SlideShare una empresa de Scribd logo
1 de 57
Descargar para leer sin conexión
ì	
  
Scalable	
  Adver,sing	
  v	
  Recommender	
  Systems	
  
From	
  Search,	
  Display	
  to	
  Mobile,	
  Social	
  and	
  TV	
  	
  
By	
  Joaquin	
  A.	
  Delgado,	
  PhD.	
  
	
  
	
  
ACM	
  San	
  Francisco	
  Bay	
  Area	
  Professional	
  Chapter	
  
Disclaimer	
  
ì  The	
  content	
  of	
  this	
  presenta,on	
  are	
  of	
  my	
  own	
  
personal	
  opinion	
  and	
  does	
  not	
  officially	
  represent	
  
my	
  employer’s	
  view	
  in	
  anyway.	
  Included	
  content	
  is	
  
especially	
  not	
  intended	
  to	
  convey	
  the	
  views	
  of	
  Intel	
  
Media	
  (an	
  Intel	
  Corp	
  Subsidiary)	
  or	
  Intel	
  
Corpora,on.	
  	
  
Objectives	
  
ì  Demonstrate	
  the	
  strong	
  similari,es	
  between	
  
adver,sing	
  and	
  recommender	
  systems	
  
ì  Illustrate	
  some	
  of	
  the	
  techniques	
  used	
  to	
  build	
  
large-­‐scale	
  adver,sing	
  systems	
  that	
  can	
  be	
  used	
  
to	
  build	
  effec,ve	
  and	
  scalable	
  recommender	
  
systems.	
  
Agenda	
  
ì  Introduc,on	
  to	
  Recommender	
  Systems	
  
ì  Introduc,on	
  to	
  Adver,sing	
  Systems	
  
ì  Example:	
  Video	
  Adver,sing	
  Exchange	
  
ì  Ok,	
  So	
  How	
  Do	
  We	
  Scale?	
  
ì  The	
  Business	
  of	
  Recommenda,ons	
  
ì  The	
  Crux	
  of	
  	
  Metrics	
  and	
  Evalua,on	
  
ì  Q&A	
  
Introduction	
  to	
  Recommender	
  Systems	
  
Recommender	
  Systems	
  
ì  Recommender	
  systems	
  or	
  
recommenda.on	
  systems	
  (a.k.a.	
  
recommenda,on	
  engines/plaYorm)	
  are	
  
a	
  subclass	
  of	
  informa,on	
  filtering	
  
systems	
  that	
  seek	
  to	
  predict	
  the	
  'ra,ng'	
  
or	
  'preference'	
  that	
  a	
  user	
  would	
  give	
  to	
  
an	
  item	
  (such	
  as	
  music,	
  books,	
  or	
  
movies)	
  or	
  social	
  element	
  (e.g.	
  people	
  or	
  
groups)	
  they	
  had	
  not	
  yet	
  considered.	
  
ì  Recommender	
  Systems	
  have	
  been	
  around	
  since	
  the	
  1980s	
  
primarily	
  applied	
  to	
  ecommerce	
  and	
  various	
  social	
  and	
  
media	
  services.	
  
ì  E.g.	
  Movie	
  Recommenda,ons	
  
ì  	
  	
  	
  	
  	
  Univ.	
  Minnesota,	
  MovieLens	
  (circa	
  1984)	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2009	
  Ne?lix	
  $1M	
  	
  Challenge	
  	
  
Evolution	
  of	
  Recommender	
  Systems	
  
Problem
Item, j
User i
Interacts with
user features xi
(demographics,
browse history,
search history, …)
available with item features xj
(keywords, content categories, ...)
(i, j) : response yij
Algorithm selects
(explicit rating, implicit click/no-click)
Predict the unobserved entries based on
features and the observed entries
Algorithmic	
  Approaches	
  	
  (1)	
  :	
  	
  
Collaborative	
  Filtering	
  
Better performance for old users and old items
Does not naturally handle new users and new items (cold-start)
Algorithmic	
  Approaches	
  (2)	
  
Content	
  Based	
  Classification	
  Task	
  	
  
Intel	
  Confiden.al	
  
Limitation: need predictive features
Bias often high, does not capture signals at granular levels
Other	
  Critical	
  Limitations	
  
ì  Lack	
  of	
  Contextually-­‐Aware	
  Recommenda,ons	
  
ì  Recommenda,ons	
  do	
  not	
  happen	
  in	
  a	
  vacuum;	
  context	
  
such	
  as	
  ,me-­‐of-­‐day,	
  type/size	
  of	
  the	
  device,	
  geo-­‐loca,on,	
  
surrounding	
  content	
  and	
  even	
  more	
  granular	
  user	
  	
  
informa,on	
  (e.g.	
  behavioral	
  user	
  segments)	
  is	
  key	
  to	
  
providing	
  more	
  relevant	
  and	
  ,ming	
  recommenda,ons	
  
ì  Scaling	
  Recommender	
  Systems	
  is	
  hard!	
  
ì  Dimensionality	
  reduc,on	
  and	
  some	
  recent	
  map-­‐reduce	
  
implementa,ons	
  of	
  matrix	
  factoriza,on	
  and	
  ML	
  
algorithms	
  are	
  a	
  step	
  in	
  the	
  right	
  direc,on,	
  yet	
  alone	
  have	
  
not	
  been	
  tested	
  at	
  “Internet	
  Scale”	
  
Recommender	
  System	
  Redux	
  
ì  True	
  goals	
  of	
  a	
  Recommender	
  System	
  
ì  Amaze	
  the	
  user	
  by	
  sugges,ng	
  cap,va,ng	
  content	
  
and	
  useful	
  services	
  that	
  are	
  contextually	
  relevant	
  
and	
  ,mely	
  	
  
ì  Enable	
  further	
  mone.za.on	
  via	
  poten,al	
  up-­‐sale	
  
and	
  cross-­‐sell	
  opportuni,es	
  of	
  content	
  and	
  services	
  
that	
  actually	
  ma9er	
  to	
  the	
  user.	
  
ì  Do	
  all	
  this	
  at	
  scale!	
  
Introduction	
  to	
  Advertising	
  Systems	
  
Advertising	
  
ì  Adver.sing	
  is	
  a	
  form	
  of	
  communica,on	
  for	
  
marke,ng	
  and	
  used	
  to	
  encourage,	
  persuade,	
  or	
  
manipulate	
  an	
  audience	
  (viewers,	
  readers	
  or	
  
listeners;	
  some,mes	
  a	
  specific	
  group)	
  to	
  con,nue	
  
or	
  take	
  some	
  new	
  ac,on.	
  Most	
  commonly,	
  the	
  
desired	
  result	
  is	
  to	
  drive	
  consumer	
  behavior	
  with	
  
respect	
  to	
  a	
  commercial	
  offering,	
  although	
  poli,cal	
  
and	
  ideological	
  adver,sing	
  is	
  also	
  common.	
  
Long	
  History	
  of	
  Traditional	
  Advertising	
  
A	
  form	
  of	
  promo,on	
  that	
  
uses	
  Internet	
  
Technology	
  for	
  the	
  
expressed	
  purpose	
  of	
  
delivering	
  marke,ng	
  	
  
messages	
  to	
  aeract	
  
customers.	
  
Online	
  Advertising	
  
The	
  Rise	
  of	
  Online	
  Adver,sing	
  
Online	
  Advertising	
  Spending	
  Tops	
  $100	
  
Billion	
  in	
  2012	
  
Why	
  Online	
  Adver,sing?	
  
Computational	
  Advertising	
  
ì  Computa,onal	
  adver,sing	
  is	
  at	
  the	
  intersec,on	
  of	
  
large	
  scale	
  search	
  and	
  text	
  analysis,	
  informa,on	
  
retrieval,	
  sta,s,cal	
  modeling,	
  machine	
  learning,	
  
op,miza,on,	
  and	
  microeconomics.	
  The	
  central	
  
challenge	
  of	
  computa,onal	
  adver,sing	
  is	
  to	
  find	
  the	
  
"best	
  match"	
  between	
  a	
  given	
  user	
  in	
  a	
  given	
  
context	
  and	
  a	
  suitable	
  adver,sement.	
  	
  
ì  Depending	
  on	
  the	
  defini,on	
  of	
  "best	
  match"	
  this	
  
challenge	
  leads	
  to	
  a	
  variety	
  of	
  massive	
  op,miza,on	
  
and	
  search	
  problems,	
  with	
  complicated	
  constraints.	
  
