SlideShare una empresa de Scribd logo
1 de 91
TECNOLOGIA LASER EN DERMATOLOGIA Dr. José Raúl González Vásquez Dermatólogo
Guía de Presentación El Fotón Espectro Electromagnético y visible Tecnología  Láser Que es un Láser Aplicaciones del Láser Historia del Láser de uso Médico Interacción de la Luz Láser y los tejidos Mecanismo de Acción del Láser FototermólisisSelectiva y Ampliada Tipos de Láser Tratamientos con Láser
El Fotón En física moderna, el fotón es la partícula elemental portadora de todas las formas de radiación electromagnética.  Incluye los rayos cósmicos, gamma, rayos X, luz ultravioleta, luz visible, luz infrarroja, microondas y ondas de radio.
El Fotón El fotón fue llamado originalmente por Albert  Einstein"cuanto de luz” (en alemán: das Lichtquant).  El nombre moderno “fotón” proviene de la palabra griega φῶς (que se transcribe como phôs), que significa luz, y fue acuñado en 1926 por el físico Gilbert N. Lewis
El Fotón El fotón presenta tanto propiedades corpusculares como ondulatorias (“dualidad onda-corpúsculo) Onda .. Fenómeno de refracción Partícula..  Cuando interacciona con la materia para transferir una cantidad fija de energía  Para la luz visible, la energía portada por un fotón es de alrededor de 4×10–19 julio; esta energía es suficiente para excitar un ojo y dar lugar a la visión.
Espectro electromagnético ,[object Object]
Rayos Cósmicos .. 1 x 10-15  m.
Rayos gamma…… 1 x 10-13 m.
Rayos X ………….. 1 x 10-11 m.
Rayos ultravioleta.. 1 x 10-8 m. = 100 - 400 nm.
Espectro visible:… 400 a 720 nm. Región del espectro electromagnético que el ojo humano es capaz de percibir. Algunas personas perciben desde 380 a 780 nm.
Infrarrojo ……………..   720 nm. a 1 mm.
Microonda – Radar … .  1 mm.
Ondas de Radio: UHF, VHF, onda corta, onda media y onda larga………….… 30 cm. a 10 km.
Frecuencia extremadamente baja … 10 a 10.000 km.,[object Object]
Espectro ElectromagnéticoColores del Espectro Visible
El Fotón El fotón tiene una masa invariante de cero y viaja en el vacío con una velocidad constante  (c )  La luz que viaja a través de materia transparente, lo hace a una velocidad menor que c, la velocidad de la luz en el vacío.  Por ejemplo, los fotones en su viaje desde el centro del Sol sufren tantas colisiones, que la energía radiante tarda aproximadamente un millón de años en llegar a la superficie. Sin embargo, una vez en el espacio abierto, un fotón tarda únicamente 8.3 minutos en llegar a la Tierra
El Fotón El concepto de fotón ha llevado a avances muy importantes en: Física teórica y experimental:  Teoría Cuántica de Campos  Condensado de Bose-Einsten Interpretación probabilística de la mecánica cuántica Invención del Láser (1960) y Máser (1953)
Invención del Láser Charles Hard Townes (1915) es considerado junto con Arthur Leonard Schawlow, el inventor del láser. Patentado en 1960 En 1964: Premio Nobel de Física junto a los soviéticos Nikolái Básov y Aleksander Prójorov  por sus los trabajos fundamentales en el campo de la electrónica cuántica
Inventores del Láser(Patentado en 1960) Charles Hard Townes (1915) Premio Nobel de Física en 1964 Arthur Leonard Schawlow (1921) Premio Nobel de Física en 1981
Invención del Láser Base teórica: Emisión espontánea e inducida de la Radiación.  En 1916, Albert Einstein  estableció los fundamentos para el desarrollo de los láseres  y de sus predecesores, los máseres (microondas), utilizando la ley de radiación de Max Planck basada en los conceptos de emisión espontánea  e inducida de radiación
Invención del Láser  En  Física  se denomina emisión espontánea al proceso por el cual un átomo, una molécula  o un núcleo, en un estado excitado, pasa a un estado de energía más bajo.  Como se cumple el principio de conservación de energía,  el resultado es la emisión de un fotón.
Invención del Láser Emisión Estimulada:   	Los fotones se "clonan" a si mismos.   Fue predicho por Einstein en su derivación de E=hν, y condujo al desarrollo del Láser y de sus predecesores los Máseres (emiten microondas)
El Fotón Emisión estimulada y espontánea
Láser - Definición Láser: Es acrónimo del inglés de: LightAmplification by Stimulated Emission of Radiation   ("Amplificación de Luz por Emisión Estimulada de Radiación")
Que es un Láser ? Un láser es un aparato compuesto por un medio sólido, líquido o gaseoso dentro de una cavidad limitada por dos espejos paralelos, uno de ellos semitransparente. Si los átomos de ese medio son excitados se elevan a un nivel de energía que no es estable y para volver a su estado liberan esa energía en forma de fotones.  Parte de esa luz sale al exterior a través del espejo semitransparente en forma de pulsos o como un rayo continuo.
QUE ES UN LASERComponentes de un Láser 1.- El medio Laser: Sólido (rubí-erbium-yag)  Líquido (dye laser, tintes inorgánicos) Gaseoso (CO2=onda continua + potente, helio, neón). Semiconductores ó Diodo mas vendidos (Arseniuro de Galio = CD, impresoras , reproductores de sonido) Por lo general le da el nombre al laser y define la longitud de onda.  2.-  La fuente de excitación: 	Eléctrica         Fotónica  3.- La cavidad óptica: logra la emisión estimulada por rebotar los fotones en los espejos.
            Que es un Láser ? Componentes principales: Medio activo para la formación del láser Energía bombeada para el láser Espejo reflectante al 100% Espejo reflectante al 99% Emisión del rayo láser 3 2 4 1 5
Láser - Características  El láser es monocromático por emisión de fotones con una sola longitud de onda, luz de un solo color. Coherente:Todas las ondas están en la misma fase  Colimado … El flujo de la energía es unidireccional, de modo que cada rayo del haz puede considerarse paralelo a cualquier otro.  Por ejemplo el Neodimio Yag = 1064 nm,
Clasificación de los LáserSegún categoría de riesgo La capacidad de un láser para producir un riesgo está determinada principalmente su longitud de onda, duración o tiempo de exposicióny potencia o energía del haz.  Clase 1: Seguros en todas las condiciones de utilización Clase 2: Longitud de onda  400 y 700 nm. con una potencia inferior o igual a 1mW. La protección ocular se consigue normalmente por las respuestas de aversión, incluido el reflejo parpebral. Esta reacción puede proporcionar la adecuada protección aunque se usen instrumentos ópticos
Clasificación de los LáserSegún categoría de riesgo Clase 3a: Potencia de <5mW, cuya visión directa del haz es potencialmente peligrosa. Clase 3B: Visión directa o una reflexion del haz es siempre peligrosa para el ojo no protegido, potencia  entre 5 y 500mW. Clase 4: Láseres que también pueden producir reflexiones difusas peligrosas (>500mW). Pueden causar daños sobre la piel y pueden también constituir un peligro de incendio. Su utilización precisa extrema precaución. 
