Química

497 visualizaciones

Publicado el

Publicado en: Empresariales, Tecnología
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
497
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
3
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Química

  1. 1. química<br />
  2. 2. La química<br />Se denomina química (del árabekēme (kem, كيمياء), que significa "tierra") a la ciencia que estudia la composición, estructura y propiedades de la materia, como los cambios que ésta experimenta durante las reacciones químicas y su relación con la energía. Históricamente la química moderna es la evolución de la alquimia tras la Revolución química (1733).<br />
  3. 3. Las disciplinas de la química han sido agrupadas por la clase de materia bajo estudio o el tipo de estudio realizado. Entre éstas se tienen la química inorgánica, que estudia la materia inorgánica; la química orgánica, que trata con la materia orgánica; la bioquímica, el estudio de substancias en organismos biológicos; la físico-química, comprende los aspectos energéticos de sistemas químicos a escalas macroscópicas, moleculares y atómicas; la química analítica, que analiza muestras de materia tratando de entender su composición y estructura. Otras ramas de la química han emergido en tiempos recientes, por ejemplo, la neuroquímica que estudia los aspectos químicos del cerebro.<br />
  4. 4. Introducción<br />Introducción<br />La ubicuidad de la química en las ciencias naturales hace que sea considerada como una de las ciencias básicas. La química es de gran importancia en muchos campos del conocimiento, como la ciencia de materiales, la biología, la farmacia, la medicina, la geología, la ingeniería y la astronomía, entre otros.<br />Los procesos naturales estudiados por la química involucran partículas fundamentales (electrones, protones y neutrones), partículas compuestas (núcleos atómicos, átomos y moléculas) o estructuras microscópicas como cristales y superficies<br />
  5. 5. Desde el punto de vista microscópico, las partículas involucradas en una reacción química pueden considerarse como un sistema cerrado que intercambia energía con su entorno. En procesos exotérmicos, el sistema libera energía a su entorno, mientras que un proceso endotérmico solamente puede ocurrir cuando el entorno aporta energía al sistema que reacciona. En la gran mayoría de las reacciones químicas hay flujo de energía entre el sistema y su campo de influencia, por lo cual podemos extender la definición de reacción química e involucrar la energía cinética (calor) como un reactivo o producto<br />
  6. 6. Aunque hay una gran variedad de ramas de la química, las principales divisiones son:<br />Química Orgánica<br />Química Inorgánica<br />Fisicoquímica<br />Química analítica<br />Bioquímica<br />Es común que entre las comunidades académicas de químicos la química analítica no sea considerada entre las subdisciplinas principales de la química y sea vista más como parte de la tecnología química. Otro aspecto notable en esta clasificación es que la química inorgánica sea definida como "química no orgánica". Es de interés también que la Química Física es diferente de la Física Química. La diferencia es clara en inglés: "chemical physics" y "physical chemistry"; en español, ya que el adjetivo va al final, la equivalencia sería:<br />Química física Physical Chemistry<br />Física química Chemical physics<br />
  7. 7. Si hay una partícula importante y representativa en la química es el electrón. Uno de los mayores logros de la química es haber llegado al entendimiento de la relación entre reactividad química y distribución electrónica de átomos, moléculas o sólidos. Los químicos han tomado los principios de la mecánica cuántica y sus soluciones fundamentales para sistemas de pocos electrones y han hecho aproximaciones matemáticas para sistemas más complejos. La idea de orbital atómico y molecular es una forma sistemática en la cual la formación de enlaces es entendible y es la sofisticación de los modelos iniciales de puntos de Lewis. La naturaleza cuántica del electrón hace que la formación de enlaces sea entendible físicamente y no se recurra a creencias como las que los químicos utilizaron antes de la aparición de la mecánica cuántica. Aun así, se obtuvo gran entendimiento a partir de la idea de puntos de Lewis<br />