Key	
  Enabling	
  Technology	
  
ì  Systems	
  that	
  Scale	
  
–  Distributed	
  Compu,ng	
  
–  Distributed	
  Data	
  Processing	
  
–  No-­‐SQL/New-­‐SQL	
  Databases	
  
ì  Marketplace	
  Design	
  
•  Auc,on	
  and	
  Game	
  Theory	
  
•  Yield	
  Op,miza,on	
  
•  Bidding	
  Agents	
  	
  
ì  Connec,ng	
  Markets	
  
•  Real-­‐,me	
  Bidding	
  (RTB)	
  
ì  Pervasive	
  Internet	
  Compu,ng	
  
•  Prolifera,on	
  of	
  Internet	
  Connected	
  Devices	
  
The	
  World	
  of	
  Online	
  Adver,sing	
  
•  Text	
  
•  Image	
  
•  Rich	
  Media	
  
•  Video	
  
•  Computer	
  
•  Tablet	
  
•  Phone	
  
•  Television	
  
•  Search	
  	
  	
  
•  Display	
  
•  Email	
  
•  Social	
  
•  Brand	
  
•  Performance	
  
Objec,ve	
   Channel	
  
Format	
  Device	
  
UX:	
  In-­‐App	
  or	
  In-­‐Browser	
  
The	
  Marketplace	
  
Audiences	
  
Adver,sing	
  Opportuni,es	
  
Publishers	
  
Service	
  Providers	
  
Adver,sers	
  
Ads	
  
Search	
  Keyword	
  
Geo-­‐loca,on	
  
Contextual	
  
Behavioral	
  
Retarge,ng	
  
Data	
  is	
  King!	
  
How	
  Audiences	
  are	
  Selected?	
  
Delivery	
  Options	
  and	
  Market	
  Types	
  
GD	
  means	
  Guaranteed	
  Delivery	
  and	
  
is	
  synonymous	
  to	
  brand,	
  wholesale	
  
and	
  fixed-­‐price	
  online	
  adver,sing.	
  	
  
NGD	
  means	
  Non-­‐Guaranteed	
  
Delivery	
  and	
  is	
  synonymous	
  to	
  
performance,	
  retail,	
  spot-­‐market	
  
(auc,on-­‐base)	
  online	
  adver,sing.	
  
How	
  are	
  ad	
  opportuni,es	
  priced?	
  
–  CPM	
  (Cost	
  Per	
  Mile),	
  also	
  called	
  "Cost	
  
Per	
  Thousand”	
  (CPT)	
  ,	
  is	
  where	
  
adver,sers	
  pay	
  per	
  impression	
  or	
  
exposure	
  or	
  of	
  their	
  message	
  to	
  a	
  
specific	
  target	
  audience.	
  	
  
–  CPC	
  (Cost	
  Per	
  Click)	
  is	
  also	
  known	
  
as	
  pay-­‐per-­‐click	
  (PPC).	
  Adver,sers	
  pay	
  
each	
  ,me	
  a	
  user	
  clicks	
  on	
  their	
  lis,ng	
  
and	
  is	
  redirected	
  to	
  their	
  website.	
  
–  CPA	
  (Cost	
  Per	
  Ac.on)	
  or	
  cost	
  per	
  
acquisi,on	
  adver,sing	
  is	
  performance	
  
based	
  and	
  is	
  common	
  in	
  the	
  affiliate	
  
marke,ng	
  sector	
  of	
  the	
  business	
  
Advertising	
  Funnel	
  and	
  Marketing	
  
Strategies	
  
Brand	
  Adver,sing	
   Performance	
  Adver,sing	
  
Bidding	
  and	
  Yield	
  Op,miza,on	
  
Real-­‐,me	
  Bidding	
  (RTB)	
  facilitates	
  the	
  connec,on	
  of	
  Supply	
  and	
  
Demand	
  from	
  different	
  private	
  marketplaces	
  
Summary	
  
Channel	
   Market	
   Formats	
   Pricing	
   Devices	
   Targe.ng	
   UX	
  
Search	
   NGD	
   Text	
   CPC	
   All	
   Keyword,	
  
Geo-­‐loca,on	
  
Browser	
  
Display	
   GD,	
  NGD	
   All	
   All	
   All	
   All	
   Browser,	
  
In-­‐App	
  
Social	
   NGD	
   Text,	
  
Image	
  
CPC	
   All	
   Behavioral,	
  
geo-­‐loca,on.	
  
contextual,	
  
retarge,ng	
  
Browser,	
  
In-­‐App	
  
Email	
   GD,	
  NGD	
   Text,	
  
Image	
  
CPM,	
  CPL	
   All	
   Geo-­‐loca,on,	
  
behavioral,	
  
retarge,ng	
  
Email	
  App	
  
Example	
  Ad	
  System:	
  Video	
  Exchange	
  
3d	
  party	
  Data	
  is	
  used	
  To	
  Iden.fy	
  a	
  User	
  and	
  Matches	
  It	
  to	
  Adver.ser	
  Demand	
  via	
  
Impression	
  Level	
  Bidding	
  
User	
  visits	
  pubs	
  in	
  an	
  
exchange	
  auc.on	
  
marketplace	
  
User	
  clicks	
  on	
  video	
  
player	
  to	
  play	
  Video	
  
Exchange	
  simultaneously	
  pings	
  
all	
  twelve	
  3rd	
  party	
  data	
  
partners	
  to	
  see	
  whether	
  they	
  
have	
  relevant	
  demographic	
  
and/or	
  behavioral	
  informa.on	
  
matching	
  the	
  target	
  to	
  
available	
  impressions	
  across	
  
the	
  exchange	
  
Exchange	
  matches	
  
adver.ser	
  demand	
  to	
  
qualified	
  users	
  
The	
  ad	
  server	
  serves	
  a	
  
relevant	
  pre-­‐roll	
  to	
  that	
  
user	
  in	
  real	
  .me.	
  	
  
	
  
Match	
  
Responding	
  to	
  a	
  Pub	
  Ad	
  Call	
  
Exchange/
Network
Publisher
P
Yo!	
  I	
  need	
  an	
  ad!	
  
No	
  prob	
  Home	
  Slice!	
  
	
  
Here’s	
  a	
  	
  
XML	
  doc	
  	
  
with	
  all	
  the	
  info	
  to	
  
execute	
  the	
  ad	
   010011010101	
  
Publisher
ad call
1
2
Exchange/Network
responds
with XML doc
The	
  XML	
  file	
  is	
  the	
  recipe	
  to	
  execute	
  the	
  video	
  ad!	
   31	
  
Pub	
  follows	
  XML	
  file	
  recipe	
  to	
  execute	
  ad	
  
Publisher
pagePublisher
P
I	
  now	
  have	
  	
  
my	
  XML	
  doc	
  recipe	
  …	
  
	
  
Now	
  
	
  I’ll	
  follow	
  	
  
the	
  recipe	
  	
  
to	
  show	
  
the	
  ad	
  
	
  
	
  
1
3rd Party
Video Ad Server
2
Request
for
video ad file
End User
Pre-roll ad plays
&
beacon events
provide metrics
4
3 Video ad file
sent to the
Publisher’s video player
32	
  
More	
  Players,	
  More	
  redirec,ons	
  
Adver,sers	
  use	
  their	
  “primary”	
  ad	
  server	
  to	
  manage	
  the	
  campaign	
  and	
  then	
  hand	
  off	
  
the	
  ad	
  calls	
  to	
  a	
  “secondary”	
  rich	
  media	
  ad	
  server,	
  	
  finally	
  pulling	
  the	
  ad	
  from	
  a	
  
content	
  delivery	
  network	
  as	
  in	
  the	
  diagram	
  above.	
  This	
  type	
  of	
  daisy-­‐chaining	
  is	
  also	
  
quite	
  common	
  with	
  ad	
  exchanges	
  that	
  handle	
  remnant	
  inventory,	
  thus	
  crea,ng	
  even	
  
more	
  redirec,ons.	
  
OK,	
  So	
  How	
  Do	
  We	
  Scale?	
  
ì  What	
  is	
  the	
  Right	
  Architecture?	
  
ì  What	
  are	
  the	
  best	
  Data	
  Structures?	
  
ì  What	
  family	
  of	
  Algorithms?	
  
35	
  
Impression-­‐Processing	
  
Server	
  
Index,	
  Model	
  
Par..ons	
  
impression	
  
Bid-­‐Genera.on	
  	
  
Server	
  
.	
  .	
  .	
  
bids,	
  
auc,on	
  info	
  
Bid-­‐Genera.on	
  	
  
Server	
  
Publisher	
  
Data	
  
Scalable	
  FE	
  Serving	
  	
  Architecture	
  
36	
  
Bid-­‐Generation	
  Server	
  Farm	
  
Bid-­‐Genera.on	
  	
  
Server	
   .	
  .	
  .	
  
