ N2 P sin2 φ − 4k2 4k − 2NP sin2 φ ≤ 132 sin2 20° − 4(1)2 4(1) − 2(13) sin2 20° ≤ 16.45 → 16 teeth Ans. 13-9 From Ex. 13-2, a 20° pressure angle, 30° helix angle, pt = 6 teeth/in pinion with 18 full depth teeth, and φt = 21.88°. (a) The smallest tooth count that will mesh with a like gear, from Eq. (13-21), is NP ≥ 4k cos ψ 6 sin2 φt 1 + 1 + 3 sin2 φt ≥ 4(1) cos 30° 6 sin2 21.88° 1 + 1 + 3 sin2 21.88° ≥ 9.11 → 10 teeth Ans. (b) The smallest pinion-tooth count that will run with a rack, from Eq. (13-23), is NP ≥ 4k cos ψ 2 sin2 φt ≥ 4(1) cos 30◦ 2 sin2 21.88° ≥ 12.47 → 13 teeth Ans. shi20396_ch13.qxd 8/29/03 12:16 PM Page 336
  • 5. Chapter 13 337 (c) The largest gear tooth possible, from Eq. (13-24) is NG ≤ N2 P sin2 φt − 4k2 cos2 ψ 4k cos ψ − 2NP sin2 φt ≤ 102 sin2 21.88° − 4(12 ) cos2 30° 4(1) cos 30° − 2(10) sin2 21.88° ≤ 15.86 → 15 teeth Ans. 13-10 Pressure Angle: φt = tan−1 tan 20° cos 30° = 22.796° Program Eq. (13-24) on a computer using a spreadsheet or code and increment NP. The first value of NP that can be doubled is NP = 10 teeth, where NG ≤ 26.01 teeth. So NG = 20 teeth will work. Higher tooth counts will work also, for example 11:22, 12:24, etc. Use 10:20 Ans. 13-11 Refer to Prob. 13-10 solution. The first value of NP that can be multiplied by 6 is NP = 11 teeth where NG ≤ 93.6 teeth. So NG = 66 teeth. Use 11:66 Ans. 13-12 Begin with the more general relation, Eq. (13-24), for full depth teeth. NG = N2 P sin2 φt − 4 cos2 ψ 4 cos ψ − 2NP sin2 φt Set the denominator to zero 4 cos ψ − 2NP sin2 φt = 0 From which sin φt = 2 cos ψ NP φt = sin−1 2 cos ψ NP For NP = 9 teeth and cos ψ = 1 φt = sin−1 2(1) 9 = 28.126° Ans. 13-13 (a) pn = πmn = 3π mm Ans. pt = 3π/cos 25° = 10.4 mm Ans. px = 10.4/tan 25° = 22.3 mm Ans. 18T 32T ␺ ϭ 25Њ, ␾n ϭ 20Њ, m ϭ 3 mm shi20396_ch13.qxd 8/29/03 12:16 PM Page 337
  • 6. 338 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (b) mt = 10.4/π = 3.310 mm Ans. φt = tan−1 tan 20° cos 25° = 21.88° Ans. (c) dP = 3.310(18) = 59.58 mm Ans. dG = 3.310(32) = 105.92 mm Ans. 13-14 (a) The axial force of 2 on shaft a is in the negative direction. The axial force of 3 on shaft b is in the positive direction of z. Ans. The axial force of gear 4 on shaft b is in the positive z-direction. The axial force of gear 5 on shaft c is in the negative z-direction. Ans. (b) nc = n5 = 14 54 16 36 (900) = +103.7 rev/min ccw Ans. (c) dP2 = 14/(10 cos 30°) = 1.6166 in dG3 = 54/(10 cos 30°) = 6.2354 in Cab = 1.6166 + 6.2354 2 = 3.926 in Ans. dP4 = 16/(6 cos 25°) = 2.9423 in dG5 = 36/(6 cos 25°) = 6.6203 in Cbc = 4.781 in Ans. 13-15 e = 20 40 8 17 20 60 = 4 51 nd = 4 51 (600) = 47.06 rev/min cw Ans. 5 4 c b z a 3 z 2 b shi20396_ch13.qxd 8/29/03 12:16 PM Page 338