  8. 8. Historia<br />Las primeras experiencias del hombre como químico se dieron con la utilización del fuego en la transformación de la materia, la obtención de hierro a partir del mineral y de vidrio a partir de arena son claros ejemplos. Poco a poco el hombre se dio cuenta de que otras sustancias también tienen este poder de transformación. Se dedicó un gran empeño en buscar una sustancia que transformara un metal en oro, lo que llevó a la creación de la alquimia. La acumulación de experiencias alquímicas jugó un papel vital en el futuro establecimiento de la química.<br />
  9. 9. La química es una ciencia empírica, ya que estudia las cosas por medio del método científico, es decir, por medio de la observación, la cuantificación y, sobre todo, la experimentación. En su sentido más amplio, la química estudia las diversas sustancias que existen en nuestro planeta así como las reacciones que las transforman en otras sustancias. Por otra parte, la química estudia la estructura de las sustancias a su nivel molecular. Y por último, pero no menos importante, sus propiedades.<br />
  10. 10. La química cubre un campo de estudios bastante amplio, por lo que en la práctica se estudia de cada tema de manera particular. Las seis principales y más estudiadas ramas de la química son:[cita requerida]<br />Química inorgánica: Síntesis y estudio de las propiedades eléctricas, magnéticas y ópticas de los compuestos formados por átomos que no sean de carbono (aunque con algunas excepciones). Trata especialmente los nuevos compuestos con metales de transición, los ácidos y las bases, entre otros compuestos.<br />Química orgánica: Síntesis y estudio de los compuestos que se basan en cadenas de carbono.<br />Bioquímica: estudia las reacciones químicas en los seres vivos, estudia el organismo y los seres vivos.<br />Química física: estudia los fundamentos y bases físicas de los sistemas y procesos químicos. En particular, son de interés para el químico físico los aspectos energéticos y dinámicos de tales sistemas y procesos. Entre sus áreas de estudio más importantes se incluyen la termodinámica química, la cinética química, la electroquímica, la mecánica estadística y la espectroscopía. Usualmente se la asocia también con la química cuántica y la química teórica.<br />Química industrial: Estudia los métodos de producción de reactivos químicos en cantidades elevadas, de la manera económicamente más beneficiosa. En la actualidad también intenta aunar sus intereses iniciales, con un bajo daño al medio ambiente.<br />Química analítica: estudia los métodos de detección (identificación) y cuantificación (determinación) de una sustancia en una muestra. Se subdivide en Cuantitativa y Cualitativa.<br />
  11. 11. Además existen múltiples subdisciplinas, que por ser demasiado específicas, o multidisciplinares, se estudian individualmente:[cita requerida]<br />Química organometálica<br />Fotoquímica<br />Química cuántica<br />Química medioambiental: estudia la influencia de todos los componentes químicos que hay en la tierra, tanto en su forma natural como antropogénica.<br />Química teórica<br />Química computacional<br />Electroquímica<br />Química nuclear<br />Petroquímica<br />Geoquímica: estudia todas las transformaciones de los minerales existentes en la tierra.<br />Química macromolecular: estudia la preparación, caracterización, propiedades y aplicaciones de las macromoléculas o polímeros.<br />Magnetoquímica<br />Química supramolecular<br />Nanoquímica<br />Astroquímica<br />
  12. 12. Los aportes de célebres autores<br />Hace aproximadamente cuatrocientos cincuenta y cinco años, sólo se conocían doce elementos. A medida que fueron descubriendo más elementos, los científicos se dieron cuenta de que todos guardaban un orden preciso. Cuando los colocaron en una tabla ordenados en filas y columnas, vieron que los elementos de una misma columna tenían propiedades similares. Pero también aparecían espacios vacíos en la tabla para los elementos aún desconocidos. Estos espacios huecos llevaron al científico ruso DmitriMendeléyev a pronosticar la existencia del germanio, de número atómico 32, así como su color, peso, densidad y punto de fusión. Su “predicción sobre otros elementos como - el galio y el escandio - también resultó muy atinada”, señala la obra Chemistry, libro de texto de química editado en 1995.<br />