Parámetros Físicos del Láser La luz Laser es una forma de energía. 	 Esta energía viene representada en Joules (J).  La potencia de un Laser viene expresada en vatios (W), 	Representa la cantidad de energía emitida en Joules por segundo. 	Un vatio de potencia es equivalente a un Joule de energía emitida en un segundo.Potencia (W) = Energía (J) / Tiempo (seg.) El Laser puede ser activado en forma pulsada. Estos pulsos se producen en unidades de tiempo. 	 Este parámetro se mide en pulsos por segundo: p.p.s. La frecuencia de las pulsaciones viene representada en Hertz.Frecuencia: ciclo por segundo. Hertz (Hz.)
Parámetros Físicos del Láser Spot: El tamaño del punto luminoso, o punto focal, representa el área de energía del Laser que se aplica al material que sirve de blanco. Se mide en centímetros cuadrados (cm2); también se expresa en términos del diámetro del área circular en micrones (µ).Spot o tamaño del punto luminoso: (cm2) o (µ) Densidad de la potencia es la variable más importante en la determinación del efecto que un Laser tiene sobre el material irradiado.  	Se calcula como la potencia, expresada en vatios (W), dividida por el tamaño del punto luminoso en centímetros cuadrados (cm2)Densidad de potencia = Potencia (W) / tamaño del punto luminoso (cm2)
Parámetros Físicos del Láser Emisión de la luz Laser: Onda Continua, Pulsada  o Fraccionada  Ondas continuas: Consiste en la estabilización de la energía emitida continuamente. Es decir, mientras el Láser esté activado, la salida del haz será constante. Onda Pulsada: Es un conjunto de pulsaciones repetidas en serie, ya que la energía es emitida en cortos estallidos; entre las pulsaciones no hay energía que se transmita. Existen dos métodos de impulsión del Láser de acuerdo a la distancia que existe desde donde es activado el mismo y el objeto Contacto: La salida del haz Laser esta en contacto directo con la superficie de impacto  Sin contacto:. Existe una distancia entre la salida del haz Laser y el área de choque.  Los efectos del Laser en los tejidos pueden variar de acuerdo a estos métodos de impulsión.
Láser - Aplicaciones  La primera aplicación útil fue  en la soldadura de los elementos de chapa en la fabricación de vehículos Espectáculo de luces
Láser - Aplicaciones Industria Investigación Científica Comunicaciones Tecnología Militar
Láser - Aplicaciones En Medicina Corte y coagulación de tejidos, en fracción de segundos sin dañar al tejido sano circundante. Cauterizar vasos sanguíneos En Oftalmología: Desprendimiento de retina Perforar el cráneo, Tx. Hipertrofia Prostática B. Pruebas de laboratorio en muestras biológicas pequeñas. Remover manchas y lesiones pigmentadas
Historia del Láser Médico  La aplicación de esta teoría a la piel fue llevada a cabo por Theodore Harold Maiman,  el 16 Mayo 1960  empleando un cristal de rubí rosacomo el medio amplificador del láser. Fue el primero en producir un impulso de luz coherente, monocromática de 694 nm. desde un láser.
Historia del Láser Médico En 1963 el Dermatólogo Leon Goldman inició el tratamiento con láser rubí en diferentes patologías cutáneas. En la década de los 80 Anderson y Parrish desarrollan el principio de Fototermólisis Selectivacontribuyendo a mejorar la tecnología láser y dieron un gran empuje a su uso.
Historia del Láser Médico En 1988 Dierickx publica por vez primera los efectos del láser rubí en la depilación permanente.  En 1995 Goldberg utiliza el láser de Neodimio Yag para depilar.  Posteriormente, estudios comparativos para demostrar la eficacia láser en depilación:  Néstor en 1998 con más de 2.000 Goldberg y cols. en 1997 Bjerring y cols. en 1998 Grossman en 1999 Campos y cols. en 1999
LASER Interacción de la luz láser y los tejidos Rayo láser    Piel ­ Reflexión. 4.7% ­ Dispersión. ­ Absorción. ­ Transmisión.
LASER Interacción de la luz láser y los tejidos La ley de Grothus-Draper afirma: Sólo puede haber efecto tisular si la luz es absorbida.  Solamente el 4-7% de la luz es reflejada por la piel.   Ni la luz reflejada ni la luz transmitida tiene efecto tisular
LASERInteracción de la luz láser y los tejidos Hay tres posibles efectos: Fototérmico que deriva del calor Fotoquímico : Reacciones fotoquímicas naturales o inducidas por fotosensibilizadores desencadenadas por luz UV o visible  Fotomecánicos:  Por la expansión térmica  super rápida, ondas de presión, ondas de choque, transferencia del momento o vaporización súbita que ocurren con la absorción del láser pulsado. Los 3 efectos coexisten, aunque predomina uno o dos y son importantes en dermatología.
LASER Mecanismos de Acción Transformación de energía luminosa en calor  = Fototermólisis.
LASERMecanismos de Acción La molécula blanco, diana ó target que absorbe la emisión de fotones en la piel se denomina cromóforo, y puede ser: ,[object Object]
Hemoglobina
Pigmentomelánico o externoEs lo que determina el mecanismo de acción = Fototermolisis selectiva.
LASERMecanismos de Acción
LASER - Mecanismos de Acción  Fototermólisis Selectiva La teoría de la fototermólisis selectivafue introducida por Anderson y Parrish en 1983 (Anderson y Parrish 1983) Explica cómo los cromóforos son capaces de absorber selectivamente longitudes de onda específicas, causando un daño térmico selectivo y confinado.
LASER - Mecanismos de Acción  Fototermólisis Selectiva Condiciones para que el daño térmico sea localizado   – Sólo afecte al cromóforo deseado --  Tiempo de relajación térmica (TRT) Duración del pulso – Tiempo de exposición térmica - El tiempo de contención térmica: Es el tiempo que precisa una estructura determinada (folículo piloso, vaso sanguíneo, etc.) para ser destruido por acumulación de calor  El TRT se define como el tiempo necesario para que una partícula disminuya la temperatura alcanzada inmediatmente después del impacto del láser en un 50% (Anderson y Parrish 1983).
LASER - Mecanismos de Acción  Fototermólisis Selectiva El daño térmico es selectivo y confinado a la diana cuando: 	El tiempo de exposición térmica (Duración del pulso del rayo Láser) es menor que el Tiempo de Relajación Térmica (TRT) de la diana.
LASER - Mecanismos de Acción Fototermólisis Selectiva Excepciones: 1. Las estructuras planas, esféricas y   cilíndricas con pigmentación irregular pueden tratarse con una duración de pulso muy superior al TRTsin que ocurra daño térmico inespecífico en las estructuras adyacentes.
LASER - Mecanismos de Acción Fototermólisis Selectiva Excepciones: 2. En el caso del folículo piloso, se puede emplear una duración de pulso de 30 a 400 ms. sin observarse daño térmico inespecífico en el tejido circundante.
LASER - Mecanismos de Acción Teoría Ampliada de Fototermólisis Selectiva En estructura diana con pigmentación irregular, una parte de ella – la región más pigmentada – absorbe selectivamente la energía lumínica y la transforma en calor, disipándola a otras regiones menos pigmentadas de la diana.