  • 7. Chapter 13 339 13-16 e = 6 10 18 38 20 48 3 36 = 3 304 na = 3 304 (1200) = 11.84 rev/min cw Ans. 13-17 (a) nc = 12 40 · 1 1 (540) = 162 rev/min cw about x. Ans. (b) dP = 12/(8 cos 23°) = 1.630 in dG = 40/(8 cos 23°) = 5.432 in dP + dG 2 = 3.531 in Ans. (c) d = 32 4 = 8 in at the large end of the teeth. Ans. 13-18 (a) The planet gears act as keys and the wheel speeds are the same as that of the ring gear. Thus nA = n3 = 1200(17/54) = 377.8 rev/min Ans. (b) nF = n5 = 0, nL = n6, e = −1 −1 = n6 − 377.8 0 − 377.8 377.8 = n6 − 377.8 n6 = 755.6 rev/min Ans. Alternatively, the velocity of the center of gear 4 is v4c ∝ N6n3 . The velocity of the left edge of gear 4 is zero since the left wheel is resting on the ground. Thus, the ve- locity of the right edge of gear 4 is2v4c ∝ 2N6n3. This velocity, divided by the radius of gear 6 ∝ N6, is angular velocity of gear 6–the speed of wheel 6. ∴ n6 = 2N6n3 N6 = 2n3 = 2(377.8) = 755.6 rev/min Ans. (c) The wheel spins freely on icy surfaces, leaving no traction for the other wheel. The car is stalled. Ans. 13-19 (a) The motive power is divided equally among four wheels instead of two. (b) Locking the center differential causes 50 percent of the power to be applied to the rear wheels and 50 percent to the front wheels. If one of the rear wheels, rests on a slippery surface such as ice, the other rear wheel has no traction. But the front wheels still provide traction, and so you have two-wheel drive. However, if the rear differential is locked, you have 3-wheel drive because the rear-wheel power is now distributed 50-50. shi20396_ch13.qxd 8/29/03 12:16 PM Page 339
  • 8. 340 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-20 Let gear 2 be first, then nF = n2 = 0. Let gear 6 be last, then nL = n6 = −12 rev/min. e = 20 30 16 34 = 16 51 , e = nL − nA nF − nA (0 − nA) 16 51 = −12 − nA nA = −12 35/51 = −17.49 rev/min (negative indicates cw) Ans. Alternatively, since N ∝ r, let v = Nn (crazy units). v = N6n6 N6 = 20 + 30 − 16 = 34 teeth vA N4 = v N4 − N5 ⇒ vA = N4 N6n6 N4 − N5 nA = vA N2 + N4 = N4 N6n6 (N2 + N4)(N4 − N5) = 30(34)(12) (20 + 30)(30 − 16) = 17.49 rev/min cw Ans. 13-21 Let gear 2 be first, then nF = n2 = 180 rev/min. Let gear 6 be last, then nL = n6 = 0. e = 20 30 16 34 = 16 51 , e = nL − nA nF − nA (180 − nA) 16 51 = (0 − nA) nA = − 16 35 180 = −82.29 rev/min The negative sign indicates opposite n2 ∴ nA = 82.29 rev/min cw Ans. Alternatively, since N ∝ r, let v = Nn (crazy units). vA N5 = v N4 − N5 = N2n2 N4 − N5 vA = N5 N2n2 N4 − N5 nA = vA N2 + N4 = N5 N2n2 (N2 + N4)(N4 − N5) = 16(20)(180) (20 + 30)(30 − 16) = 82.29 rev/min cw Ans. 45 v ϭ 0 v ϭ N2n2 N2 vA 2 4 5 v v ϭ 0 vA 2 shi20396_ch13.qxd 8/29/03 12:16 PM Page 340