  13. 13. Campo de trabajo: el átomo<br />El origen de la teoría atómica se remonta a la escuela filosófica de los atomistas, en la Grecia antigua. Los fundamentos empíricos de la teoría atómica, de acuerdo con el método científico, se debe a un conjunto de trabajos hechos por Antoine Lavoisier, Louis Proust, JeremiasBenjamin Richter, John Dalton, Gay-Lussac y Amadeo Avogadro entre muchos otros, hacia principios del siglo XIX.<br />Los átomos son la fracción más pequeña de materia estudiados por la química, están constituidos por diferentes partículas, cargadas eléctricamente, los electrones, de carga negativa; los protones, de carga positiva; los neutrones, que, como su nombre indica, son neutros (sin carga); todos ellos aportan masa para contribuir al peso.<br />
  14. 14. Conceptos fundamentales<br />Partículas<br />Los átomos son las partes más pequeñas de un elemento (como el carbono, el hierro o el oxígeno). Todos los átomos de un mismo elemento tienen la misma estructura electrónica (responsable esta de la gran mayoría de las características químicas), pudiendo diferir en la cantidad de neutrones (isótopos). Las moléculas son las partes más pequeñas de una sustancia (como el azúcar), y se componen de átomos enlazados entre sí. Si tienen carga eléctrica, tanto átomos como moléculas se llaman iones: cationes si son positivos, aniones si son negativos.<br />El mol se usa como contador de unidades, como la docena (12) o el millar (1000), y equivale a . Se dice que 12 gramos de carbono o un gramo de hidrógeno o 56 gramos de hierro contienen aproximadamente un mol de átomos (la masa molar de un elemento está basada en la masa de un mol de dicho elemento). Se dice entonces que el mol es una unidad de cambio. El mol tiene relación directa con el número de Avogadro. El número de Avogadro fue estimado para el átomo de carbono por el Químico y Físico italiano Carlo AmedeoAvogadro Conde de Quarequa e di Cerreto. Este valor, expuesto anteriormente, equivale al número de partículas presentes en 1 mol de dicha sustancia. Veamos<br />
  15. 15. 1 mol de glucosa equivale a moléculas de glucosa<br />1 mol de Uranio equivale a átomos de Uranio<br />Dentro de los átomos, podemos encontrar un núcleo atómico y uno o más electrones. Los electrones son muy importantes para las propiedades y las reacciones químicas. Dentro del núcleo se encuentran los neutrones y los protones. Los electrones se encuentran alrededor del núcleo. También se dice que es la unidad básica de la materia con características propias. Está formado por un núcleo donde se encuentran protones.<br />
  16. 16. De los átomos a las moléculas<br />Los enlaces son las uniones entre átomos para formar moléculas. Siempre que existe una molécula es porque ésta es más estable que los átomos que la forman por separado. A la diferencia de energía entre estos dos estados se le denomina energía de enlace.<br />Generalmente, los átomos se combinan en proporciones fijas para dar moléculas. Por ejemplo, dos átomos de hidrógeno se combinan con uno de oxígeno para dar una molécula de agua. Esta proporción fija se conoce como estequiometría.<br />
  17. 17. Orbitales<br />Artículos principales: Orbital atómico y orbital molecular<br />Para una descripción y comprensión detalladas de las reacciones químicas y de las propiedades físicas de las diferentes sustancias, es muy útil su descripción a través de orbitales, con ayuda de la química cuántica.<br />Un orbital atómico es una función matemática que describe la disposición de uno o dos electrones en un átomo. Un orbital molecular es análogo, pero para moléculas.<br />
  18. 18. En la teoría del orbital molecular la formación del enlace covalente se debe a una combinación matemática de orbitales atómicos (funciones de onda) que forman orbitales moleculares, llamados así por que pertenecen a toda la molécula y no a un átomo individual. Así como un orbital atómico (sea híbrido o no) describe una región del espacio que rodea a un átomo donde es probable que se encuentre un electrón, un orbital molecular describe una región del espacio en una molécula donde es más factible que se hallen los electrones<br />
  19. 19. Al igual que un orbital atómico, un orbital molecular tiene un tamaño, una forma y una energía específicos. Por ejemplo, en la molécula de hidrógeno molecular se combinan dos orbitales atómicos uno s ocupados cada uno por un electrón. Hay dos formas en que puede presentarse la combinación de orbitales: aditiva y subtractiva. La combinación aditiva produce la formación de un orbital molecular que tiene menor energía y que tiene, aproximadamente, forma ovalada, mientras que la combinación subtractiva conduce a la formación de un orbital molecular con mayor energía y que genera un nodo entre los núcleos.<br />