LASER - Mecanismos de Acción Teoría Ampliada de Fototermólisis Selectiva De esta manera el daño térmico selectivo de la estructura diana ocurre por difusión de calor de las regiones más pigmentadas, a las regiones menos pigmentadas con escasa o ninguna absorción. A esta nueva teoría se le conoce como teoría ampliada de la fototermólisis selectiva(Altshuler y col. 2001).
Teoría Ampliada de la Fototermólisis Selectiva
LASER - Mecanismos de Acción  Fototermólisis Selectiva Modificación de la profundidad de penetración del rayo:  Longitud de ondamas larga  del rayo del Láser   Impacta estructuras mas profundas en la piel
LASER - Mecanismos de Acción Fototermólisis Selectiva Fraccionamiento de la energía necesaria para lesionar el blanco (  joules/cm2 ) en pulsos (2-3) con intervalos de descanso Permite que la epidermis se enfríe y evita su lesión.
LASER - Mecanismos de Acción Fototermólisis Selectiva Si pierde calor más lentamente el pigmento diana, blanco o target (melanina, hemoglobina, otro ) con los sucesivos pulsos, su temperatura interior se eleva alrededor de 1000  C fototermólisisselectiva.
Fototermólisis SelectivaEstructuras pigmentadas En lesiones pigmentadas el mecanismo de acción es el siguiente:  Eliminación transepidérmica ó Exteriorización Microfragmentación.
Fototermólisis SelectivaEstructuras pigmentadas Eliminación Transepidermica ó eExteriorización: En lesiones epidérmicas, como en el léntigo y efélides, el cromóforo epidérmico, la melanina, absorbe las longitudes de onda de la LIP y Láser y transforma esa energía lumínica en energía calórica (de 60 a 90 grados).  Esto produce epidermólisis hasta la capa basal y se eliminan los melanosomas.  Se forma una costra o escara superficial por muerte celular, que se exfolia a los 3-7 días.
Fototermólisis SelectivaEstructuras pigmentadas Microfragmentacíón: En las lesiones pigmentarias dérmicas (tatuajes), se produce microfragmentación de los cromóforos (pigmentos exógenos) a moléculas     menores de 60 micrones.  De esta forma se facilita que los microfragmentos pigmentarios sean fagocitados por los     macrófagos y eliminados de esta manera
TIPOS DE LASERSegún la luz emitida  Onda continua: Emiten de modo continuo con una potencia constante Pulsados: La emisión es en picos breves de máxima energía.  Los láseres Q-swiched producen pulsos muy cortos de muy elevada energía.
TIPOS DE LASERSegún el Cromóforo Agua intracelular y extracelular. Láser de  CO2         (10600 nm. - infrarrojo) Láser ERBIO:YAG  (2940 nm.) Láser ND:YAG        (1064 nm.) Hemoglobina Láser de ARGÓN      (488 ó 514.5 nm.)  Dye Láser o de Colorante Pulsado (510, 585 nm.)  NO 577 nm. Láser  KTP-PULSADO  (532 nm.) Láser RUBI        (694 nm.)    Depilación Láser DIODO  ( 800 -810 nm.)  Melanina Láser de ALEJANDRITA ( 755 nm.) Pigmentos exógenos
TIPOS DE LASERSegún el medio Láseres de estado sólido  Nd:YAG   (1064 nm)            Ho:YAG   (2090 nm) Er:YAG    (2940 nm)                  Rubí   ( 694  nm)  Alexandrita (755 nm)  A) Láseres de gases (transiciones electrónicas)  He-Ne (punteros, luz guía de láser) Argón (488 ó 514.5 nm)    B) Láseres de gases (transiciones vibracionales de los átomos)   CO2   y   N2  Láseres de colorantes -  Lesiones vasculares Láseres de diodos semiconductores
TIPOS DE LASERLaser CO2 Cromóforo: Agua intracelular y extracelular.Longitud de onda: 10600 nm. (infrarrojo). Diferentes modos de emisión: Onda Contínua Onda Pulsada Onda Franccionada
TIPOS DE LASERLaser CO2 Onda continua:  Focalizada: Para corte quirúrgico Desfocalizada:  Efecto vaporizador en lesiones tumorales cutáneas benignas y malignas y tatuajes, con poca hemorragia.  En un 1-4 % - Cicatrices hipertróficas. Onda Pulsada: Uso cosmético por su efecto ablativo para rejuvenecimiento cutáneo. Sus efectos secundarios implican un tiempo de re-epitelización de 6-8 semanas, con edema, eritema y trastornos de la pigmentación transitorios.
TIPOS DE LASERLaser Erbio - YAG Siglas de YAG: Itrio-Aluminio-Garnet. 	 Cromóforo: agua intracelular y extracelular.Longitud de onda: 2940 nm. (infrarrojo). Las mismas indicaciones que el láser de CO2, pero: Profundiza 10 veces menos en la piel Tratamiento menos agresivo, con un menor tiempo de recuperación.
TIPOS DE LASERLaser CO2 Onda Fraccionada Nueva tecnología con un tiempo de recuperación  excelente, uso cosmético, efecto ablativo para rejuvenecimiento cutáneo.
TIPOS DE LASERPearl Fraccionado YSGG de 2790 nm.  Es nueva tecnología: Fraccionada.  La tecnologia se llama YSGG desarrollada por CUTERA, y el tratamiento se hizo con el PEARL FRACCIONADO YSGG de 2790 nm.Novedoso:  Resultado final obtenido con una sola sesión.
Pearl Fractional Pretratamiento 6 Semanas post-tratamiento
TIPOS DE LASERLaser ND - YAG Siglas: Neodimio: Itrio-Aluminio-Garnet. Cromóforo: agua intracelular y extracelular.Longitud de onda: 1064 nm. (infrarrojo) y 532 nm. Diferentes modos de emisión: Onda continua: Produce menor daño que el láser de CO2: Uso en cosmética para el rejuvenecimiento cutáneo. Pulso largo (vasculight): Lesiones vasculares. Mayor  longitud de onda que los de colorante pulsado, tiene mayor poder de penetración --  alcanza vasos de mayor calibre y más profundos. Q-Switched: Pigmentos profundos y tatuajes, depilación ,  Puede inducir oscurecimiento irreversible del pigmento en algunos tatuajes.
LASER - Aparatología
LASER - Aparatología 						Laser Nd-Yag 						Medlite C6 					     1064 - 532 nm. 					       585 - 650 nm.
LASER - Aparatología 						Laser Nd-Yag 						Medlite C6 					    1064 - 532 nm. 					      585 - 650 nm.
Láser – TratamientoLéntigo Laser Nd-Yag  Medlite C6
Láser – TratamientoOcronosis Laser Nd-Yag  Medlite C6
Láser – TratamientoEfélides Laser Nd-Yag  Medlite C6
Láser – TratamientoTatuajes Láser neodimio-yag.- En la modalidad Q-Switched 532 nm elimina el color rojo y el naranja;    1064 nm elimina todos los colores, excepto el verde, rojo y naranja.  Láser de colorante pulsado.- Color negro y colores rojo y verde.  Láser de alejandrita.- Tatuaje blanco, azul y verde.  Láser de rubí.- En la modalidad Q-Switched (pulsos de 25-40 ms de duración) especialmente negros, verdes y otros colores oscuros, es ineficazcon el rojo y colores claros. Se utiliza también en lesiones pigmentadas.
Láser – TratamientoTatuajes  Laser Nd-Yag  Medlite C6
Láser – TratamientoTatuajes  Laser Nd-Yag  Medlite C6
Láser – TratamientoTatuaje accidental Laser Nd-Yag  Medlite C6
Láser – TratamientoTatuajes Laser Nd-Yag  Medlite C6
Láser – TratamientoTatuajes Laser Nd-Yag  Medlite C6
LASER – Tatuajes
LASER – Tatuajes
Tatuaje con Henna
Tatuaje con Henna
Tatuaje con Henna
Láser – TratamientoFotodepilación  Los más adecuados: Longitud de onda entre 700 y 1400 nm. por ser en este rango donde: Existe mayor absorción por la melanina Menor interferencia con otros pigmentos como la hemoglobina. Los láseres más empleados son:       Láser de rubí (694 nm) – empleo ocasionalLáser de alejandrita (755 nm) – hasta tipo IVLáser de diodo (800 nm) –  fototipo  VLáser de Neodimio-Yag (1064 nm)Luz pulsada intensa (590-1200 nm)
Espectro de Absorción de la Melanina