  • 9. Chapter 13 341 13-22 N5 = 12 + 2(16) + 2(12) = 68 teeth Ans. Let gear 2 be first, nF = n2 = 320 rev/min. Let gear 5 be last, nL = n5 = 0 e = 12 16 16 12 12 68 = 3 17 , e = nL − nA nF − nA 320 − nA = 17 3 (0 − nA) nA = − 3 14 (320) = −68.57 rev/min The negative sign indicates opposite of n2 ∴ nA = 68.57 rev/min cw Ans. Alternatively, nA = n2 N2 2(N3 + N4) = 320(12) 2(16 + 12) = 68.57 rev/min cw Ans. 13-23 Let nF = n2 then nL = n7 = 0. e = − 24 18 18 30 36 54 = − 8 15 e = nL − n5 nF − n5 = − 8 15 0 − 5 n2 − 5 = − 8 15 ⇒ n2 = 5 + 15 8 (5) = 14.375 turns in same direction 13-24 (a) Let nF = n2 = 0, then nL = n5. e = 99 100 101 100 = 9999 10 000 , e = nL − nA nF − nA = nL − nA 0 − nA nL − nA = −enA nL = nA(−e + 1) nL nA = 1 − e = 1 − 9999 10 000 = 1 10 000 = 0.0001 Ans. (b) d4 = N4 P = 101 10 = 10.1 in d5 = 100 10 = 10 in dhousing > 2 d4 + d5 2 = 2 10.1 + 10 2 = 30.2 in Ans. v ϭ 0 nA(N2 ϩ N3) v ϭ n2N2 2nA(N2 ϩ 2N3 ϩ N4) ϭ n2N2 ϩ 2nA(N2 ϩ N3) 2nA(N2 ϩ 2N3 ϩ N4) Ϫ 2nA(N2 ϩ N3) ϭ n2N2 nA(N2 ϩ 2N3 ϩ N4) shi20396_ch13.qxd 8/29/03 12:16 PM Page 341
  • 10. 342 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-25 n2 = nb = nF, nA = na, nL = n5 = 0 e = − 21 444 = nL − nA nF − nA − 21 444 (nF − nA) = 0 − nA With shaft b as input − 21 444 nF + 21 444 nA + 444 444 nA = 0 nA nF = na nb = 21 465 na = 21 465 nb, in the same direction as shaft b, the input. Ans. Alternatively, vA N4 = n2 N2 N3 + N4 vA = n2 N2 N4 N3 + N4 na = nA = vA N2 + N3 = n2 N2 N4 (N2 + N3)(N3 + N4) = 18(21)(nb) (18 + 72)(72 + 21) = 21 465 nb in the same direction as b Ans. 13-26 nF = n2 = na, nL = n6 = 0 e = − 24 18 22 64 = − 11 24 , e = nL − nA nF − nA = 0 − nb na − nb − 11 24 = 0 − nb na − nb ⇒ nb na = 11 35 Ans. Yes, both shafts rotate in the same direction. Ans. Alternatively, vA N5 = n2 N2 N3 + N5 = N2 N3 + N5 na, vA = N2 N5 N3 + N5 na nA = nb = vA N2 + N3 = N2 N5 (N2 + N3)(N3 + N5) na nb na = 24(22) (24 + 18)(22 + 18) = 11 35 Ans. nb rotates ccw ∴ Yes Ans. 13-27 n2 = nF = 0, nL = n5 = nb, nA = na e = + 20 24 20 24 = 25 36 3 5 v ϭ 0 vA n2N2 2 3 4 2 v ϭ 0 vA n2N2 shi20396_ch13.qxd 8/29/03 12:16 PM Page 342
  • 11. Chapter 13 343 25 36 = nb − na 0 − na nb na = 11 36 Ans. Same sense, therefore shaft b rotates in the same direction as a. Ans. Alternatively, v5 N3 − N4 = (N2 + N3)na N3 v5 = (N2 + N3)(N3 − N4)n N3 nb = v5 N5 = (N2 + N3)(N3 − N4)na N3 N5 nb na = (20 + 24)(24 − 20) 24(24) = 11 36 same sense Ans. 13-28 (a) ω = 2πn/60 H = Tω = 2πTn/60 (T in N · m, H in W) So T = 60H(103 ) 2πn = 9550H/n (H in kW, n in rev/min) Ta = 9550(75) 1800 = 398 N · m r2 = mN2 2 = 5(17) 2 = 42.5 mm So Ft 32 = Ta r2 = 398 42.5 = 9.36 kN F3b = −Fb3 = 2(9.36) = 18.73 kN in the positive x-direction. Ans. See the figure in part (b) on the following page. 9.36 2 a Ta2 398 N•m Ft 32 3 4 v5 v ϭ 0 (N2 ϩ N3)na shi20396_ch13.qxd 8/29/03 12:16 PM Page 343