Bid-­‐Genera.on	
  	
  
Server	
  
Bid-­‐Genera.on	
  	
  
Server	
  
Bid-­‐Genera.on	
  	
  
Server	
  .	
  .	
  .	
  
.	
  .	
  .	
   .	
  .	
  .	
  
#columns	
  =	
  #par,,ons	
  =	
  M	
  
#rows	
  =	
  #replicas	
  =	
  N	
  
37	
  
Bidding	
  System	
  Structure	
  
ì  Impression-­‐Processing	
  Server	
  annotates	
  the	
  
submieed	
  impression,	
  scaeers	
  the	
  impression	
  to	
  a	
  
set	
  of	
  Bid-­‐Genera,on	
  Servers,	
  gathers	
  top	
  bids	
  
from	
  local	
  auc,ons,	
  and	
  computes	
  the	
  overall	
  top	
  
bids	
  for	
  the	
  impression	
  by	
  running	
  a	
  global	
  auc,on	
  
ì  Each	
  Bid-­‐Genera,on	
  Server	
  works	
  on	
  a	
  par,,on	
  of	
  
demand	
  data,	
  generates	
  bids	
  for	
  a	
  given	
  impression	
  
based	
  on	
  that	
  data	
  par,,on,	
  conducts	
  a	
  local	
  
auc,on	
  across	
  those	
  bids,	
  and	
  returns	
  local	
  winners	
  
and	
  the	
  corresponding	
  auc,on	
  info	
  
Unified	
  BE	
  Data	
  Analytics	
  
ì  Descrip,ve	
  Analy,cs	
  
ì  OLAP	
  
ì  Reports	
  &	
  Visualiza,on	
  
ì  Predic,ve	
  Analy,cs	
  
ì  OLTP	
  
ì  Indexes	
  and	
  Models	
  	
  
ì  Ranking	
  
ì  Predic,on	
  
ì  Classifica,on	
  
ì  Op,miza,on	
  
Analyzing	
  an	
  Ad	
  Request	
  Flow	
  
1.  Eligibility	
  
2.  Ranking	
  
(Auc,on)	
  
3.  Delivery	
  
4.  Display	
  Ad	
  
EXCHANGE	
  
Eligibility:	
  The	
  Ad	
  Matching	
  Problem	
  
ì  BE: age ∈ {10,20} & country ∉ {US}
ì  S: age=20 & country=FR & gender=F
ì  Given an assignment S, find all matching
Boolean expressions (BEs)
Background:	
  Inverted	
  Indexes	
  
ì  Pos,ng	
  lists	
  of	
  occurring	
  terms	
  
(tokens)	
  with	
  list	
  of	
  
documents:posi,ons	
  	
  
ì  Used	
  to	
  match	
  queries	
  
ì  Tokens	
  	
  
ì  Boolean	
  operators	
  
ì  Search	
  returns	
  documents	
  
with	
  relevance	
  score	
  
Indexing Boolean Expressions
ì  E1: A ∈ {1}
ì  E2: A ∈ {1} & B ∈ {2} & C ∈ {3,4}
ì  S: A=1 & B=2
Key	
   Pos.ng	
  List	
  
(A,1)	
   E1,E2	
  
(B,2)	
   E2	
  
(C,3)	
   E2	
  
(C,4)	
   E2	
  
ID	
   Expression	
   K	
  
1	
   age	
  ∈	
  {3}	
  ∧	
  state	
  ∈	
  {NY	
  }	
  	
   2	
  
2	
   age	
  ∈	
  {3}	
  ∧	
  gender	
  ∈	
  {F}	
  	
   2	
  
3	
   age	
  ∈	
  {3}	
  ∧	
  gender	
  ∈	
  {M}	
  
∧	
  state	
  ∉	
  {CA}	
  
2	
  
4	
   state	
  ∈	
  {CA}	
  ∧	
  gender	
  ∈	
  
{M}	
  
2	
  
5	
   age	
  ∈	
  {3,	
  4}	
   1	
  
6	
   state	
  ∉	
  {CA,NY	
  }	
   0	
  
K	
   Key	
  and	
  UB	
   Pos.ng	
  List	
  
	
  
0	
  
(state,CA),	
  2.0	
   (6,	
  ∉,	
  0)	
  
(state,NY	
  ),	
  5	
   	
  (6,	
  ∉,	
  0)	
  
Z,	
  0	
   (6,	
  ∈,	
  0)	
  
	
  
1	
  
(age,	
  3),	
  1.0	
   (5,	
  ∈,	
  0.1)	
  
(age,	
  4),	
  3.0	
   (5,	
  ∈,	
  0.5)	
  
	
  
	
  
	
  
2	
  
(state,NY	
  ),	
  5	
   (1,	
  ∈,	
  4.0)	
  
(age,	
  3),	
  1.0	
   (1,	
  ∈,	
  0.1)	
  (2,	
  ∈,	
  
0.1)	
  (3,	
  ∈,	
  0.2)	
  
(gender,	
  F),	
  2	
   (2,	
  ∈,	
  0.3)	
  
(state,CA),	
  2.0	
   (3,	
  ∉,	
  0)	
  (4,	
  ∈,	
  1.5)	
  
(gender,M),	
  1.0	
   (3,	
  ∈,	
  0.5)	
  (4,	
  ∈,	
  
0.9)	
  
Figure	
  1:	
  A	
  set	
  of	
  conjunc,ons	
  
Figure	
  2:	
  Inverted	
  list	
  for	
  Figure	
  1	
  
43	
  
K-­‐Inverted	
  List	
  Construction	
  
Ranking	
  Phase	
  I:	
  Top-­‐K	
  Selection	
  
ì  Search	
  algorithm	
  for	
  DNF/CNF	
  BEs	
  with	
  
relevance	
  ranking	
  	
  
ì  The	
  score	
  of	
  a	
  BE	
  E	
  reflects	
  the	
  “relevance”	
  
of	
  E	
  to	
  an	
  assignment	
  S.	
  For	
  example,	
  a	
  user	
  
interested	
  in	
  running	
  might	
  be	
  more	
  
interested	
  in	
  an	
  adver,sement	
  on	
  shoes	
  
than	
  an	
  adver,sement	
  on	
  flowers	
  
Example:	
  Scoring	
  
ì  S=	
  {age=1,	
  state=NY,	
  gender=F}	
  
ì  Ws=(1,2,3)	
  
ì  Score(BE1)=0.1*1+2*4	
  =	
  8.1	
  	
  
ì  Score(BE2)=0.5*1+0.3*3	
  =	
  1.4	
  
K	
   Key	
  and	
  UB	
   Pos.ng	
  List	
  
	
  
2	
  
(state,NY	
  ),	
  5	
   (1,	
  ∈,	
  4.0)	
  
(age,	
  3),	
  1.0	
   (1,	
  ∈,	
  0.1)	
  (2,	
  ∈,	
  0.5)	
  
(gender,	
  F),	
  2	
   (2,	
  ∈,	
  0.3)	
  
ID	
   Expression	
   K	
  
1	
   age	
  ∈	
  {3}	
  ∧	
  state	
  ∈	
  {NY	
  }	
  	
   2	
  
2	
   age	
  ∈	
  {3}	
  ∧	
  gender	
  ∈	
  {F}	
  	
   2	
  
Matching	
  Requires	
  Two	
  Kinds	
  of	
  Indexes	
  
Example:	
  Ad	
  Matching	
  	
  
•  Assignment [S]:
age=20 &
country=FR &
gender=F
•  Boolean
Expression[SF]:
age ∈ {10,20} &
country ∉ {US}
Given an assignment
S, find all matching
Boolean expressions
(SFs)
•  Boolean
Expression[DF]:
ad_size ∈
{800x400,200x50}
& type ∉ {flash}
•  Assignment [D]:
crtv_tag =sports &
size=800x400 &
type=Flash
Given a Boolean
Expression DF, find all
matching Assignments
(Ds)
Return al matching Ad Units satisfying the
two-way match!!
Opportunity Query =
Supply Attributes (values)^ Demand Filters (BE)
Indexed Ad Units
Demand
Attributes
(values)
Supply
Filters
(BE)
Ranking	
  Phase	
  II:	
  Auction	
  
ì  Bids	
  are	
  computed	
  as	
  an	
  op,miza,on	
  based	
  on	
  
objec,ves	
  subject	
  to	
  budget	
  constraints.	
  
vG
=
X
g
g
vg
action-rate	

 goal value	

goal
Predictive	
  Analytics	
  and	
  Models	
  
ì  ML	
  and	
  CF	
  techniques	
  can	
  be	
  used	
  to	
  compute	
  
ì  Weights	
  for	
  Relevance	
  Ranking	
  
ì  Assigned	
  to	
  BE	
  clauses	
  and	
  assignment	
  pairs	
  
ì  Ac,on-­‐Rates	
  
ì  	
  E.g.	
  Response	
  predic,on:	
  what	
  is	
  the	
  probability	
  of	
  a	
  user	
  
comple,ng	
  an	
  ad	
  view,	
  clicking	
  or	
  conver,ng	
  
ì  Op,miza,on	
  
ì  Delivery:	
  Availability	
  and	
  Pacing	
  based	
  on	
  Budgets	
  
ì  Revenue/ROI	
  based	
  Op,miza,on	
  
ì  Explora,on-­‐Exploita,on	
  is	
  required	
  to	
  “learn”	
  new	
  signals.	
  