Más contenido relacionado

La actualidad más candente

Electroporacion
ElectroporacionElectroporacion
Electroporacionhannia7
 
Técnicas de depilación avanzada
Técnicas de depilación avanzadaTécnicas de depilación avanzada
Técnicas de depilación avanzadaChus Suárez
 
Radiofrecuencia fraccionada con agujas.pptx
Radiofrecuencia fraccionada con agujas.pptxRadiofrecuencia fraccionada con agujas.pptx
Radiofrecuencia fraccionada con agujas.pptxssusere44cdd
 
Introduction to laser dermatology 1
Introduction to laser dermatology 1Introduction to laser dermatology 1
Introduction to laser dermatology 1Islam Noaman
 
Radiacion ultravioleta y su aplicacion en Fisioterapia
Radiacion ultravioleta y su aplicacion en FisioterapiaRadiacion ultravioleta y su aplicacion en Fisioterapia
Radiacion ultravioleta y su aplicacion en FisioterapiaFernando Castillo
 
Fractional laser kasbia 2013 chica
Fractional laser kasbia 2013 chicaFractional laser kasbia 2013 chica
Fractional laser kasbia 2013 chicaGursevak Kasbia
 
Fototipos y escala de Fitzpatrick
Fototipos y escala de FitzpatrickFototipos y escala de Fitzpatrick
Fototipos y escala de FitzpatrickDina Salazar
 
Estrategias Combinadas de Peeling para el tratamiento
Estrategias Combinadas de Peeling para el tratamiento Estrategias Combinadas de Peeling para el tratamiento
Estrategias Combinadas de Peeling para el tratamiento Jordana Lewis
 
Clase 5 ultravioleta
Clase 5 ultravioletaClase 5 ultravioleta
Clase 5 ultravioletaismaelcuya
 

La actualidad más candente (20)

Lesiones en la Piel
Lesiones en la PielLesiones en la Piel
Lesiones en la Piel
 
Laser pptfst505
Laser pptfst505Laser pptfst505
Laser pptfst505
 
Lasers in dermatology
Lasers in dermatologyLasers in dermatology
Lasers in dermatology
 
Estrias y flacidez
Estrias y flacidezEstrias y flacidez
Estrias y flacidez
 
Electroporacion
ElectroporacionElectroporacion
Electroporacion
 
Láser Fraccionado en Dermatología
Láser Fraccionado en DermatologíaLáser Fraccionado en Dermatología
Láser Fraccionado en Dermatología
 
Técnicas de depilación avanzada
Técnicas de depilación avanzadaTécnicas de depilación avanzada
Técnicas de depilación avanzada
 
Radiofrecuencia fraccionada con agujas.pptx
Radiofrecuencia fraccionada con agujas.pptxRadiofrecuencia fraccionada con agujas.pptx
Radiofrecuencia fraccionada con agujas.pptx
 
Introduction to laser dermatology 1
Introduction to laser dermatology 1Introduction to laser dermatology 1
Introduction to laser dermatology 1
 
Laser
LaserLaser
Laser
 
Peelings
PeelingsPeelings
Peelings
 
Radiacion ultravioleta y su aplicacion en Fisioterapia
Radiacion ultravioleta y su aplicacion en FisioterapiaRadiacion ultravioleta y su aplicacion en Fisioterapia
Radiacion ultravioleta y su aplicacion en Fisioterapia
 
Fractional laser kasbia 2013 chica
Fractional laser kasbia 2013 chicaFractional laser kasbia 2013 chica
Fractional laser kasbia 2013 chica
 
Fototipos y escala de Fitzpatrick
Fototipos y escala de FitzpatrickFototipos y escala de Fitzpatrick
Fototipos y escala de Fitzpatrick
 
La celulitis
La celulitisLa celulitis
La celulitis
 
Estrategias Combinadas de Peeling para el tratamiento
Estrategias Combinadas de Peeling para el tratamiento Estrategias Combinadas de Peeling para el tratamiento
Estrategias Combinadas de Peeling para el tratamiento
 
Equipos de estetica
Equipos de esteticaEquipos de estetica
Equipos de estetica
 
Laser Basics
Laser BasicsLaser Basics
Laser Basics
 
Envejecimiento de la piel
Envejecimiento de la pielEnvejecimiento de la piel
Envejecimiento de la piel
 
Clase 5 ultravioleta
Clase 5 ultravioletaClase 5 ultravioleta
Clase 5 ultravioleta
 

Destacado (20)

LASERTERAPIA
LASERTERAPIALASERTERAPIA
LASERTERAPIA
 
Peelings fenol laser-dermabrasion combinations
Peelings fenol laser-dermabrasion combinationsPeelings fenol laser-dermabrasion combinations
Peelings fenol laser-dermabrasion combinations
 
Esencias cromáticas minerales
Esencias cromáticas  mineralesEsencias cromáticas  minerales
Esencias cromáticas minerales
 
Protocolo de esencias minerales con respaldo clinico
Protocolo de esencias minerales con respaldo clinicoProtocolo de esencias minerales con respaldo clinico
Protocolo de esencias minerales con respaldo clinico
 
Cromomicosis
CromomicosisCromomicosis
Cromomicosis
 
¿Por qué apoyarse y apoyar al IPL?
¿Por qué apoyarse y apoyar al IPL?¿Por qué apoyarse y apoyar al IPL?
¿Por qué apoyarse y apoyar al IPL?
 
Propiedades Ópticas
Propiedades ÓpticasPropiedades Ópticas
Propiedades Ópticas
 
Ipl depilacion - protocolo
Ipl   depilacion - protocoloIpl   depilacion - protocolo
Ipl depilacion - protocolo
 
Maser: Microwave Amplification by Stimulated Emission of Radiation
Maser: Microwave Amplification by Stimulated Emission of RadiationMaser: Microwave Amplification by Stimulated Emission of Radiation
Maser: Microwave Amplification by Stimulated Emission of Radiation
 
Foto Rejuvenecimiento Ipl
Foto Rejuvenecimiento IplFoto Rejuvenecimiento Ipl
Foto Rejuvenecimiento Ipl
 
Los minerales
Los mineralesLos minerales
Los minerales
 
Luminiscencia
LuminiscenciaLuminiscencia
Luminiscencia
 
Ipl dermocell
Ipl   dermocellIpl   dermocell
Ipl dermocell
 
Clase 6 mineralogia 6[1]
Clase 6 mineralogia 6[1]Clase 6 mineralogia 6[1]
Clase 6 mineralogia 6[1]
 
Propiedades de los materiales
Propiedades de los materiales Propiedades de los materiales
Propiedades de los materiales
 
Rayos laser-fisica-pura
Rayos laser-fisica-puraRayos laser-fisica-pura
Rayos laser-fisica-pura
 
Tecnico en caracterización (2)
Tecnico en caracterización (2)Tecnico en caracterización (2)
Tecnico en caracterización (2)
 
1660pelucas
1660pelucas1660pelucas
1660pelucas
 
Revista Ojo clínico
Revista Ojo clínicoRevista Ojo clínico
Revista Ojo clínico
 
Corriente
CorrienteCorriente
Corriente
 

Similar a Tecnología láser en dermatología: tratamientos con láseres

Similar a Tecnología láser en dermatología: tratamientos con láseres (20)

Espectros ópticos y auditivo
Espectros ópticos y auditivoEspectros ópticos y auditivo
Espectros ópticos y auditivo
 
Luz
LuzLuz
Luz
 
luz.pdf
luz.pdfluz.pdf
luz.pdf
 
Química Analítica Instrumental.pdf
Química Analítica Instrumental.pdfQuímica Analítica Instrumental.pdf
Química Analítica Instrumental.pdf
 
Espectro-Electromagnetico.pptx.pptx
Espectro-Electromagnetico.pptx.pptxEspectro-Electromagnetico.pptx.pptx
Espectro-Electromagnetico.pptx.pptx
 
Laser, origen, tipos, clasificación, aplicaciones .ppt
Laser, origen, tipos, clasificación, aplicaciones .pptLaser, origen, tipos, clasificación, aplicaciones .ppt
Laser, origen, tipos, clasificación, aplicaciones .ppt
 
1-imagenologa-generalidades-clase-120629115258-phpapp01.pdf
1-imagenologa-generalidades-clase-120629115258-phpapp01.pdf1-imagenologa-generalidades-clase-120629115258-phpapp01.pdf
1-imagenologa-generalidades-clase-120629115258-phpapp01.pdf
 
Iluminacion espectro.
Iluminacion espectro.Iluminacion espectro.
Iluminacion espectro.
 