  • 12. 344 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (b) r4 = mN4 2 = 5(51) 2 = 127.5 mm Tc4 = 9.36(127.5) = 1193 N · m ccw ∴ T4c = 1193 N · m cw Ans. Note: The solution is independent of the pressure angle. 13-29 d = N 6 d2 = 4 in, d4 = 4 in, d5 = 6 in, d6 = 24 in e = 24 24 24 36 36 144 = 1/6, nP = n2 = 1000 rev/min nL = n6 = 0 e = nL − nA nF − nA = 0 − nA 1000 − nA nA = −200 rev/min 2 4 5 6 9.36 4 c Tc4 ϭ 1193 b 9.36 O 3 Ft 43 9.36 18.73 Ft 23 Fb3 shi20396_ch13.qxd 8/29/03 12:16 PM Page 344
  • 13. Chapter 13 345 Input torque: T2 = 63 025H n T2 = 63 025(25) 1000 = 1576 lbf · in For 100 percent gear efficiency Tarm = 63 025(25) 200 = 7878 lbf · in Gear 2 Wt = 1576 2 = 788 lbf Fr 32 = 788 tan 20° = 287 lbf Gear 4 FA4 = 2Wt = 2(788) = 1576 lbf Gear 5 Arm Tout = 1576(9) − 1576(4) = 7880 lbf · in Ans. 13-30 Given: P = 2 teeth/in, nP = 1800 rev/min cw, N2 = 18T, N3 = 32T, N4 = 18T, N5 = 48T. Pitch Diameters: d2 = 18/2 = 9 in; d3 = 32/2 = 16 in; d4 = 18/2 = 9 in; d5 = 48/2 = 24 in. 4" 5" 1576 lbf 1576 lbf Tout ϩϩϩ 5 Wt ϭ 788 lbf Fr ϭ 287 lbf 2Wt ϭ 1576 lbf Wt Fr 4 n4 FA4 Wt Wt Fr Fr 2 T2 ϭ 1576 lbf•inn2 Ft a2 Wt Fr a2 Fr 42 shi20396_ch13.qxd 8/29/03 12:16 PM Page 345
  • 14. 346 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Gear 2 Ta2 = 63 025(200)/1800 = 7003 lbf · in Wt = 7003/4.5 = 1556 lbf Wr = 1556 tan 20° = 566 lbf Gears 3 and 4 Wt (4.5) = 1556(8), Wt = 2766 lbf Wr = 2766 tan 20◦ = 1007 lbf Ans. 13-31 Given: P = 5 teeth/in, N2 = 18T, N3 = 45T, φn = 20°, H = 32 hp, n2 = 1800 rev/min. Gear 2 Tin = 63 025(32) 1800 = 1120 lbf · in dP = 18 5 = 3.600 in dG = 45 5 = 9.000 in Wt 32 = 1120 3.6/2 = 622 lbf Wr 32 = 622 tan 20° = 226 lbf Ft a2 = Wt 32 = 622 lbf, Fr a2 = Wr 32 = 226 lbf Fa2 = (6222 + 2262 )1/2 = 662 lbf Each bearing on shaft a has the same radial load of RA = RB = 662/2 = 331lbf. 2 a Tin Wt 32 Wr 32 Fr a2 Ft a2 b 3 4 y x Wr ϭ 566 lbf Wt ϭ 1556 lbf Wt ϭ 2766 lbf Wr ϭ 1007 lbf 2 a Wt ϭ 1556 lbf Wr ϭ 566 lbf Ta2 ϭ 7003 lbf•in shi20396_ch13.qxd 8/29/03 12:16 PM Page 346
  • 15. Chapter 13 347 Gear 3 Wt 23 = Wt 32 = 622 lbf Wr 23 = Wr 32 = 226 lbf Fb3 = Fb2 = 662 lbf RC = RD = 662/2 = 331 lbf Each bearing on shaft b has the same radial load which is equal to the radial load of bear- ings, A and B. Thus, all four bearings have the same radial load of 331 lbf. Ans. 13-32 Given: P = 4 teeth/in, φn = 20◦ , NP = 20T, n2 = 900 rev/min. d2 = NP P = 20 4 = 5.000 in Tin = 63 025(30)(2) 900 = 4202 lbf · in Wt 32 = Tin/(d2/2) = 4202/(5/2) = 1681 lbf Wr 32 = 1681 tan 20◦ = 612 lbf The motor mount resists the equivalent forces and torque. The radial force due to torque Fr = 4202 14(2) = 150 lbf Forces reverse with rotational sense as torque reverses. C D A B 150 14" 150 150 4202 lbf•in 150 y 2 612 lbf 4202 lbf•in 1681 lbf z Equivalent y z 2 Wt 32 ϭ 1681 lbf Wr 32 ϭ 612 lbf Load on 2 due to 3 3 2 y x y z 3 Tout ϭ Wt 23r3 ϭ 2799 lbf•in b Fb t 3 Wt 23 Wr 23 Fb r 3 shi20396_ch13.qxd 8/29/03 12:16 PM Page 347