ì  Resul,ng	
  models	
  should	
  be	
  par,,oned	
  and	
  loaded	
  into	
  
Bidding	
  Servers	
  
50	
  
The	
  Business	
  of	
  Recommendations	
  
ì  Recommenda,ons	
  impact	
  your	
  business	
  
ì  Create	
  campaigns	
  that	
  target	
  certain	
  audiences,	
  
sec,ons	
  of	
  the	
  applica,on,	
  geo-­‐loca,on,	
  etc.	
  
ì  Use	
  recommenda,ons	
  as	
  a	
  way	
  to	
  do	
  promo,ons	
  as	
  
well	
  as	
  upsell	
  and	
  cross-­‐sell	
  
ì  Not	
  all	
  items-­‐ac,ons	
  are	
  created	
  equal	
  	
  
ì  Assess	
  the	
  value	
  of	
  the	
  goals.	
  Bidding	
  agents	
  will	
  
take	
  care	
  of	
  the	
  rest	
  
ì  Some	
  items	
  have	
  a	
  limited	
  life-­‐span	
  (e.g.	
  window	
  of	
  
availability).	
  Be	
  sure	
  to	
  represent	
  this	
  as	
  constraints	
  
or	
  budgets	
  
	
  
Summary	
  
Adver.sing	
   Recommender	
  Systems	
  
Targe,ng	
   Constraints	
  
Budget	
   Availability	
  
Bid	
   Relevance	
  
Auc,on	
   Selec,on	
  
Model	
   Model	
  
 The	
  All	
  Encompassing	
  Data	
  Engine	
  
Data	
  
Engine	
  
Search	
  &	
  Discovery	
  
Recommenda,ons	
   Adver,sing	
  
Intelligence	
  
Data	
  Engine	
  =	
  Data	
  Core	
  +	
  Analy,cs	
  
The	
  Crux	
  of	
  Metrics	
  and	
  Evaluation	
  
Business	
  
• Revenue	
  	
  
• User	
  Experience	
  
• Product	
  and	
  Service	
  
Ra,ng	
  
Systems	
  
• Conversion	
  Rate	
  
• ROC	
  Curves	
  
• Precision	
  
• Recall	
  
User	
  
• Relevance	
  
• Enjoyable	
  
• Novelty	
  
• Originality	
  
Intel	
  Confiden.al	
  
Bucket	
  Testing	
  and	
  Offline	
  Evaluation	
  
	
  
	
  
	
  
	
  
	
  Ad	
  Server	
  
To	
  be	
  
evaluated	
  
Ad	
  Server	
  
(Random	
  
Bucket)	
  
Traces	
  (100%)	
  
Event	
  Data	
  
(impr,	
  click,	
  
Conv,	
  prob)	
  
	
  
	
  
	
  
	
  
Replayer	
  
Ad	
  Calls	
  
HTTP	
  
Response	
  
Join	
   Final	
  Data	
  For	
  	
  
Evalua,on	
  
The	
  Big	
  Fish:	
  OTT	
  Television	
  
•  Online	
  TV	
  and	
  Video-­‐on-­‐Demand	
  is	
  
here	
  to	
  stay	
  
•  Star.ng	
  to	
  tap	
  into	
  tradi.onal	
  TV/
Cable	
  adver.sing	
  Budgets	
  
•  Viewership	
  +	
  Web	
  Data	
  will	
  power	
  
new	
  forms	
  of	
  Online	
  Adver.sement	
  
References	
  
ì  Indexing	
  Boolean	
  Expressions	
  
ì  Computa,onal	
  Adver,sing	
  and	
  Recommender	
  
Systems	
  
ì  A	
  Market-­‐Based	
  Approach	
  to	
  Recommender	
  
Systems	
  
ì  ICML’11	
  Tutorial	
  on	
  Machine	
  Learning	
  for	
  Large	
  
Scale	
  Recommender	
  Systems	
  

Más contenido relacionado

La actualidad más candente

Modern Perspectives on Recommender Systems and their Applications in Mendeley
Modern Perspectives on Recommender Systems and their Applications in MendeleyModern Perspectives on Recommender Systems and their Applications in Mendeley
Modern Perspectives on Recommender Systems and their Applications in MendeleyKris Jack
 
Recommender system introduction
Recommender system   introductionRecommender system   introduction
Recommender system introductionLiang Xiang
 
Machine Learning for Recommender Systems MLSS 2015 Sydney
Machine Learning for Recommender Systems MLSS 2015 SydneyMachine Learning for Recommender Systems MLSS 2015 Sydney
Machine Learning for Recommender Systems MLSS 2015 SydneyAlexandros Karatzoglou
 
Recsys2016 Tutorial by Xavier and Deepak
Recsys2016 Tutorial by Xavier and DeepakRecsys2016 Tutorial by Xavier and Deepak
Recsys2016 Tutorial by Xavier and DeepakDeepak Agarwal
 
An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender SystemsDavid Zibriczky
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systemsNAVER Engineering
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringViet-Trung TRAN
 
Survey of Recommendation Systems
Survey of Recommendation SystemsSurvey of Recommendation Systems
Survey of Recommendation Systemsyoualab
 
Social Recommender Systems
Social Recommender SystemsSocial Recommender Systems
Social Recommender Systemsguest77b0cd12
 
Overview of recommender system
Overview of recommender systemOverview of recommender system
Overview of recommender systemStanley Wang
 
Data Mining and Recommendation Systems
Data Mining and Recommendation SystemsData Mining and Recommendation Systems
Data Mining and Recommendation SystemsSalil Navgire
 
Summary of a Recommender Systems Survey paper
Summary of a Recommender Systems Survey paperSummary of a Recommender Systems Survey paper
Summary of a Recommender Systems Survey paperChangsung Moon
 
Multi Criteria Recommender Systems - Overview
Multi Criteria Recommender Systems - OverviewMulti Criteria Recommender Systems - Overview
Multi Criteria Recommender Systems - OverviewDavide Giannico
 
Past, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspectivePast, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspectiveXavier Amatriain
 
Recommendation engines
Recommendation enginesRecommendation engines
Recommendation enginesGeorgian Micsa
 
Recommendation system
Recommendation system Recommendation system
Recommendation system Vikrant Arya
 
Product Recommendations Enhanced with Reviews
Product Recommendations Enhanced with ReviewsProduct Recommendations Enhanced with Reviews
Product Recommendations Enhanced with Reviewsmaranlar
 
Past present and future of Recommender Systems: an Industry Perspective
Past present and future of Recommender Systems: an Industry PerspectivePast present and future of Recommender Systems: an Industry Perspective
Past present and future of Recommender Systems: an Industry PerspectiveXavier Amatriain
 

La actualidad más candente (20)

Modern Perspectives on Recommender Systems and their Applications in Mendeley
Modern Perspectives on Recommender Systems and their Applications in MendeleyModern Perspectives on Recommender Systems and their Applications in Mendeley
Modern Perspectives on Recommender Systems and their Applications in Mendeley
 
Recommender system introduction
Recommender system   introductionRecommender system   introduction
Recommender system introduction
 
Machine Learning for Recommender Systems MLSS 2015 Sydney
Machine Learning for Recommender Systems MLSS 2015 SydneyMachine Learning for Recommender Systems MLSS 2015 Sydney
Machine Learning for Recommender Systems MLSS 2015 Sydney
 
Recsys2016 Tutorial by Xavier and Deepak
Recsys2016 Tutorial by Xavier and DeepakRecsys2016 Tutorial by Xavier and Deepak
Recsys2016 Tutorial by Xavier and Deepak
 
An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender Systems
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
 