Luz
LuzLuz
Luz
 
Fisica de la radiación
Fisica de la radiaciónFisica de la radiación
Fisica de la radiación
 
Diagnostico por la Imagen
Diagnostico por la ImagenDiagnostico por la Imagen
Diagnostico por la Imagen
 
Fisica de la luz
Fisica de la luzFisica de la luz
Fisica de la luz
 
Luz primero medio.pptx
Luz primero medio.pptxLuz primero medio.pptx
Luz primero medio.pptx
 
Rayos X ( Wilhelm Conrad Roentgen)
Rayos X  ( Wilhelm Conrad Roentgen)Rayos X  ( Wilhelm Conrad Roentgen)
Rayos X ( Wilhelm Conrad Roentgen)
 
Radiologa Torcica
Radiologa TorcicaRadiologa Torcica
Radiologa Torcica
 
Definicion
DefinicionDefinicion
Definicion
 
Maxwell y electromagnetismo
Maxwell y electromagnetismoMaxwell y electromagnetismo
Maxwell y electromagnetismo
 
Principios físicos de la maquina de tomografía
Principios físicos de la maquina de tomografíaPrincipios físicos de la maquina de tomografía
Principios físicos de la maquina de tomografía
 
Presentacion de Ondas electromagneticas
Presentacion de Ondas electromagneticasPresentacion de Ondas electromagneticas
Presentacion de Ondas electromagneticas
 
La luz y el espectro electromagnetico
La luz y el espectro electromagneticoLa luz y el espectro electromagnetico
La luz y el espectro electromagnetico
 

Más de DR. JOSE RAUL GONZALEZ VASQUEZ (9)

Materiales de Relleno
Materiales de RellenoMateriales de Relleno
Materiales de Relleno
 
Torsalo
TorsaloTorsalo
Torsalo
 
Antimicóticos Tópicos Y Sistémicos
Antimicóticos Tópicos Y SistémicosAntimicóticos Tópicos Y Sistémicos
Antimicóticos Tópicos Y Sistémicos
 
Melasma
MelasmaMelasma
Melasma
 
Generalidades en Corticoterapia Tópica
Generalidades en Corticoterapia TópicaGeneralidades en Corticoterapia Tópica
Generalidades en Corticoterapia Tópica
 
Aspectos Generales de la Piel
Aspectos Generales de la PielAspectos Generales de la Piel
Aspectos Generales de la Piel
 
Escabiasis
EscabiasisEscabiasis
Escabiasis
 
Estudio de un Enfermo de la Piel
Estudio de un Enfermo de la PielEstudio de un Enfermo de la Piel
Estudio de un Enfermo de la Piel
 
Terapeutica Dermatologica Topica
Terapeutica Dermatologica TopicaTerapeutica Dermatologica Topica
Terapeutica Dermatologica Topica
 

Último

FARMACOCINETICA Y SISTEMA LADME (1).pptx
FARMACOCINETICA Y SISTEMA LADME (1).pptxFARMACOCINETICA Y SISTEMA LADME (1).pptx
FARMACOCINETICA Y SISTEMA LADME (1).pptxYesseniaYanayaco
 
NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...
NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...
NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...Alexisdeleon25
 
Clase 10 Artrologia Generalidades Anatomia 2024.pdf
Clase 10 Artrologia Generalidades Anatomia 2024.pdfClase 10 Artrologia Generalidades Anatomia 2024.pdf
Clase 10 Artrologia Generalidades Anatomia 2024.pdfgarrotamara01
 
Situación del adulto mayor - Roberto Effio Sánchez.pptx
Situación del adulto mayor - Roberto Effio Sánchez.pptxSituación del adulto mayor - Roberto Effio Sánchez.pptx
Situación del adulto mayor - Roberto Effio Sánchez.pptxRobertoEffio
 
historia clinica insuficiencia renal cronica
historia clinica insuficiencia renal cronicahistoria clinica insuficiencia renal cronica
historia clinica insuficiencia renal cronicaAlexanderVasquezSana
 
marcadores ecograficos y serologicos del segundo trimestre (2).ppt
marcadores ecograficos y serologicos del segundo trimestre (2).pptmarcadores ecograficos y serologicos del segundo trimestre (2).ppt
marcadores ecograficos y serologicos del segundo trimestre (2).pptCarlos Quiroz
 
trabajo completo sobre LAS ARTICULACIONES
trabajo completo sobre LAS ARTICULACIONEStrabajo completo sobre LAS ARTICULACIONES
trabajo completo sobre LAS ARTICULACIONESDavidDominguez57513
 
Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"
Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"
Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"Badalona Serveis Assistencials
 
resumen competencias parentales vinculares, protectoras, formativas y reflexivas
resumen competencias parentales vinculares, protectoras, formativas y reflexivasresumen competencias parentales vinculares, protectoras, formativas y reflexivas
resumen competencias parentales vinculares, protectoras, formativas y reflexivasCamilaGonzlez383981
 
Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...
Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...
Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...pizzadonitas
 
Edema, ictericia, astenia, pérdida y ganancia de peso
Edema, ictericia, astenia, pérdida y ganancia de pesoEdema, ictericia, astenia, pérdida y ganancia de peso
Edema, ictericia, astenia, pérdida y ganancia de pesoirvingamer8719952011
 
Clase 8 Miembro Superior Osteologia 2024.pdf
Clase 8 Miembro Superior Osteologia 2024.pdfClase 8 Miembro Superior Osteologia 2024.pdf
Clase 8 Miembro Superior Osteologia 2024.pdfgarrotamara01
 
Kinesiotape generalidades y tecnicas.pdf
Kinesiotape generalidades y tecnicas.pdfKinesiotape generalidades y tecnicas.pdf
Kinesiotape generalidades y tecnicas.pdfssuser58ec37
 
presentacion sobre neumonia segun harrison
presentacion sobre neumonia segun harrisonpresentacion sobre neumonia segun harrison
presentacion sobre neumonia segun harrisoncamillevidal02
 
(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)
(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)
(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)UDMAFyC SECTOR ZARAGOZA II
 
(2024-11-04) Actuacion frente a quemaduras (doc).docx
(2024-11-04) Actuacion frente a quemaduras (doc).docx(2024-11-04) Actuacion frente a quemaduras (doc).docx
(2024-11-04) Actuacion frente a quemaduras (doc).docxUDMAFyC SECTOR ZARAGOZA II
 
Tríptico sobre la salud, cuidados e higiene
Tríptico sobre la salud, cuidados e higieneTríptico sobre la salud, cuidados e higiene
Tríptico sobre la salud, cuidados e higieneCarlosreyesxool
 
Clase 9 Miembro Inferior Osteologia 2024.pdf
Clase 9 Miembro Inferior Osteologia  2024.pdfClase 9 Miembro Inferior Osteologia  2024.pdf
Clase 9 Miembro Inferior Osteologia 2024.pdfgarrotamara01
 
planos anatomicos y ejes del cuerpo humano
planos anatomicos y ejes del cuerpo humanoplanos anatomicos y ejes del cuerpo humano
planos anatomicos y ejes del cuerpo humanosalvadorrangel8
 

Último (20)

FARMACOCINETICA Y SISTEMA LADME (1).pptx
FARMACOCINETICA Y SISTEMA LADME (1).pptxFARMACOCINETICA Y SISTEMA LADME (1).pptx
FARMACOCINETICA Y SISTEMA LADME (1).pptx
 
NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...
NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...
NOM-045-SSA2-2005 Para la vigilancia epidemiológica, prevención y control de ...
 