  • 16. 348 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design The compressive loads at A and D are absorbed by the base plate, not the bolts. For Wt 32 , the tensions in C and D are MAB = 0 1681(4.875 + 15.25) − 2F(15.25) = 0 F = 1109 lbf If Wt 32 reverses, 15.25 in changes to 13.25 in, 4.815 in changes to 2.875 in, and the forces change direction. For A and B, 1681(2.875) − 2F1(13.25) = 0 ⇒ F1 = 182.4 lbf For Wr 32 M = 612(4.875 + 11.25/2) = 6426 lbf · in a = (14/2)2 + (11.25/2)2 = 8.98 in F2 = 6426 4(8.98) = 179 lbf At C and D, the shear forces are: FS1 = [153 + 179(5.625/8.98)]2 + [179(7/8.98)]2 = 300 lbf At A and B, the shear forces are: FS2 = [153 − 179(5.625/8.98)]2 + [179(7/8.98)]2 = 145 lbf C a D 153 lbf 153 lbf F2 F2F2 F2 612 4 ϭ 153 lbf 4.875 11.25 14 612 lbf 153 lbf B C 1681 lbf4.87515.25" F F D F1 F1 A shi20396_ch13.qxd 8/29/03 12:16 PM Page 348
  • 17. Chapter 13 349 The shear forces are independent of the rotational sense. The bolt tensions and the shear forces for cw rotation are, Tension (lbf) Shear (lbf) A 0 145 B 0 145 C 1109 300 D 1109 300 For ccw rotation, Tension (lbf) Shear (lbf) A 182 145 B 182 145 C 0 300 D 0 300 13-33 Tin = 63 025H/n = 63 025(2.5)/240 = 656.5 lbf · in Wt = T/r = 656.5/2 = 328.3 lbf γ = tan−1 (2/4) = 26.565° = tan−1 (4/2) = 63.435° a = 2 + (1.5 cos 26.565°)/2 = 2.67 in Wr = 328.3 tan 20° cos 26.565° = 106.9 lbf Wa = 328.3 tan 20° sin 26.565° = 53.4 lbf W = 106.9i − 53.4j + 328.3k lbf RAG = −2i + 5.17j, RAB = 2.5j M4 = RAG × W + RAB × FB + T = 0 Solving gives RAB × FB = 2.5Fz Bi − 2.5Fx Bk RAG × W = 1697i + 656.6j − 445.9k So (1697i + 656.6j − 445.9k) + 2.5Fz Bi − 2.5Fx Bk + Tj = 0 Fz B = −1697/2.5 = −678.8 lbf T = −656.6 lbf · in Fx B = −445.9/2.5 = −178.4 lbf y 2 2 1 2 B A G WtWr Wa Tin Not to scale xz a F y A Fz A Fz B Fx A Fx B shi20396_ch13.qxd 8/29/03 12:16 PM Page 349
  • 18. 350 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design So FB = [(−678.8)2 + (−178.4)2 ]1/2 = 702 lbf Ans. FA = −(FB + W) = −(−178.4i − 678.8k + 106.9i − 53.4j + 328.3k) = 71.5i + 53.4j + 350.5k FA (radial) = (71.52 + 350.52 )1/2 = 358 lbf Ans. FA (thrust) = 53.4 lbf Ans. 13-34 d2 = 15/10 = 1.5 in, Wt = 30 lbf, d3 = 25 10 = 2.5 in γ = tan−1 0.75 1.25 = 30.96°, = 59.04° DE = 9 16 + 0.5 cos 59.04° = 0.8197 in Wr = 30 tan 20° cos 59.04° = 5.617 lbf Wa = 30 tan 20° sin 59.04° = 9.363 lbf W = −5.617i − 9.363j + 30k RDG = 0.8197j + 1.25i RDC = −0.625j MD = RDG × W + RDC × FC + T = 0 RDG × W = 24.591i − 37.5j − 7.099k RDC × FC = −0.625Fz Ci + 0.625Fx Ck T = 37.5 lbf · in Ans. FC = 11.4i + 39.3k lbf Ans. FC = (11.42 + 39.32 )1/2 = 40.9 lbf Ans. F = 0 FD = −5.78i + 9.363j − 69.3k lbf FD (radial) = [(−5.78)2 + (−69.3)2 ]1/2 = 69.5 lbf Ans. FD (thrust) = Wa = 9.363 lbf Ans. Wr Wa Wt z C D E G x y 5" 8 0.8197" 1.25" Not to scale Fx D Fz D Fx C Fz C F y D 1.25 0.75 ␥ shi20396_ch13.qxd 8/29/03 12:16 PM Page 350
  • 19. Chapter 13 351 13-35 Sketch gear 2 pictorially. Pt = Pn cos ψ = 4 cos 30° = 3.464 teeth/in φt = tan−1 tan φn cos ψ = tan−1 tan 20° cos 30° = 22.80° Sketch gear 3 pictorially, dP = 18 3.464 = 5.196 in Pinion (Gear 2) Wr = Wt tan φt = 800 tan 22.80° = 336 lbf Wa = Wt tan ψ = 800 tan 30° = 462 lbf W = −336i − 462j + 800k lbf Ans. W = [(−336)2 + (−462)2 + 8002 ]1/2 = 983 lbf Ans. Gear 3 W = 336i + 462j − 800k lbf Ans. W = 983 lbf Ans. dG = 32 3.464 = 9.238 in TG = Wt r = 800(9.238) = 7390 lbf · in 13-36 From Prob. 13-35 solution, Notice that the idler shaft reaction contains a couple tending to turn the shaft end-over- end. Also the idler teeth are bent both ways. Idlers are more severely loaded than other gears, belying their name. Thus be cautious. 800 336 462 4 800800 336336 4623 462 800 2 336 462 Wa TG Wr Wt x 3 yz Wa Wr T Wt x y z 2 shi20396_ch13.qxd 8/29/03 12:16 PM Page 351
  • 20. 352 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-37 Gear 3: Pt = Pn cos ψ = 7 cos 30° = 6.062 teeth/in tan φt = tan 20° cos 30° = 0.4203, φt = 22.8° d3 = 54 6.062 = 8.908 in Wt = 500 lbf Wa = 500 tan 30° = 288.7 lbf Wr = 500 tan 22.8° = 210.2 lbf W3 = 210.2i + 288.7j − 500k lbf Ans. Gear 4: d4 = 14 6.062 = 2.309 in Wt = 500 8.908 2.309 = 1929 lbf Wa = 1929 tan 30° = 1114 lbf Wr = 1929 tan 22.8° = 811 lbf W4 = −811i + 1114j − 1929k lbf Ans. 13-38 Pt = 6 cos 30° = 5.196 teeth/in d3 = 42 5.196 = 8.083 in φt = 22.8° d2 = 16 5.196 = 3.079 in T2 = 63 025(25) 1720 = 916 lbf · in Wt = T r = 916 3.079/2 = 595 lbf Wa = 595 tan 30° = 344 lbf Wr = 595 tan 22.8° = 250 lbf W = 344i + 250j + 595k lbf RDC = 6i, RDG = 3i − 4.04j T3 C AB D T2 y 3 2 x z y x Wt Wr Wa Wt Wr Wa r4 r3 shi20396_ch13.qxd 8/29/03 12:16 PM Page 352
  • 21. Chapter 13 353 MD = RDC × FC + RDG × W + T = 0 (1) RDG × W = −2404i − 1785j + 2140k RDC × FC = −6Fz Cj + 6F y Ck Substituting and solving Eq. (1) gives T = 2404i lbf · in Fz C = −297.5 lbf F y C = −356.7 lbf F = FD + FC + W = 0 Substituting and solving gives Fx C = −344 lbf F y D = 106.7 lbf Fz D = −297.5 lbf So FC = −344i − 356.7j − 297.5k lbf Ans. FD = 106.7j − 297.5k lbf Ans. 13-39 Pt = 8 cos 15° = 7.727 teeth/in y 2 z x a Fa a2 Ft a2 Fr a2 Fa 32 Fr 32 Ft 32 G C D x z y Wr Wa Wt 4.04" 3" 3" F y C Fx C Fz C Fz T D F y D shi20396_ch13.qxd 8/29/03 12:16 PM Page 353