  20. 20. De los orbitales a las sustancias<br />Los orbitales son funciones matemáticas para describir procesos físicos: un orbital solo existe en el sentido matemático, como pueden existir una suma, una parábola o una raíz cuadrada. Los átomos y las moléculas son también idealizaciones y simplificaciones: un átomo sólo existe en vacío, una molécula sólo existe en vacío, y, en sentido estricto, una molécula sólo se descompone en átomos si se rompen todos sus enlaces.<br />En el "mundo real" sólo existen los materiales y las sustancias. Si se confunden los objetos reales con los modelos teóricos que se usan para describirlos, es fácil caer en falaciaslógicas.<br />
  21. 21. Disoluciones<br />En agua, y en otros disolventes (como la acetona o el alcohol), es posible disolver sustancias, de forma que quedan disgregadas en las moléculas o iones que las componen (las disoluciones son transparentes). Cuando se supera cierto límite, llamado solubilidad, la sustancia ya no se disuelve, y queda, bien como precipitado en el fondo del recipiente, bien como suspensión, flotando en pequeñas partículas (las suspensiones son opacas o traslúcidas).<br />Se denomina concentración a la medida de la cantidad de soluto por unidad de cantidad de disolvente.<br />
  22. 22. Medida de la concentración<br />La concentración de una disolución se puede expresar de diferentes formas, en función de la unidad empleada para determinar las cantidades de soluto y disolvente. Las más usuales son:<br />g/l (Gramos por litro) razón soluto/disolvente o soluto/disolución, dependiendo de la convención<br />% p/p (Concentración porcentual en peso) razón soluto/disolución<br />% V/V (Concentración porcentual en volumen) razón soluto/disolución<br />M (Molaridad) razón soluto/disolución<br />N (Normalidad) razón soluto/disolución<br />m (molalidad) razón soluto/disolvente<br />x (fracción molar)<br />ppm (Partes por millón) razón soluto/disolución<br />
  23. 23. Acidez<br />El pH es una escala logarítmica para describir la acidez de una disolución acuosa. Los ácidos, como el zumo de limón y el vinagre, tienen un pH bajo (inferior a 7). Las bases, como la sosa o el bicarbonato de sodio, tienen un pH alto (superior a 7).<br />El pH se calcula mediante la siguiente ecuación:<br />donde es la actividad de ioneshidrógeno en la solución, la que en soluciones diluidas es numéricamente igual a la molaridad de ionesHidrógeno que cede el ácido a la solución.<br />una solución neutral (agua ultra pura) tiene un pH de 7, lo que implica una concentración de iones hidrógeno de 10-7 M<br />una solución ácida (por ejemplo, de ácido sulfúrico)tiene un pH < 7, es decir que la concentración de iones hidrógeno es mayor que 10-7 M<br />una solución básica (por ejemplo, de hidróxido de potasio) tiene un pH > 7, o sea que la concentración de iones hidrógeno es menor que 10-7 M<br />
  24. 24. Formulación y nomenclatura<br />La IUPAC, un organismo internacional, mantiene unas reglas para la formulación y nomenclatura química. De esta forma, es posible referirse a los compuestos químicos de forma sistemática y sin equívocos.<br />Mediante el uso de fórmulas químicas es posible también expresar de forma sistemática las reacciones químicas, en forma de ecuación química. Por ejemplo:<br />
  25. 25. absorción<br />Absorción es la operación unitaria que consiste en la separación de uno o más componentes de una mezcla gaseosa con la ayuda de un solventelíquido con el cual forma solución (un soluto A, o varios solutos, se absorben de la fase gaseosa y pasan a la líquida). Este proceso implica una difusión molecular turbulenta o una transferencia de masa del soluto A a través del gas B, que no se difunde y está en reposo, hacia un líquido C, también en reposo. Un ejemplo es la absorción de amoníaco A del aire B por medio de agua líquida C. Al proceso inverso de la absorción se le llama empobrecimiento o desabsorción; cuando el gas es aire puro y el líquido es agua pura, el proceso se llama deshumidificación, la deshumidificación significa extracción de vapor de agua del aire.<br />