Clase 10 Artrologia Generalidades Anatomia 2024.pdf
Clase 10 Artrologia Generalidades Anatomia 2024.pdfClase 10 Artrologia Generalidades Anatomia 2024.pdf
Clase 10 Artrologia Generalidades Anatomia 2024.pdf
 
Situación del adulto mayor - Roberto Effio Sánchez.pptx
Situación del adulto mayor - Roberto Effio Sánchez.pptxSituación del adulto mayor - Roberto Effio Sánchez.pptx
Situación del adulto mayor - Roberto Effio Sánchez.pptx
 
historia clinica insuficiencia renal cronica
historia clinica insuficiencia renal cronicahistoria clinica insuficiencia renal cronica
historia clinica insuficiencia renal cronica
 
marcadores ecograficos y serologicos del segundo trimestre (2).ppt
marcadores ecograficos y serologicos del segundo trimestre (2).pptmarcadores ecograficos y serologicos del segundo trimestre (2).ppt
marcadores ecograficos y serologicos del segundo trimestre (2).ppt
 
trabajo completo sobre LAS ARTICULACIONES
trabajo completo sobre LAS ARTICULACIONEStrabajo completo sobre LAS ARTICULACIONES
trabajo completo sobre LAS ARTICULACIONES
 
Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"
Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"
Pòster "Real-Life VR Integration for Mild Cognitive Impairment Rehabilitation"
 
resumen competencias parentales vinculares, protectoras, formativas y reflexivas
resumen competencias parentales vinculares, protectoras, formativas y reflexivasresumen competencias parentales vinculares, protectoras, formativas y reflexivas
resumen competencias parentales vinculares, protectoras, formativas y reflexivas
 
Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...
Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...
Papalia, D.E., Feldman, R.D., & Martorell, G. (2012). Desarrollo humano. Edit...
 
Edema, ictericia, astenia, pérdida y ganancia de peso
Edema, ictericia, astenia, pérdida y ganancia de pesoEdema, ictericia, astenia, pérdida y ganancia de peso
Edema, ictericia, astenia, pérdida y ganancia de peso
 
Clase 8 Miembro Superior Osteologia 2024.pdf
Clase 8 Miembro Superior Osteologia 2024.pdfClase 8 Miembro Superior Osteologia 2024.pdf
Clase 8 Miembro Superior Osteologia 2024.pdf
 
Kinesiotape generalidades y tecnicas.pdf
Kinesiotape generalidades y tecnicas.pdfKinesiotape generalidades y tecnicas.pdf
Kinesiotape generalidades y tecnicas.pdf
 
presentacion sobre neumonia segun harrison
presentacion sobre neumonia segun harrisonpresentacion sobre neumonia segun harrison
presentacion sobre neumonia segun harrison
 
(2024-04-10) TÉCNICA ROVIRALTA (doc).pdf
(2024-04-10) TÉCNICA ROVIRALTA (doc).pdf(2024-04-10) TÉCNICA ROVIRALTA (doc).pdf
(2024-04-10) TÉCNICA ROVIRALTA (doc).pdf
 
(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)
(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)
(2024-04-16)DERMATOSCOPIA EN ATENCIÓN PRIMARIA (DOC)
 
(2024-11-04) Actuacion frente a quemaduras (doc).docx
(2024-11-04) Actuacion frente a quemaduras (doc).docx(2024-11-04) Actuacion frente a quemaduras (doc).docx
(2024-11-04) Actuacion frente a quemaduras (doc).docx
 
Tríptico sobre la salud, cuidados e higiene
Tríptico sobre la salud, cuidados e higieneTríptico sobre la salud, cuidados e higiene
Tríptico sobre la salud, cuidados e higiene
 
Clase 9 Miembro Inferior Osteologia 2024.pdf
Clase 9 Miembro Inferior Osteologia  2024.pdfClase 9 Miembro Inferior Osteologia  2024.pdf
Clase 9 Miembro Inferior Osteologia 2024.pdf
 
planos anatomicos y ejes del cuerpo humano
planos anatomicos y ejes del cuerpo humanoplanos anatomicos y ejes del cuerpo humano
planos anatomicos y ejes del cuerpo humano
 