Survey of Recommendation Systems
Survey of Recommendation SystemsSurvey of Recommendation Systems
Survey of Recommendation Systems
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Social Recommender Systems
Social Recommender SystemsSocial Recommender Systems
Social Recommender Systems
 
Overview of recommender system
Overview of recommender systemOverview of recommender system
Overview of recommender system
 
Data Mining and Recommendation Systems
Data Mining and Recommendation SystemsData Mining and Recommendation Systems
Data Mining and Recommendation Systems
 
Summary of a Recommender Systems Survey paper
Summary of a Recommender Systems Survey paperSummary of a Recommender Systems Survey paper
Summary of a Recommender Systems Survey paper
 
Multi Criteria Recommender Systems - Overview
Multi Criteria Recommender Systems - OverviewMulti Criteria Recommender Systems - Overview
Multi Criteria Recommender Systems - Overview
 
Past, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspectivePast, present, and future of Recommender Systems: an industry perspective
Past, present, and future of Recommender Systems: an industry perspective
 
Recommendation engines
Recommendation enginesRecommendation engines
Recommendation engines
 
Recommendation system
Recommendation system Recommendation system
Recommendation system
 
Product Recommendations Enhanced with Reviews
Product Recommendations Enhanced with ReviewsProduct Recommendations Enhanced with Reviews
Product Recommendations Enhanced with Reviews
 
kdd2015
kdd2015kdd2015
kdd2015
 
Past present and future of Recommender Systems: an Industry Perspective
Past present and future of Recommender Systems: an Industry PerspectivePast present and future of Recommender Systems: an Industry Perspective
Past present and future of Recommender Systems: an Industry Perspective
 

Destacado

Flipping the Funnel – How 1 School Increased Yield with Website Optimization
Flipping the Funnel – How 1 School Increased Yield with Website OptimizationFlipping the Funnel – How 1 School Increased Yield with Website Optimization
Flipping the Funnel – How 1 School Increased Yield with Website OptimizationJason Smith
 
Predictive models for Operational analytics
Predictive models for Operational analyticsPredictive models for Operational analytics
Predictive models for Operational analyticsCleverDATA
 
VertaMedia Videonuze presentation
VertaMedia Videonuze presentationVertaMedia Videonuze presentation
VertaMedia Videonuze presentationAlex Bornyakov
 
Real-time Optimization and E-Commerce Personalization
Real-time Optimization and E-Commerce PersonalizationReal-time Optimization and E-Commerce Personalization
Real-time Optimization and E-Commerce PersonalizationDynamic Yield
 
Diseño y desarrollo de cursos online (3 de 3)
Diseño y desarrollo de cursos online (3 de 3)Diseño y desarrollo de cursos online (3 de 3)
Diseño y desarrollo de cursos online (3 de 3)Alex Rayón Jerez
 
Custom exhibition stands Design, Construction and Management of projects in ...
Custom exhibition stands  Design, Construction and Management of projects in ...Custom exhibition stands  Design, Construction and Management of projects in ...
Custom exhibition stands Design, Construction and Management of projects in ...Александр Чуб
 
Hcad public accessinfo
Hcad public accessinfoHcad public accessinfo
Hcad public accessinfopoconnor
 
Nuevo buscador de colecciones unam
Nuevo buscador de colecciones unamNuevo buscador de colecciones unam
Nuevo buscador de colecciones unamale881103
 
Patol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec Sheet
Patol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec SheetPatol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec Sheet
Patol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec SheetThorne & Derrick UK
 
Como publicar su resume en Twitter
Como publicar su resume en TwitterComo publicar su resume en Twitter
Como publicar su resume en TwitterDigetech.net
 
DataVox Corporate Profile
DataVox Corporate ProfileDataVox Corporate Profile
DataVox Corporate ProfileMollie Dobersek
 
Buy gold bullion
Buy gold bullionBuy gold bullion
Buy gold bullioncelticgold
 
Bases corals 2015
Bases corals 2015Bases corals 2015
Bases corals 2015cordexativa
 
PPT - Prototipo y realizacion de soluciones
PPT - Prototipo y realizacion de solucionesPPT - Prototipo y realizacion de soluciones
PPT - Prototipo y realizacion de solucionesBoombrains
 
El Libro De Consejos Para Profesionales[1]
El Libro De Consejos Para Profesionales[1]El Libro De Consejos Para Profesionales[1]
El Libro De Consejos Para Profesionales[1]lildesiangel
 
Final publication "Crafts and design in Europe"
Final publication "Crafts and design in Europe"Final publication "Crafts and design in Europe"
Final publication "Crafts and design in Europe"StephGille
 

Destacado (20)

Flipping the Funnel – How 1 School Increased Yield with Website Optimization
Flipping the Funnel – How 1 School Increased Yield with Website OptimizationFlipping the Funnel – How 1 School Increased Yield with Website Optimization
Flipping the Funnel – How 1 School Increased Yield with Website Optimization
 
Deal games pitch aug13
Deal games pitch aug13Deal games pitch aug13
Deal games pitch aug13
 
Predictive models for Operational analytics
Predictive models for Operational analyticsPredictive models for Operational analytics
Predictive models for Operational analytics
 
VertaMedia Videonuze presentation
VertaMedia Videonuze presentationVertaMedia Videonuze presentation
VertaMedia Videonuze presentation
 
Real-time Optimization and E-Commerce Personalization
Real-time Optimization and E-Commerce PersonalizationReal-time Optimization and E-Commerce Personalization
Real-time Optimization and E-Commerce Personalization
 
Diseño y desarrollo de cursos online (3 de 3)
Diseño y desarrollo de cursos online (3 de 3)Diseño y desarrollo de cursos online (3 de 3)
Diseño y desarrollo de cursos online (3 de 3)
 
Entrenamiento basico 1 participante
Entrenamiento basico 1 participanteEntrenamiento basico 1 participante
Entrenamiento basico 1 participante
 
Custom exhibition stands Design, Construction and Management of projects in ...
Custom exhibition stands  Design, Construction and Management of projects in ...Custom exhibition stands  Design, Construction and Management of projects in ...
Custom exhibition stands Design, Construction and Management of projects in ...
 
Pajaros Mensajeros
Pajaros MensajerosPajaros Mensajeros
Pajaros Mensajeros
 
Interbarómetro Septiembre 2016
Interbarómetro Septiembre 2016Interbarómetro Septiembre 2016
Interbarómetro Septiembre 2016
 
Hcad public accessinfo
Hcad public accessinfoHcad public accessinfo
Hcad public accessinfo
 
Nuevo buscador de colecciones unam
Nuevo buscador de colecciones unamNuevo buscador de colecciones unam
Nuevo buscador de colecciones unam
 
Patol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec Sheet
Patol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec SheetPatol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec Sheet
Patol Industrial Fire Detection 5011 & 5012 Infrared Heat Sensor - Spec Sheet
 
Como publicar su resume en Twitter
Como publicar su resume en TwitterComo publicar su resume en Twitter
Como publicar su resume en Twitter
 
DataVox Corporate Profile
DataVox Corporate ProfileDataVox Corporate Profile
DataVox Corporate Profile
 
Buy gold bullion
Buy gold bullionBuy gold bullion
Buy gold bullion
 
Bases corals 2015
Bases corals 2015Bases corals 2015
Bases corals 2015
 
PPT - Prototipo y realizacion de soluciones
PPT - Prototipo y realizacion de solucionesPPT - Prototipo y realizacion de soluciones
PPT - Prototipo y realizacion de soluciones
 
El Libro De Consejos Para Profesionales[1]
El Libro De Consejos Para Profesionales[1]El Libro De Consejos Para Profesionales[1]
El Libro De Consejos Para Profesionales[1]
 
Final publication "Crafts and design in Europe"
Final publication "Crafts and design in Europe"Final publication "Crafts and design in Europe"
Final publication "Crafts and design in Europe"
 

Similar a Scalable advertising recommender systems

Demystify - Programmatic for Recruitment
Demystify - Programmatic for Recruitment Demystify - Programmatic for Recruitment
Demystify - Programmatic for Recruitment Crunch Simply Digital
 
Narrative Mind Week 8 H4D Stanford 2016
Narrative Mind Week 8 H4D Stanford 2016Narrative Mind Week 8 H4D Stanford 2016
Narrative Mind Week 8 H4D Stanford 2016Stanford University
 
Social Media2 Copy 2
Social Media2 Copy 2Social Media2 Copy 2
Social Media2 Copy 2HeatherDurham
 