  • 22. 354 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design d2 = 16/7.727 = 2.07 in d3 = 36/7.727 = 4.66 in d4 = 28/7.727 = 3.62 in T2 = 63 025(7.5) 1720 = 274.8 lbf · in Wt = 274.8 2.07/2 = 266 lbf Wr = 266 tan 20° = 96.8 lbf Wa = 266 tan 15° = 71.3 lbf F2a = −266i − 96.8j − 71.3k lbf Ans. F3b = (266 − 96.8)i − (266 − 96.8)j = 169i − 169j lbf Ans. F4c = 96.8i + 266j + 71.3k lbf Ans. 13-40 d2 = N Pn cos ψ = 14 8 cos 30° = 2.021 in, d3 = 36 8 cos 30° = 5.196 in d4 = 15 5 cos 15° = 3.106 in, d5 = 45 5 cos 15° = 9.317 in C x y z b Ft 23 Fr 23 Fa 23 Ft 54 Fa 54 Fr 54 D G H 3" 2" 3 2.6"R 1.55"R 4 3 1" 2 F y DFx D Fx C F y C Fz D y Fr 43 Fx b3 F y b3 Fa 23 Fr 23 Ft 23 Ft 43 Fa 43 3 Fb3 z x b y Ft c4 Fr c4 Fa c4 4 Fa 34 Fr 34 Ft 34 z x c shi20396_ch13.qxd 8/29/03 12:16 PM Page 354
  • 23. Chapter 13 355 For gears 2 and 3: φt = tan−1 (tan φn/cos ψ) = tan−1 (tan 20°/cos 30◦ ) = 22.8°, For gears 4 and 5: φt = tan−1 (tan 20°/cos 15°) = 20.6°, Ft 23 = T2/r = 1200/(2.021/2) = 1188 lbf Ft 54 = 1188 5.196 3.106 = 1987 lbf Fr 23 = Ft 23 tan φt = 1188 tan 22.8° = 499 lbf Fr 54 = 1986 tan 20.6° = 746 lbf Fa 23 = Ft 23 tan ψ = 1188 tan 30° = 686 lbf Fa 54 = 1986 tan 15° = 532 lbf Next, designate the points of action on gears 4 and 3, respectively, as points G and H, as shown. Position vectors are RCG = 1.553j − 3k RC H = −2.598j − 6.5k RC D = −8.5k Force vectors are F54 = −1986i − 748j + 532k F23 = −1188i + 500j − 686k FC = Fx Ci + F y Cj FD = Fx Di + F y Dj + Fz Dk Now, a summation of moments about bearing C gives MC = RCG × F54 + RC H × F23 + RC D × FD = 0 The terms for this equation are found to be RCG × F54 = −1412i + 5961j + 3086k RC H × F23 = 5026i + 7722j − 3086k RC D × FD = 8.5F y Di − 8.5Fx Dj When these terms are placed back into the moment equation, the k terms, representing the shaft torque, cancel. The i and j terms give F y D = − 3614 8.5 = −425 lbf Ans. Fx D = (13 683) 8.5 = 1610 lbf Ans. Next, we sum the forces to zero. F = FC + F54 + F23 + FD = 0 Substituting, gives Fx Ci + F y Cj + (−1987i − 746j + 532k) + (−1188i + 499j − 686k) + (1610i − 425j + Fz Dk) = 0 shi20396_ch13.qxd 8/29/03 12:16 PM Page 355
  • 24. 356 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Solving gives Fx C = 1987 + 1188 − 1610 = 1565 lbf F y C = 746 − 499 + 425 = 672 lbf Fz D = −532 + 686 = 154 lbf Ans. 13-41 VW = πdW nW 60 = π(0.100)(600) 60 = π m/s WWt = H VW = 2000 π = 637 N L = px NW = 25(1) = 25 mm λ = tan−1 L πdW = tan−1 25 π(100) = 4.550° lead angle W = WWt cos φn sin λ + f cos λ VS = VW cos λ = π cos 4.550° = 3.152 m/s In ft/min: VS = 3.28(3.152) = 10.33 ft/s = 620 ft/min Use f = 0.043 from curve A of Fig. 13-42. Then from the first of Eq. (13-43) W = 637 cos 14.5°(sin 4.55°) + 0.043 cos 4.55° = 