Tecnología láser en dermatología: tratamientos con láseres

  • 1. TECNOLOGIA LASER EN DERMATOLOGIA Dr. José Raúl González Vásquez Dermatólogo
  • 2. Guía de Presentación El Fotón Espectro Electromagnético y visible Tecnología Láser Que es un Láser Aplicaciones del Láser Historia del Láser de uso Médico Interacción de la Luz Láser y los tejidos Mecanismo de Acción del Láser FototermólisisSelectiva y Ampliada Tipos de Láser Tratamientos con Láser
  • 3. El Fotón En física moderna, el fotón es la partícula elemental portadora de todas las formas de radiación electromagnética. Incluye los rayos cósmicos, gamma, rayos X, luz ultravioleta, luz visible, luz infrarroja, microondas y ondas de radio.
  • 4. El Fotón El fotón fue llamado originalmente por Albert Einstein"cuanto de luz” (en alemán: das Lichtquant). El nombre moderno “fotón” proviene de la palabra griega φῶς (que se transcribe como phôs), que significa luz, y fue acuñado en 1926 por el físico Gilbert N. Lewis
  • 5. El Fotón El fotón presenta tanto propiedades corpusculares como ondulatorias (“dualidad onda-corpúsculo) Onda .. Fenómeno de refracción Partícula.. Cuando interacciona con la materia para transferir una cantidad fija de energía Para la luz visible, la energía portada por un fotón es de alrededor de 4×10–19 julio; esta energía es suficiente para excitar un ojo y dar lugar a la visión.
  • 6.
  • 7. Rayos Cósmicos .. 1 x 10-15 m.
  • 10. Rayos ultravioleta.. 1 x 10-8 m. = 100 - 400 nm.
  • 11. Espectro visible:… 400 a 720 nm. Región del espectro electromagnético que el ojo humano es capaz de percibir. Algunas personas perciben desde 380 a 780 nm.
  • 13. Microonda – Radar … . 1 mm.
  • 14. Ondas de Radio: UHF, VHF, onda corta, onda media y onda larga………….… 30 cm. a 10 km.
  • 15.
  • 17. El Fotón El fotón tiene una masa invariante de cero y viaja en el vacío con una velocidad constante (c ) La luz que viaja a través de materia transparente, lo hace a una velocidad menor que c, la velocidad de la luz en el vacío. Por ejemplo, los fotones en su viaje desde el centro del Sol sufren tantas colisiones, que la energía radiante tarda aproximadamente un millón de años en llegar a la superficie. Sin embargo, una vez en el espacio abierto, un fotón tarda únicamente 8.3 minutos en llegar a la Tierra
  • 18. El Fotón El concepto de fotón ha llevado a avances muy importantes en: Física teórica y experimental: Teoría Cuántica de Campos Condensado de Bose-Einsten Interpretación probabilística de la mecánica cuántica Invención del Láser (1960) y Máser (1953)
  • 19. Invención del Láser Charles Hard Townes (1915) es considerado junto con Arthur Leonard Schawlow, el inventor del láser. Patentado en 1960 En 1964: Premio Nobel de Física junto a los soviéticos Nikolái Básov y Aleksander Prójorov por sus los trabajos fundamentales en el campo de la electrónica cuántica
  • 20. Inventores del Láser(Patentado en 1960) Charles Hard Townes (1915) Premio Nobel de Física en 1964 Arthur Leonard Schawlow (1921) Premio Nobel de Física en 1981
  • 21. Invención del Láser Base teórica: Emisión espontánea e inducida de la Radiación. En 1916, Albert Einstein estableció los fundamentos para el desarrollo de los láseres y de sus predecesores, los máseres (microondas), utilizando la ley de radiación de Max Planck basada en los conceptos de emisión espontánea e inducida de radiación
  • 22. Invención del Láser En Física se denomina emisión espontánea al proceso por el cual un átomo, una molécula o un núcleo, en un estado excitado, pasa a un estado de energía más bajo. Como se cumple el principio de conservación de energía, el resultado es la emisión de un fotón.
  • 23. Invención del Láser Emisión Estimulada: Los fotones se "clonan" a si mismos. Fue predicho por Einstein en su derivación de E=hν, y condujo al desarrollo del Láser y de sus predecesores los Máseres (emiten microondas)
  • 24. El Fotón Emisión estimulada y espontánea
  • 25. Láser - Definición Láser: Es acrónimo del inglés de: LightAmplification by Stimulated Emission of Radiation ("Amplificación de Luz por Emisión Estimulada de Radiación")
  • 26. Que es un Láser ? Un láser es un aparato compuesto por un medio sólido, líquido o gaseoso dentro de una cavidad limitada por dos espejos paralelos, uno de ellos semitransparente. Si los átomos de ese medio son excitados se elevan a un nivel de energía que no es estable y para volver a su estado liberan esa energía en forma de fotones. Parte de esa luz sale al exterior a través del espejo semitransparente en forma de pulsos o como un rayo continuo.
  • 27. QUE ES UN LASERComponentes de un Láser 1.- El medio Laser: Sólido (rubí-erbium-yag) Líquido (dye laser, tintes inorgánicos) Gaseoso (CO2=onda continua + potente, helio, neón). Semiconductores ó Diodo mas vendidos (Arseniuro de Galio = CD, impresoras , reproductores de sonido) Por lo general le da el nombre al laser y define la longitud de onda. 2.- La fuente de excitación: Eléctrica Fotónica 3.- La cavidad óptica: logra la emisión estimulada por rebotar los fotones en los espejos.
  • 28. Que es un Láser ? Componentes principales: Medio activo para la formación del láser Energía bombeada para el láser Espejo reflectante al 100% Espejo reflectante al 99% Emisión del rayo láser 3 2 4 1 5
  • 29. Láser - Características El láser es monocromático por emisión de fotones con una sola longitud de onda, luz de un solo color. Coherente:Todas las ondas están en la misma fase Colimado … El flujo de la energía es unidireccional, de modo que cada rayo del haz puede considerarse paralelo a cualquier otro. Por ejemplo el Neodimio Yag = 1064 nm,
  • 30. Clasificación de los LáserSegún categoría de riesgo La capacidad de un láser para producir un riesgo está determinada principalmente su longitud de onda, duración o tiempo de exposicióny potencia o energía del haz. Clase 1: Seguros en todas las condiciones de utilización Clase 2: Longitud de onda 400 y 700 nm. con una potencia inferior o igual a 1mW. La protección ocular se consigue normalmente por las respuestas de aversión, incluido el reflejo parpebral. Esta reacción puede proporcionar la adecuada protección aunque se usen instrumentos ópticos
  • 31. Clasificación de los LáserSegún categoría de riesgo Clase 3a: Potencia de <5mW, cuya visión directa del haz es potencialmente peligrosa. Clase 3B: Visión directa o una reflexion del haz es siempre peligrosa para el ojo no protegido, potencia entre 5 y 500mW. Clase 4: Láseres que también pueden producir reflexiones difusas peligrosas (>500mW). Pueden causar daños sobre la piel y pueden también constituir un peligro de incendio. Su utilización precisa extrema precaución. 
  • 32. Parámetros Físicos del Láser La luz Laser es una forma de energía. Esta energía viene representada en Joules (J). La potencia de un Laser viene expresada en vatios (W), Representa la cantidad de energía emitida en Joules por segundo. Un vatio de potencia es equivalente a un Joule de energía emitida en un segundo.Potencia (W) = Energía (J) / Tiempo (seg.) El Laser puede ser activado en forma pulsada. Estos pulsos se producen en unidades de tiempo. Este parámetro se mide en pulsos por segundo: p.p.s. La frecuencia de las pulsaciones viene representada en Hertz.Frecuencia: ciclo por segundo. Hertz (Hz.)
  • 33. Parámetros Físicos del Láser Spot: El tamaño del punto luminoso, o punto focal, representa el área de energía del Laser que se aplica al material que sirve de blanco. Se mide en centímetros cuadrados (cm2); también se expresa en términos del diámetro del área circular en micrones (µ).Spot o tamaño del punto luminoso: (cm2) o (µ) Densidad de la potencia es la variable más importante en la determinación del efecto que un Laser tiene sobre el material irradiado. Se calcula como la potencia, expresada en vatios (W), dividida por el tamaño del punto luminoso en centímetros cuadrados (cm2)Densidad de potencia = Potencia (W) / tamaño del punto luminoso (cm2)