  26. 26. Regla de las fases y equilibrio<br />Para predecir la concentración de un soluto en dos fases en equilibrio, se requieren datos de equilibrio experimentales. Además, si las dos fases no están en equilibrio, la velocidad de transferencia de masa es proporcional a la fuerza impulsora, que es la desviación con respecto al equilibrio. Las variables importantes que afectan al equilibrio de un soluto son temperatura, presión y concentración. El equilibrio entre dos fases en cualquier caso, está restringido por la regla de las fases: F = C − P + 2 donde P es el número de fases en equilibrio, C es el número de componentes totales en las dos fases (cuando no se verifican reacciones químicas), y F es el número de variantes o grados de libertad del sistema. Para el equilibrio líquido-gas se tiene 2 componentes y 2 fases, por lo tanto: F = 2 − 2 + 2 = 2 Se tienen 2 grados de libertad y las combinaciones pueden ser: (PA, T),(yA, T),(xA, T),…<br />
  27. 27. Sistemas de dos componentes<br />Si cierta cantidad de un gas simple y un líquido relativamente no volátil se llevan al equilibrio la concentración resultante del gas disuelto en el líquido recibe el nombre de solubilidad del gas a la temperatura y presión predominantes. A una temperatura dada, la solubilidad aumentará con la presión La solubilidad de cualquier gas depende de la temperatura, y depende en la forma descrita por la ley de van ‘t Hoff para el equilibrio móvil: “si se aumenta la temperatura de un sistema en equilibrio, ocurrirá un cambio durante el cual se absorberá calor”.<br />
  28. 28. Sistemas de multicomponentes<br />Si una mezcla de gases se pone en contacto con un líquido, la solubilidad en el equilibrio de cada gas será, en ciertas condiciones, independiente de la de los demás, siempre y cuando el equilibrio se describa en función de las presiones parciales en la mezcla gaseosa. Si todos los componentes del gas, excepto uno, son básicamente insolubles, sus concentraciones en el líquido serán tan pequeñas que no podrán modificar la solubilidad del componente relativamente soluble; entonces se puede aplicar la generalización Si varios componentes de la mezcla son apreciablemente solubles, la generalización será aplicable únicamente si los gases que se van a disolver son indiferentes ante la naturaleza del líquido; esto sucederá en el caso de las soluciones ideales. Por ejemplo, el propano y butano gaseosos de una mezcla se disolverán por separado en un aceite de parafina no volátil, puesto que las soluciones que se obtienen son básicamente ideales Soluciones líquidas ideales Cuando una fase líquida se puede considerar ideal, la presión parcial en el equilibrio de un gas en la solución puede ser calculada sin necesidad de determinaciones experimentales.<br />
  29. 29. Hay cuatro características significativas de las soluciones ideales; todas se relacionan entre sí:<br />➢ Las fuerzas intermoleculares promedio de atracción y repulsión en la solución no cambian al mezclar los componentes.<br />➢ El volumen de la solución varia linealmente con la composición.<br />➢ No hay absorción ni evolución de calor al mezclar los componentes. Sin embargo, en el caso de gases que se disuelven en líquidos, este criterio no incluye el calor de condensación del gas al estado líquido.<br />➢ La presión.total de vapor de la solución varía linealmente con la composición expresada en fracción mol.<br />
  30. 30. En particular, los miembros adyacentes o casi adyacentes de una serie homóloga de compuestos orgánicos pertenecen a esta categoría. Así, por ejemplo, las soluciones de benceno en tolueno, de alcohol etílico y propílico o las soluciones de gases de hidrocarburos parafínicos en aceites de parafina pueden generalmente considerarse como soluciones ideales. Cuando la mezcla gaseosa en equilibrio con una solución liquida ideal, sigue también la ley de los gases ideales, la presión parcial p* de un soluto gaseoso A es igual al producto de su presión de vapor p a la misma temperatura por su fracción mol en la solución x.<br />
  31. 31. Si el propósito principal de la operación de absorción es producir una solución específica, el disolvente es especificado por la naturaleza del producto. Si el propósito principal es eliminar algún componente del gas, casi siempre existe la posibilidad de elección. Por supuesto, el agua es el disolvente más barato y más completo, pero debe darse considerable importancia a las siguientes propiedades:<br />