5323 N W y = W sin φn = 5323 sin 14.5° = 1333 N Wz = 5323[cos 14.5°(cos 4.55°) − 0.043 sin 4.55°] = 5119 N The force acting against the worm is W = −637i + 1333j + 5119k N Thus A is the thrust bearing. Ans. RAG = −0.05j − 0.10k, RAB = −0.20k MA = RAG × W + RAB × FB + T = 0 RAG × W = −122.6i + 63.7j − 31.85k RAB × FB = 0.2F y Bi − 0.2Fx Bj Substituting and solving gives T = 31.85 N · m Ans. Fx B = 318.5 N, F y B = 613 N So FB = 318.5i + 613j N Ans. B G A x y z Worm shaft diagram 100 100 Wr Wt Wa 50 shi20396_ch13.qxd 8/29/03 12:16 PM Page 356
  • 25. Chapter 13 357 Or FB = [(613)2 + (318.5)2 ]1/2 = 691 N radial F = FA + W + RB = 0 FA = −(W + FB) = −(−637i + 1333j + 5119k + 318.5i + 613j) = 318.5i − 1946j − 5119k Ans. Radial Fr A = 318.5i − 1946j N, Fr A = [(318.5)2 + (−1946)2 ]1/2 = 1972 N Thrust Fa A = −5119 N 13-42 From Prob. 13-41 WG = 637i − 1333j − 5119k N pt = px So dG = NG px π = 48(25) π = 382 mm Bearing D to take thrust load MD = RDG × WG + RDC × FC + T = 0 RDG = −0.0725i + 0.191j RDC = −0.1075i The position vectors are in meters. RDG × WG = −977.7i − 371.1j − 25.02k RDC × FC = 0.1075 Fz Cj − 0.1075F y Ck Putting it together and solving Gives T = 977.7 N · m Ans. FC = −233j + 3450k N, FC = 3460 N Ans. F = FC + WG + FD = 0 FD = −(FC + WG) = −637i + 1566j + 1669k N Ans. G x y z FD FC WG D C 72.5 191 35 Not to scale shi20396_ch13.qxd 8/29/03 12:16 PM Page 357
  • 26. 358 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Radial Fr D = 1566j + 1669k N Or Fr D = 2289 N (total radial) Ft D = −637i N (thrust) 13-43 VW = π(1.5)(900) 12 = 353.4 ft/min Wx = WWt = 33 000(0.5) 353.4 = 46.69 lbf pt = px = π 10 = 0.314 16 in L = 0.314 16(2) = 0.628 in λ = tan−1 0.628 π(1.5) = 7.59° W = 46.7 cos 14.5° sin 7.59° + 0.05 cos 7.59° = 263 lbf W y = 263 sin 14.5◦ = 65.8 lbf Wz = 263[cos 14.5◦ (cos 7.59◦ ) − 0.05 sin 7.59◦ ] = 251 lbf So W = 46.7i + 65.8j + 251k lbf Ans. T = 46.7(0.75) = 35 lbf · in Ans. 13-44 100:101 Mesh dP = 100 48 = 2.083 33 in dG = 101 48 = 2.104 17 in x y z WWt G 0.75" T y z shi20396_ch13.qxd 8/29/03 12:16 PM Page 358
  • 27. Chapter 13 359 Proper center-to-center distance: C = dP + dG 2 = 2.083 33 + 2.104 17 2 = 2.093 75 in rbP = r cos φ = 2.0833 2 cos 20◦ = 0.9788 in 99:100 Mesh dP = 99 48 = 2.0625 in dG = 100 48 = 2.083 33 in Proper: C = 99/48 + 100/48 2 = 2.072 917 in rbP = r cos φ = 2.0625 2 cos 20◦ = 0.969 06 in Improper: C = dP + dG 2 = dP + (100/99)dP 2 = 2.093 75 in dP = 2(2.093 75) 1 + (100/99) = 2.0832 in φ = cos−1 rbP dP/2 = cos−1 0.969 06 2.0832/2 = 21.5° From Ex. 13-1 last line φ = cos−1 rbP dP/2 = cos−1 (dP/2) cos φ dP/2 = cos−1 (NP/P) cos φ (2C /(1 + mG)) = cos−1 (1 + mG)NP cos φ 2PC Ans. 13-45 Computer programs will vary. shi20396_ch13.qxd 8/29/03 12:16 PM Page 359