Narrative Mind Week 6 H4D Stanford 2016
Narrative Mind Week 6 H4D Stanford 2016Narrative Mind Week 6 H4D Stanford 2016
Narrative Mind Week 6 H4D Stanford 2016Stanford University
 
Gareth Phillips from Audience Store | Creative Led Programmatic
Gareth Phillips from Audience Store | Creative Led ProgrammaticGareth Phillips from Audience Store | Creative Led Programmatic
Gareth Phillips from Audience Store | Creative Led Programmatictmwi
 
Creating a social media strategy for a tourism business | Block 1: Basics of ...
Creating a social media strategy for a tourism business | Block 1: Basics of ...Creating a social media strategy for a tourism business | Block 1: Basics of ...
Creating a social media strategy for a tourism business | Block 1: Basics of ...Francisco Hernandez-Marcos
 
ReebootWhatIsAnalyticsVideo9.25.08 Slideshare
ReebootWhatIsAnalyticsVideo9.25.08 SlideshareReebootWhatIsAnalyticsVideo9.25.08 Slideshare
ReebootWhatIsAnalyticsVideo9.25.08 SlideshareAndy Hunter
 
Digital Marketing All Module Sunil Kumar.pptx
Digital Marketing All Module Sunil Kumar.pptxDigital Marketing All Module Sunil Kumar.pptx
Digital Marketing All Module Sunil Kumar.pptxDr. Sunil Kumar
 
Native Advertising at Scale
Native Advertising at ScaleNative Advertising at Scale
Native Advertising at ScaleMatt O'Neill
 
2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...
2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...
2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...ARBOinteractive Polska
 
Kritter introduction - advertiser
Kritter   introduction - advertiserKritter   introduction - advertiser
Kritter introduction - advertiserKrittercorporate
 
Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...
Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...
Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...Scott Levine
 
Webinar: Tools for Modern Marketing
Webinar: Tools for Modern MarketingWebinar: Tools for Modern Marketing
Webinar: Tools for Modern MarketingAndy Shatananda
 
Digital marketing training 101
Digital marketing training 101Digital marketing training 101
Digital marketing training 101Dennis Adamo
 
Presentación Sherrill Mane
Presentación Sherrill Mane Presentación Sherrill Mane
Presentación Sherrill Mane IAB México
 
Yahoo! Network Plus 2_4_11
Yahoo! Network Plus 2_4_11Yahoo! Network Plus 2_4_11
Yahoo! Network Plus 2_4_11Devan McCoy
 

Similar a Scalable advertising recommender systems (20)

Demystify - Programmatic for Recruitment
Demystify - Programmatic for Recruitment Demystify - Programmatic for Recruitment
Demystify - Programmatic for Recruitment
 
BOLO2010 Portugal
BOLO2010 PortugalBOLO2010 Portugal
BOLO2010 Portugal
 
Narrative Mind Week 8 H4D Stanford 2016
Narrative Mind Week 8 H4D Stanford 2016Narrative Mind Week 8 H4D Stanford 2016
Narrative Mind Week 8 H4D Stanford 2016
 
Social Media2 Copy 2
Social Media2 Copy 2Social Media2 Copy 2
Social Media2 Copy 2
 
Narrative Mind Week 6 H4D Stanford 2016
Narrative Mind Week 6 H4D Stanford 2016Narrative Mind Week 6 H4D Stanford 2016
Narrative Mind Week 6 H4D Stanford 2016
 
Class5 Business Design
Class5 Business DesignClass5 Business Design
Class5 Business Design
 
Gareth Phillips from Audience Store | Creative Led Programmatic
Gareth Phillips from Audience Store | Creative Led ProgrammaticGareth Phillips from Audience Store | Creative Led Programmatic
Gareth Phillips from Audience Store | Creative Led Programmatic
 
Creating a social media strategy for a tourism business | Block 1: Basics of ...
Creating a social media strategy for a tourism business | Block 1: Basics of ...Creating a social media strategy for a tourism business | Block 1: Basics of ...
Creating a social media strategy for a tourism business | Block 1: Basics of ...
 
ReebootWhatIsAnalyticsVideo9.25.08 Slideshare
ReebootWhatIsAnalyticsVideo9.25.08 SlideshareReebootWhatIsAnalyticsVideo9.25.08 Slideshare
ReebootWhatIsAnalyticsVideo9.25.08 Slideshare
 
Digital Marketing All Module Sunil Kumar.pptx
Digital Marketing All Module Sunil Kumar.pptxDigital Marketing All Module Sunil Kumar.pptx
Digital Marketing All Module Sunil Kumar.pptx
 
Native Advertising at Scale
Native Advertising at ScaleNative Advertising at Scale
Native Advertising at Scale
 
2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...
2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...
2011.03 Stephan Noller - Moving from Performance Marketing to Branding Optimi...
 
Kritter introduction - advertiser
Kritter   introduction - advertiserKritter   introduction - advertiser
Kritter introduction - advertiser
 
Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...
Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...
Digital Display Advertising For Medicare Marketing: The Comprehensive Medicar...
 
Retargeting
RetargetingRetargeting
Retargeting
 
Webinar: Tools for Modern Marketing
Webinar: Tools for Modern MarketingWebinar: Tools for Modern Marketing
Webinar: Tools for Modern Marketing
 
Digital marketing training 101
Digital marketing training 101Digital marketing training 101
Digital marketing training 101
 
Presentación Sherrill Mane
Presentación Sherrill Mane Presentación Sherrill Mane
Presentación Sherrill Mane
 
E marketing and Advertisement
E marketing and AdvertisementE marketing and Advertisement
E marketing and Advertisement
 
Yahoo! Network Plus 2_4_11
Yahoo! Network Plus 2_4_11Yahoo! Network Plus 2_4_11
Yahoo! Network Plus 2_4_11
 

Último

Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 

Último (20)

Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 

Scalable advertising recommender systems

  • 1. ì   Scalable  Adver,sing  v  Recommender  Systems   From  Search,  Display  to  Mobile,  Social  and  TV     By  Joaquin  A.  Delgado,  PhD.       ACM  San  Francisco  Bay  Area  Professional  Chapter  
  • 2. Disclaimer   ì  The  content  of  this  presenta,on  are  of  my  own   personal  opinion  and  does  not  officially  represent   my  employer’s  view  in  anyway.  Included  content  is   especially  not  intended  to  convey  the  views  of  Intel   Media  (an  Intel  Corp  Subsidiary)  or  Intel   Corpora,on.    
  • 3. Objectives   ì  Demonstrate  the  strong  similari,es  between   adver,sing  and  recommender  systems   ì  Illustrate  some  of  the  techniques  used  to  build   large-­‐scale  adver,sing  systems  that  can  be  used   to  build  effec,ve  and  scalable  recommender   systems.  
  • 4. Agenda   ì  Introduc,on  to  Recommender  Systems   ì  Introduc,on  to  Adver,sing  Systems   ì  Example:  Video  Adver,sing  Exchange   ì  Ok,  So  How  Do  We  Scale?   ì  The  Business  of  Recommenda,ons   ì  The  Crux  of    Metrics  and  Evalua,on   ì  Q&A  
  • 6. Recommender  Systems   ì  Recommender  systems  or   recommenda.on  systems  (a.k.a.   recommenda,on  engines/plaYorm)  are   a  subclass  of  informa,on  filtering   systems  that  seek  to  predict  the  'ra,ng'   or  'preference'  that  a  user  would  give  to   an  item  (such  as  music,  books,  or   movies)  or  social  element  (e.g.  people  or   groups)  they  had  not  yet  considered.  
  • 7. ì  Recommender  Systems  have  been  around  since  the  1980s   primarily  applied  to  ecommerce  and  various  social  and   media  services.   ì  E.g.  Movie  Recommenda,ons   ì           Univ.  Minnesota,  MovieLens  (circa  1984)                                                2009  Ne?lix  $1M    Challenge     Evolution  of  Recommender  Systems  
  • 8. Problem Item, j User i Interacts with user features xi (demographics, browse history, search history, …) available with item features xj (keywords, content categories, ...) (i, j) : response yij Algorithm selects (explicit rating, implicit click/no-click) Predict the unobserved entries based on features and the observed entries
  • 9. Algorithmic  Approaches    (1)  :     Collaborative  Filtering   Better performance for old users and old items Does not naturally handle new users and new items (cold-start)
  • 10. Algorithmic  Approaches  (2)   Content  Based  Classification  Task     Intel  Confiden.al   Limitation: need predictive features Bias often high, does not capture signals at granular levels
  • 11. Other  Critical  Limitations   ì  Lack  of  Contextually-­‐Aware  Recommenda,ons   ì  Recommenda,ons  do  not  happen  in  a  vacuum;  context   such  as  ,me-­‐of-­‐day,  type/size  of  the  device,  geo-­‐loca,on,   surrounding  content  and  even  more  granular  user     informa,on  (e.g.  behavioral  user  segments)  is  key  to   providing  more  relevant  and  ,ming  recommenda,ons   ì  Scaling  Recommender  Systems  is  hard!   ì  Dimensionality  reduc,on  and  some  recent  map-­‐reduce   implementa,ons  of  matrix  factoriza,on  and  ML   algorithms  are  a  step  in  the  right  direc,on,  yet  alone  have   not  been  tested  at  “Internet  Scale”  
  • 12. Recommender  System  Redux   ì  True  goals  of  a  Recommender  System   ì  Amaze  the  user  by  sugges,ng  cap,va,ng  content   and  useful  services  that  are  contextually  relevant   and  ,mely     ì  Enable  further  mone.za.on  via  poten,al  up-­‐sale   and  cross-­‐sell  opportuni,es  of  content  and  services   that  actually  ma9er  to  the  user.   ì  Do  all  this  at  scale!  
  • 14. Advertising   ì  Adver.sing  is  a  form  of  communica,on  for   marke,ng  and  used  to  encourage,  persuade,  or   manipulate  an  audience  (viewers,  readers  or   listeners;  some,mes  a  specific  group)  to  con,nue   or  take  some  new  ac,on.  Most  commonly,  the   desired  result  is  to  drive  consumer  behavior  with   respect  to  a  commercial  offering,  although  poli,cal   and  ideological  adver,sing  is  also  common.  
  • 15. Long  History  of  Traditional  Advertising  
  • 16. A  form  of  promo,on  that   uses  Internet   Technology  for  the   expressed  purpose  of   delivering  marke,ng     messages  to  aeract   customers.   Online  Advertising  
  • 17. The  Rise  of  Online  Adver,sing  
  • 18. Online  Advertising  Spending  Tops  $100   Billion  in  2012  
  • 20. Computational  Advertising   ì  Computa,onal  adver,sing  is  at  the  intersec,on  of   large  scale  search  and  text  analysis,  informa,on   retrieval,  sta,s,cal  modeling,  machine  learning,   op,miza,on,  and  microeconomics.  The  central   challenge  of  computa,onal  adver,sing  is  to  find  the   "best  match"  between  a  given  user  in  a  given   context  and  a  suitable  adver,sement.     ì  Depending  on  the  defini,on  of  "best  match"  this   challenge  leads  to  a  variety  of  massive  op,miza,on   and  search  problems,  with  complicated  constraints.  
  • 21. Key  Enabling  Technology   ì  Systems  that  Scale   –  Distributed  Compu,ng   –  Distributed  Data  Processing   –  No-­‐SQL/New-­‐SQL  Databases   ì  Marketplace  Design   •  Auc,on  and  Game  Theory   •  Yield  Op,miza,on   •  Bidding  Agents     ì  Connec,ng  Markets   •  Real-­‐,me  Bidding  (RTB)   ì  Pervasive  Internet  Compu,ng   •  Prolifera,on  of  Internet  Connected  Devices  
  • 22. The  World  of  Online  Adver,sing   •  Text   •  Image   •  Rich  Media   •  Video   •  Computer   •  Tablet   •  Phone   •  Television   •  Search       •  Display   •  Email   •  Social   •  Brand   •  Performance   Objec,ve   Channel   Format  Device   UX:  In-­‐App  or  In-­‐Browser  
  • 23. The  Marketplace   Audiences   Adver,sing  Opportuni,es   Publishers   Service  Providers   Adver,sers   Ads  
  • 24. Search  Keyword   Geo-­‐loca,on   Contextual   Behavioral   Retarge,ng   Data  is  King!   How  Audiences  are  Selected?  
  • 25. Delivery  Options  and  Market  Types   GD  means  Guaranteed  Delivery  and   is  synonymous  to  brand,  wholesale   and  fixed-­‐price  online  adver,sing.     NGD  means  Non-­‐Guaranteed   Delivery  and  is  synonymous  to   performance,  retail,  spot-­‐market   (auc,on-­‐base)  online  adver,sing.  
  • 26. How  are  ad  opportuni,es  priced?   –  CPM  (Cost  Per  Mile),  also  called  "Cost   Per  Thousand”  (CPT)  ,  is  where   adver,sers  pay  per  impression  or   exposure  or  of  their  message  to  a   specific  target  audience.     –  CPC  (Cost  Per  Click)  is  also  known   as  pay-­‐per-­‐click  (PPC).  Adver,sers  pay   each  ,me  a  user  clicks  on  their  lis,ng   and  is  redirected  to  their  website.   –  CPA  (Cost  Per  Ac.on)  or  cost  per   acquisi,on  adver,sing  is  performance   based  and  is  common  in  the  affiliate   marke,ng  sector  of  the  business  
  • 27. Advertising  Funnel  and  Marketing   Strategies   Brand  Adver,sing   Performance  Adver,sing  
  • 28. Bidding  and  Yield  Op,miza,on   Real-­‐,me  Bidding  (RTB)  facilitates  the  connec,on  of  Supply  and   Demand  from  different  private  marketplaces  
  • 29. Summary   Channel   Market   Formats   Pricing   Devices   Targe.ng   UX   Search   NGD   Text   CPC   All   Keyword,   Geo-­‐loca,on   Browser   Display   GD,  NGD   All   All   All   All   Browser,   In-­‐App   Social   NGD   Text,   Image   CPC   All   Behavioral,   geo-­‐loca,on.   contextual,   retarge,ng   Browser,   In-­‐App   Email   GD,  NGD   Text,   Image   CPM,  CPL   All   Geo-­‐loca,on,   behavioral,   retarge,ng   Email  App  
  • 30. Example  Ad  System:  Video  Exchange   3d  party  Data  is  used  To  Iden.fy  a  User  and  Matches  It  to  Adver.ser  Demand  via   Impression  Level  Bidding   User  visits  pubs  in  an   exchange  auc.on   marketplace   User  clicks  on  video   player  to  play  Video   Exchange  simultaneously  pings   all  twelve  3rd  party  data   partners  to  see  whether  they   have  relevant  demographic   and/or  behavioral  informa.on   matching  the  target  to   available  impressions  across   the  exchange   Exchange  matches   adver.ser  demand  to   qualified  users   The  ad  server  serves  a   relevant  pre-­‐roll  to  that   user  in  real  .me.       Match  