  32. 32. 1. Solubilidad del gas. La solubilidad del gas debe ser elevada, a fin de aumentar la rapidez de la absorción y disminuir la cantidad requerida de disolvente. En general, los disolventes de naturaleza química similar a la del soluto que se va a absorber proporcionan una buena solubilidad. Para los casos en que son ideales las soluciones formadas, la solubilidad del gas es la misma, en fracciones mol, para todos los disolventes. Sin embargo, es mayor, en fracciones peso, para los disolventes de bajo peso molecular y deben utilizarse pesos menores de estos disolventes. Con frecuencia, la reacción química del disolvente con el soluto produce una solubilidad elevada del gas; empero, si se quiere recuperar el disolvente para volverlo a utilizar, la reacción debe ser reversible.<br />2. Volatilidad. El disolvente debe tener una presión baja de vapor, puesto que el gas saliente en una operación de absorción generalmente está saturado con el disolvente y en consecuencia, puede perderse una gran cantidad. Si es necesario, puede utilizarse un líquido menos volátil para recuperar la parte evaporada del primer disolvente.<br />3. Corrosión. Los materiales de construcción que se necesitan para el equipo no deben ser raros o costosos.<br />4. Costo. El disolvente debe ser barato, de forma que las pérdidas no sean costosas, y debe obtenerse fácilmente.<br />5. Viscosidad. Se prefiere la viscosidad baja debido a la rapidez en la absorción, mejores características en la inundación de las torres de absorción, bajas caídas de presión en el bombeo y buenas características de transferencia de calor.<br />6. Misceláneos. Si es posible, el disolvente no debe ser tóxico, ni inflamable, debe ser estable químicamente y tener un punto bajo de congelamiento.<br />
  33. 33. Las torres empacadas, o torres de relleno, utilizadas para el contacto continuo del líquido y del gas tanto en el flujo a contracorriente como a corriente paralela, son columnas verticales que se han llenado con empaque o con dispositivos de superficie grande. El líquido se distribuye sobre éstos y escurre hacia abajo, a través del lecho empacado, de tal forma que expone una gran superficie al contacto con el gas.<br />[editar] Empaque<br />El empaque (llamado relleno en España) de la torre debe ofrecer las siguientes características:<br />1. Proporcionar una superficie interfacial grande entre el líquido y el gas. La superficie del empaque por unidad de volumen de espacio empacado am debe ser grande, pero no en el sentido microscópico.<br />2. Poseer las características deseables del flujo de fluidos. Esto generalmente significa que el volumen fraccionario vacío, o fracción de espacio vacío, en el lecho empacado debe ser grande. El empaque debe permitir el paso de grandes volúmenes de fluido a través de pequeñas secciones transversales de la torre, sin recargo o inundación; debe ser baja la caída de presión del gas.<br />3. Ser químicamente inerte con respecto a los fluidos que se están procesando.<br />4. Ser estructuralmente fuerte para permitir el fácil manejo y la instalación.<br />5. Tener bajo precio.<br />Los empaques son principalmente de dos tipos, aleatorios y regulares.<br />
  34. 34. Empaques al azar<br />Los empaques al azar son aquellos que simplemente se arrojan en la torre durante la instalación y que se dejan caer en forma aleatoria. En el pasado se utilizaron materiales fácilmente obtenibles; por ejemplo, piedras rotas, grava o pedazos de coque; empero, aunque estos materiales resultan baratos, no son adecuados debido a la pequeña superficie y malas características con respecto al flujo de fluidos.<br />Los anillos de Rasching son cilindros huecos, cuyo diámetro va de 6 a 100 mm o más. Pueden fabricarse de porcelana industrial, que es útil para poner en contacto a la mayoría de los líquidos, con excepción de álcalis y ácido fluorhídrico; de carbón que es útil, excepto en atmósferas altamente oxidantes; de metales o de plásticos. Los plásticos deben escogerse con especial cuidado, puesto que se pueden deteriorar, rápidamente y con temperaturas apenas elevadas, con ciertos solventes orgánicos y con gases que contienen oxígeno. Los empaques de hojas delgadas de metal y de plástico ofrecen la ventaja de ser ligeros, pero al fijar los límites de carga se debe prever que la torre puede llenarse inadvertidamente con líquido. Los anillos de Lessing y otros con particiones internas se utilizan con menos frecuencia. Los empaques con forma de silla de montar, los de Berl e Intalox y sus variaciones se pueden conseguir en tamaños de 6 a 75 mm; se fabrican de porcelanas químicas o plásticos. Los anillos de Pall, también conocidos como Flexirings, anillos de cascada y, como una variación, los Hy-Pak, se pueden obtener de metal y de plástico. Generalmente, los tamaños más pequeños de empaques al azar ofrecen superficies específicas mayores (y mayores caídas de presión), pero los tamaños mayores cuestan menos por unidad de volumen. A manera de orientación general: los tamaños de empaque de 25 mm o mayores se utilizan generalmente para un flujo de gas de 0.25 m³/s, 50 mm o mayores para un flujo del gas de 1 m³/s. Durante la instalación, los empaques se vierten en la torre, de forma que caigan aleatoriamente; con el fin de prevenir la ruptura de empaques de cerámica o carbón, la torre puede llenarse inicialmente con agua para reducir la velocidad de caída.<br />