  • 31. Responding  to  a  Pub  Ad  Call   Exchange/ Network Publisher P Yo!  I  need  an  ad!   No  prob  Home  Slice!     Here’s  a     XML  doc     with  all  the  info  to   execute  the  ad   010011010101   Publisher ad call 1 2 Exchange/Network responds with XML doc The  XML  file  is  the  recipe  to  execute  the  video  ad!   31  
  • 32. Pub  follows  XML  file  recipe  to  execute  ad   Publisher pagePublisher P I  now  have     my  XML  doc  recipe  …     Now    I’ll  follow     the  recipe     to  show   the  ad       1 3rd Party Video Ad Server 2 Request for video ad file End User Pre-roll ad plays & beacon events provide metrics 4 3 Video ad file sent to the Publisher’s video player 32  
  • 33. More  Players,  More  redirec,ons   Adver,sers  use  their  “primary”  ad  server  to  manage  the  campaign  and  then  hand  off   the  ad  calls  to  a  “secondary”  rich  media  ad  server,    finally  pulling  the  ad  from  a   content  delivery  network  as  in  the  diagram  above.  This  type  of  daisy-­‐chaining  is  also   quite  common  with  ad  exchanges  that  handle  remnant  inventory,  thus  crea,ng  even   more  redirec,ons.  
  • 34. OK,  So  How  Do  We  Scale?   ì  What  is  the  Right  Architecture?   ì  What  are  the  best  Data  Structures?   ì  What  family  of  Algorithms?  
  • 35. 35   Impression-­‐Processing   Server   Index,  Model   Par..ons   impression   Bid-­‐Genera.on     Server   .  .  .   bids,   auc,on  info   Bid-­‐Genera.on     Server   Publisher   Data   Scalable  FE  Serving    Architecture  
  • 36. 36   Bid-­‐Generation  Server  Farm   Bid-­‐Genera.on     Server   .  .  .   Bid-­‐Genera.on     Server   Bid-­‐Genera.on     Server   Bid-­‐Genera.on     Server  .  .  .   .  .  .   .  .  .   #columns  =  #par,,ons  =  M   #rows  =  #replicas  =  N  
  • 37. 37   Bidding  System  Structure   ì  Impression-­‐Processing  Server  annotates  the   submieed  impression,  scaeers  the  impression  to  a   set  of  Bid-­‐Genera,on  Servers,  gathers  top  bids   from  local  auc,ons,  and  computes  the  overall  top   bids  for  the  impression  by  running  a  global  auc,on   ì  Each  Bid-­‐Genera,on  Server  works  on  a  par,,on  of   demand  data,  generates  bids  for  a  given  impression   based  on  that  data  par,,on,  conducts  a  local   auc,on  across  those  bids,  and  returns  local  winners   and  the  corresponding  auc,on  info  
  • 38. Unified  BE  Data  Analytics   ì  Descrip,ve  Analy,cs   ì  OLAP   ì  Reports  &  Visualiza,on   ì  Predic,ve  Analy,cs   ì  OLTP   ì  Indexes  and  Models     ì  Ranking   ì  Predic,on   ì  Classifica,on   ì  Op,miza,on  
  • 39. Analyzing  an  Ad  Request  Flow   1.  Eligibility   2.  Ranking   (Auc,on)   3.  Delivery   4.  Display  Ad   EXCHANGE  
  • 40. Eligibility:  The  Ad  Matching  Problem   ì  BE: age ∈ {10,20} & country ∉ {US} ì  S: age=20 & country=FR & gender=F ì  Given an assignment S, find all matching Boolean expressions (BEs)
  • 41. Background:  Inverted  Indexes   ì  Pos,ng  lists  of  occurring  terms   (tokens)  with  list  of   documents:posi,ons     ì  Used  to  match  queries   ì  Tokens     ì  Boolean  operators   ì  Search  returns  documents   with  relevance  score  
  • 42. Indexing Boolean Expressions ì  E1: A ∈ {1} ì  E2: A ∈ {1} & B ∈ {2} & C ∈ {3,4} ì  S: A=1 & B=2 Key   Pos.ng  List   (A,1)   E1,E2   (B,2)   E2   (C,3)   E2   (C,4)   E2  
  • 43. ID   Expression   K   1   age  ∈  {3}  ∧  state  ∈  {NY  }     2   2   age  ∈  {3}  ∧  gender  ∈  {F}     2   3   age  ∈  {3}  ∧  gender  ∈  {M}   ∧  state  ∉  {CA}   2   4   state  ∈  {CA}  ∧  gender  ∈   {M}   2   5   age  ∈  {3,  4}   1   6   state  ∉  {CA,NY  }   0   K   Key  and  UB   Pos.ng  List     0   (state,CA),  2.0   (6,  ∉,  0)   (state,NY  ),  5    (6,  ∉,  0)   Z,  0   (6,  ∈,  0)     1   (age,  3),  1.0   (5,  ∈,  0.1)   (age,  4),  3.0   (5,  ∈,  0.5)         2   (state,NY  ),  5   (1,  ∈,  4.0)   (age,  3),  1.0   (1,  ∈,  0.1)  (2,  ∈,   0.1)  (3,  ∈,  0.2)   (gender,  F),  2   (2,  ∈,  0.3)   (state,CA),  2.0   (3,  ∉,  0)  (4,  ∈,  1.5)   (gender,M),  1.0   (3,  ∈,  0.5)  (4,  ∈,   0.9)   Figure  1:  A  set  of  conjunc,ons   Figure  2:  Inverted  list  for  Figure  1   43   K-­‐Inverted  List  Construction  
  • 44. Ranking  Phase  I:  Top-­‐K  Selection   ì  Search  algorithm  for  DNF/CNF  BEs  with   relevance  ranking     ì  The  score  of  a  BE  E  reflects  the  “relevance”   of  E  to  an  assignment  S.  For  example,  a  user   interested  in  running  might  be  more   interested  in  an  adver,sement  on  shoes   than  an  adver,sement  on  flowers  
  • 45. Example:  Scoring   ì  S=  {age=1,  state=NY,  gender=F}   ì  Ws=(1,2,3)   ì  Score(BE1)=0.1*1+2*4  =  8.1     ì  Score(BE2)=0.5*1+0.3*3  =  1.4   K   Key  and  UB   Pos.ng  List     2   (state,NY  ),  5   (1,  ∈,  4.0)   (age,  3),  1.0   (1,  ∈,  0.1)  (2,  ∈,  0.5)   (gender,  F),  2   (2,  ∈,  0.3)   ID   Expression   K   1   age  ∈  {3}  ∧  state  ∈  {NY  }     2   2   age  ∈  {3}  ∧  gender  ∈  {F}     2  
  • 46. Matching  Requires  Two  Kinds  of  Indexes  
  • 47. Example:  Ad  Matching     •  Assignment [S]: age=20 & country=FR & gender=F •  Boolean Expression[SF]: age ∈ {10,20} & country ∉ {US} Given an assignment S, find all matching Boolean expressions (SFs) •  Boolean Expression[DF]: ad_size ∈ {800x400,200x50} & type ∉ {flash} •  Assignment [D]: crtv_tag =sports & size=800x400 & type=Flash Given a Boolean Expression DF, find all matching Assignments (Ds) Return al matching Ad Units satisfying the two-way match!! Opportunity Query = Supply Attributes (values)^ Demand Filters (BE) Indexed Ad Units Demand Attributes (values) Supply Filters (BE)
  • 48. Ranking  Phase  II:  Auction   ì  Bids  are  computed  as  an  op,miza,on  based  on   objec,ves  subject  to  budget  constraints.   vG = X g g vg action-rate goal value goal
  • 49. Predictive  Analytics  and  Models   ì  ML  and  CF  techniques  can  be  used  to  compute   ì  Weights  for  Relevance  Ranking   ì  Assigned  to  BE  clauses  and  assignment  pairs   ì  Ac,on-­‐Rates   ì   E.g.  Response  predic,on:  what  is  the  probability  of  a  user   comple,ng  an  ad  view,  clicking  or  conver,ng   ì  Op,miza,on   ì  Delivery:  Availability  and  Pacing  based  on  Budgets   ì  Revenue/ROI  based  Op,miza,on   ì  Explora,on-­‐Exploita,on  is  required  to  “learn”  new  signals.   ì  Resul,ng  models  should  be  par,,oned  and  loaded  into   Bidding  Servers  
  • 50. 50   The  Business  of  Recommendations   ì  Recommenda,ons  impact  your  business   ì  Create  campaigns  that  target  certain  audiences,   sec,ons  of  the  applica,on,  geo-­‐loca,on,  etc.   ì  Use  recommenda,ons  as  a  way  to  do  promo,ons  as   well  as  upsell  and  cross-­‐sell   ì  Not  all  items-­‐ac,ons  are  created  equal     ì  Assess  the  value  of  the  goals.  Bidding  agents  will   take  care  of  the  rest   ì  Some  items  have  a  limited  life-­‐span  (e.g.  window  of   availability).  Be  sure  to  represent  this  as  constraints   or  budgets    
  • 51. Summary   Adver.sing   Recommender  Systems   Targe,ng   Constraints   Budget   Availability   Bid   Relevance   Auc,on   Selec,on   Model   Model  
  • 52.  The  All  Encompassing  Data  Engine   Data   Engine   Search  &  Discovery   Recommenda,ons   Adver,sing   Intelligence   Data  Engine  =  Data  Core  +  Analy,cs  
  • 53. The  Crux  of  Metrics  and  Evaluation   Business   • Revenue     • User  Experience   • Product  and  Service   Ra,ng   Systems   • Conversion  Rate   • ROC  Curves   • Precision   • Recall   User   • Relevance   • Enjoyable   • Novelty   • Originality   Intel  Confiden.al  
  • 54. Bucket  Testing  and  Offline  Evaluation            Ad  Server   To  be   evaluated   Ad  Server   (Random   Bucket)   Traces  (100%)   Event  Data   (impr,  click,   Conv,  prob)           Replayer   Ad  Calls   HTTP   Response   Join   Final  Data  For     Evalua,on  
  • 55. The  Big  Fish:  OTT  Television   •  Online  TV  and  Video-­‐on-­‐Demand  is   here  to  stay   •  Star.ng  to  tap  into  tradi.onal  TV/ Cable  adver.sing  Budgets   •  Viewership  +  Web  Data  will  power   new  forms  of  Online  Adver.sement  
  • 56.
  • 57. References   ì  Indexing  Boolean  Expressions   ì  Computa,onal  Adver,sing  and  Recommender   Systems   ì  A  Market-­‐Based  Approach  to  Recommender   Systems   ì  ICML’11  Tutorial  on  Machine  Learning  for  Large   Scale  Recommender  Systems