  35. 35. Empaques regulares<br />Los empaques regulares ofrecen las ventajas de una menor caída de presión para el gas y un flujo mayor, generalmente a expensas de una instalación más costosa que la necesaria para los empaques aleatorios. Los anillos hacinados de Raschig son económicos solo en tamaños muy grandes. Hay varias modificaciones de los empaques metálicos expandidos. Las rejillas o “vallas” de madera no son caras y se utilizan con frecuencia cuando se requieren volúmenes vacíos grandes; como en los gases que llevan consigo el alquitrán de los hornos de coque, o los líquidos que tienen partículas sólidas en suspensión. La malla de lana de alambre tejida o de otro tipo, enrollada en un cilindro como sí fuese tela (Neo-Kloss), u otros arreglos de gasa metálica (Koch-Sulzer, Hyperfil y Goodloe) proporcionan una superficie interfacial grande de líquido y gas en contacto y una caída de presión muy pequeña; son especialmente útiles en la destilación al vacío.<br />
  36. 36. Soportes de empaque<br />Es necesario un espacio abierto en el fondo de la torre, para asegurar la buena distribución del gas en el empaque. En consecuencia, el empaque debe quedar soportado sobre el espacio abierto. Por supuesto, el soporte debe ser lo suficientemente fuerte para sostener el peso de una altura razonable de empaque; debe tener un área libre suficientemente amplia para permitir el flujo del líquido y del gas con un mínimo de restricción. Se prefieren los soportes especialmente diseñados que proporcionan paso separado para el gas y el líquido. Su área libre para el flujo es del orden del 85%; puede fabricarse en diferentes modificaciones y diferentes materiales, inclusive en metales, metales expandidos, cerámica y plásticos.<br />
  37. 37. Cuerpo de la torre<br />Esta puede ser de madera, metal, porcelana química, ladrillo a prueba de ácidos, vidrio, plástico, metal cubierto de plástico o vidrio, u otro material, según las condiciones de corrosión. Para facilitar su construcción y aumentar su resistencia, generalmente son circulares en la sección transversal.<br />
  38. 38. Absorción con reacción química<br />Muchos procesos industriales de absorción van acompañados de una reacción química. Es especialmente común la reacción en el líquido del componente absorbido y de un reactivo en el líquido absorbente. Algunas veces, tanto el reactivo como el producto de la reacción son solubles, como en la absorción del dióxido de carbono en una solución acuosa de etanolaminas u otras soluciones alcalinas. Por el contrario, los gases de las calderas que contienen dióxido de azufre pueden ponerse en contacto con lechadas de piedra caliza en agua, para formar sulfito de calcio insoluble. La reacción entre el soluto absorbido y un reactivo produce dos hechos favorables a la rapidez de absorción: (1) la destrucción del soluto absorbido al formar un compuesto reduce la presión parcial en el equilibrio del soluto y, en consecuencia, aumenta la diferencia de concentración entre el gas y la interfase; aumenta también la rapidez de absorción; (2) el coeficiente de transferencia de masa de la fase líquida aumenta en magnitud, lo cual también contribuye a incrementar la rapidez de absorción. Estos efectos se han analizado bastante desde el punto de vista teórico, pero se han verificado experimentalmente poco.<br />
  39. 39. Sistemas de dos componentes<br />Si cierta cantidad de un gas simple y un líquido relativamente no volátil se llevan al equilibrio la concentración resultante del gas disuelto en el líquido recibe el nombre de solubilidad del gas a la temperatura y presión predominantes. A una temperatura dada, la solubilidad aumentará con la presión La solubilidad de cualquier gas depende de la temperatura, y depende en la forma descrita por la ley de van ‘t Hoff para el equilibrio móvil: “si se aumenta la temperatura de un sistema en equilibrio, ocurrirá un cambio durante el cual se absorberá calor”.<br />Sistemas de multicomponentes<br />Si una mezcla de gases se pone en contacto con un líquido, la solubilidad en el equilibrio de cada gas será, en ciertas condiciones, independiente de la de los demás, siempre y cuando el equilibrio se describa en función de las presiones parciales en la mezcla gaseosa. Si todos los componentes del gas, excepto uno, son básicamente insolubles, sus concentraciones en el líquido serán tan pequeñas que no podrán modificar la solubilidad del componente relativamente soluble; entonces se puede aplicar la generalización Si varios componentes de la mezcla son apreciablemente solubles, la generalización será aplicable únicamente si los gases que se van a disolver son indiferentes ante la naturaleza del líquido; esto sucederá en el caso de las soluciones ideales. Por ejemplo, el propano y butano gaseosos de una mezcla se disolverán por separado en un aceite de parafina no volátil, puesto que las soluciones que se obtienen son básicamente ideales Soluciones líquidas ideales Cuando una fase líquida se puede considerar ideal, la presión parcial en el equilibrio de un gas en la solución puede ser calculada sin necesidad de determinaciones experimentales.<br />Hay cuatro características significativas de las soluciones ideales; todas se relacionan entre sí:<br />➢ Las fuerzas intermoleculares promedio de atracción y repulsión en la solución no cambian al mezclar los componentes.<br />➢ El volumen de la solución varia linealmente con la composición.<br />➢ No hay absorción ni evolución de calor al mezclar los componentes. Sin embargo, en el caso de gases que se disuelven en líquidos, este criterio no incluye el calor de condensación del gas al estado líquido.<br />➢ La presión.total de vapor de la solución varía linealmente con la composición expresada en fracción mol.<br />En particular, los miembros adyacentes o casi adyacentes de una serie homóloga de compuestos orgánicos pertenecen a esta categoría. Así, por ejemplo, las soluciones de benceno en tolueno, de alcohol etílico y propílico o las soluciones de gases de hidrocarburos parafínicos en aceites de parafina pueden generalmente considerarse como soluciones ideales. Cuando la mezcla gaseosa en equilibrio con una solución liquida ideal, sigue también la ley de los gases ideales, la presión parcial p* de un soluto gaseoso A es igual al producto de su presión de vapor p a la misma temperatura por su fracción mol en la solución x.<br />
  40. 40. Elección del disolvente para la absorción<br />Si el propósito principal de la operación de absorción es producir una solución específica, el disolvente es especificado por la naturaleza del producto. Si el propósito principal es eliminar algún componente del gas, casi siempre existe la posibilidad de elección. Por supuesto, el agua es el disolvente más barato y más completo, pero debe darse considerable importancia a las siguientes propiedades:<br />1. Solubilidad del gas. La solubilidad del gas debe ser elevada, a fin de aumentar la rapidez de la absorción y disminuir la cantidad requerida de disolvente. En general, los disolventes de naturaleza química similar a la del soluto que se va a absorber proporcionan una buena solubilidad. Para los casos en que son ideales las soluciones formadas, la solubilidad del gas es la misma, en fracciones mol, para todos los disolventes. Sin embargo, es mayor, en fracciones peso, para los disolventes de bajo peso molecular y deben utilizarse pesos menores de estos disolventes. Con frecuencia, la reacción química del disolvente con el soluto produce una solubilidad elevada del gas; empero, si se quiere recuperar el disolvente para volverlo a utilizar, la reacción debe ser reversible.<br />2. Volatilidad. El disolvente debe tener una presión baja de vapor, puesto que el gas saliente en una operación de absorción generalmente está saturado con el disolvente y en consecuencia, puede perderse una gran cantidad. Si es necesario, puede utilizarse un líquido menos volátil para recuperar la parte evaporada del primer disolvente.<br />3. Corrosión. Los materiales de construcción que se necesitan para el equipo no deben ser raros o costosos.<br />4. Costo. El disolvente debe ser barato, de forma que las pérdidas no sean costosas, y debe obtenerse fácilmente.<br />5. Viscosidad. Se prefiere la viscosidad baja debido a la rapidez en la absorción, mejores características en la inundación de las torres de absorción, bajas caídas de presión en el bombeo y buenas características de transferencia de calor.<br />6. Misceláneos. Si es posible, el disolvente no debe ser tóxico, ni inflamable, debe ser estable químicamente y tener un punto bajo de congelamiento.<br />

×