  • 34. Parámetros Físicos del Láser Emisión de la luz Laser: Onda Continua, Pulsada o Fraccionada Ondas continuas: Consiste en la estabilización de la energía emitida continuamente. Es decir, mientras el Láser esté activado, la salida del haz será constante. Onda Pulsada: Es un conjunto de pulsaciones repetidas en serie, ya que la energía es emitida en cortos estallidos; entre las pulsaciones no hay energía que se transmita. Existen dos métodos de impulsión del Láser de acuerdo a la distancia que existe desde donde es activado el mismo y el objeto Contacto: La salida del haz Laser esta en contacto directo con la superficie de impacto Sin contacto:. Existe una distancia entre la salida del haz Laser y el área de choque. Los efectos del Laser en los tejidos pueden variar de acuerdo a estos métodos de impulsión.
  • 35. Láser - Aplicaciones La primera aplicación útil fue en la soldadura de los elementos de chapa en la fabricación de vehículos Espectáculo de luces
  • 36. Láser - Aplicaciones Industria Investigación Científica Comunicaciones Tecnología Militar
  • 37. Láser - Aplicaciones En Medicina Corte y coagulación de tejidos, en fracción de segundos sin dañar al tejido sano circundante. Cauterizar vasos sanguíneos En Oftalmología: Desprendimiento de retina Perforar el cráneo, Tx. Hipertrofia Prostática B. Pruebas de laboratorio en muestras biológicas pequeñas. Remover manchas y lesiones pigmentadas
  • 38. Historia del Láser Médico La aplicación de esta teoría a la piel fue llevada a cabo por Theodore Harold Maiman, el 16 Mayo 1960 empleando un cristal de rubí rosacomo el medio amplificador del láser. Fue el primero en producir un impulso de luz coherente, monocromática de 694 nm. desde un láser.
  • 39. Historia del Láser Médico En 1963 el Dermatólogo Leon Goldman inició el tratamiento con láser rubí en diferentes patologías cutáneas. En la década de los 80 Anderson y Parrish desarrollan el principio de Fototermólisis Selectivacontribuyendo a mejorar la tecnología láser y dieron un gran empuje a su uso.
  • 40. Historia del Láser Médico En 1988 Dierickx publica por vez primera los efectos del láser rubí en la depilación permanente. En 1995 Goldberg utiliza el láser de Neodimio Yag para depilar. Posteriormente, estudios comparativos para demostrar la eficacia láser en depilación: Néstor en 1998 con más de 2.000 Goldberg y cols. en 1997 Bjerring y cols. en 1998 Grossman en 1999 Campos y cols. en 1999
  • 41. LASER Interacción de la luz láser y los tejidos Rayo láser Piel ­ Reflexión. 4.7% ­ Dispersión. ­ Absorción. ­ Transmisión.
  • 42. LASER Interacción de la luz láser y los tejidos La ley de Grothus-Draper afirma: Sólo puede haber efecto tisular si la luz es absorbida. Solamente el 4-7% de la luz es reflejada por la piel. Ni la luz reflejada ni la luz transmitida tiene efecto tisular
  • 43. LASERInteracción de la luz láser y los tejidos Hay tres posibles efectos: Fototérmico que deriva del calor Fotoquímico : Reacciones fotoquímicas naturales o inducidas por fotosensibilizadores desencadenadas por luz UV o visible Fotomecánicos: Por la expansión térmica super rápida, ondas de presión, ondas de choque, transferencia del momento o vaporización súbita que ocurren con la absorción del láser pulsado. Los 3 efectos coexisten, aunque predomina uno o dos y son importantes en dermatología.
  • 44. LASER Mecanismos de Acción Transformación de energía luminosa en calor = Fototermólisis.
  • 45.
  • 47. Pigmentomelánico o externoEs lo que determina el mecanismo de acción = Fototermolisis selectiva.
  • 49. LASER - Mecanismos de Acción Fototermólisis Selectiva La teoría de la fototermólisis selectivafue introducida por Anderson y Parrish en 1983 (Anderson y Parrish 1983) Explica cómo los cromóforos son capaces de absorber selectivamente longitudes de onda específicas, causando un daño térmico selectivo y confinado.
  • 50. LASER - Mecanismos de Acción Fototermólisis Selectiva Condiciones para que el daño térmico sea localizado – Sólo afecte al cromóforo deseado -- Tiempo de relajación térmica (TRT) Duración del pulso – Tiempo de exposición térmica - El tiempo de contención térmica: Es el tiempo que precisa una estructura determinada (folículo piloso, vaso sanguíneo, etc.) para ser destruido por acumulación de calor El TRT se define como el tiempo necesario para que una partícula disminuya la temperatura alcanzada inmediatmente después del impacto del láser en un 50% (Anderson y Parrish 1983).
  • 51. LASER - Mecanismos de Acción Fototermólisis Selectiva El daño térmico es selectivo y confinado a la diana cuando: El tiempo de exposición térmica (Duración del pulso del rayo Láser) es menor que el Tiempo de Relajación Térmica (TRT) de la diana.
  • 52. LASER - Mecanismos de Acción Fototermólisis Selectiva Excepciones: 1. Las estructuras planas, esféricas y cilíndricas con pigmentación irregular pueden tratarse con una duración de pulso muy superior al TRTsin que ocurra daño térmico inespecífico en las estructuras adyacentes.
  • 53. LASER - Mecanismos de Acción Fototermólisis Selectiva Excepciones: 2. En el caso del folículo piloso, se puede emplear una duración de pulso de 30 a 400 ms. sin observarse daño térmico inespecífico en el tejido circundante.
  • 54. LASER - Mecanismos de Acción Teoría Ampliada de Fototermólisis Selectiva En estructura diana con pigmentación irregular, una parte de ella – la región más pigmentada – absorbe selectivamente la energía lumínica y la transforma en calor, disipándola a otras regiones menos pigmentadas de la diana.
  • 55. LASER - Mecanismos de Acción Teoría Ampliada de Fototermólisis Selectiva De esta manera el daño térmico selectivo de la estructura diana ocurre por difusión de calor de las regiones más pigmentadas, a las regiones menos pigmentadas con escasa o ninguna absorción. A esta nueva teoría se le conoce como teoría ampliada de la fototermólisis selectiva(Altshuler y col. 2001).
  • 56. Teoría Ampliada de la Fototermólisis Selectiva
  • 57. LASER - Mecanismos de Acción Fototermólisis Selectiva Modificación de la profundidad de penetración del rayo: Longitud de ondamas larga del rayo del Láser Impacta estructuras mas profundas en la piel
  • 58. LASER - Mecanismos de Acción Fototermólisis Selectiva Fraccionamiento de la energía necesaria para lesionar el blanco ( joules/cm2 ) en pulsos (2-3) con intervalos de descanso Permite que la epidermis se enfríe y evita su lesión.
  • 59. LASER - Mecanismos de Acción Fototermólisis Selectiva Si pierde calor más lentamente el pigmento diana, blanco o target (melanina, hemoglobina, otro ) con los sucesivos pulsos, su temperatura interior se eleva alrededor de 1000 C fototermólisisselectiva.
  • 60. Fototermólisis SelectivaEstructuras pigmentadas En lesiones pigmentadas el mecanismo de acción es el siguiente: Eliminación transepidérmica ó Exteriorización Microfragmentación.
  • 61. Fototermólisis SelectivaEstructuras pigmentadas Eliminación Transepidermica ó eExteriorización: En lesiones epidérmicas, como en el léntigo y efélides, el cromóforo epidérmico, la melanina, absorbe las longitudes de onda de la LIP y Láser y transforma esa energía lumínica en energía calórica (de 60 a 90 grados). Esto produce epidermólisis hasta la capa basal y se eliminan los melanosomas. Se forma una costra o escara superficial por muerte celular, que se exfolia a los 3-7 días.
  • 62. Fototermólisis SelectivaEstructuras pigmentadas Microfragmentacíón: En las lesiones pigmentarias dérmicas (tatuajes), se produce microfragmentación de los cromóforos (pigmentos exógenos) a moléculas menores de 60 micrones. De esta forma se facilita que los microfragmentos pigmentarios sean fagocitados por los macrófagos y eliminados de esta manera
  • 63. TIPOS DE LASERSegún la luz emitida Onda continua: Emiten de modo continuo con una potencia constante Pulsados: La emisión es en picos breves de máxima energía. Los láseres Q-swiched producen pulsos muy cortos de muy elevada energía.
  • 64. TIPOS DE LASERSegún el Cromóforo Agua intracelular y extracelular. Láser de CO2 (10600 nm. - infrarrojo) Láser ERBIO:YAG (2940 nm.) Láser ND:YAG (1064 nm.) Hemoglobina Láser de ARGÓN (488 ó 514.5 nm.) Dye Láser o de Colorante Pulsado (510, 585 nm.) NO 577 nm. Láser KTP-PULSADO (532 nm.) Láser RUBI (694 nm.) Depilación Láser DIODO ( 800 -810 nm.) Melanina Láser de ALEJANDRITA ( 755 nm.) Pigmentos exógenos
  • 65. TIPOS DE LASERSegún el medio Láseres de estado sólido Nd:YAG (1064 nm) Ho:YAG (2090 nm) Er:YAG (2940 nm) Rubí ( 694 nm) Alexandrita (755 nm) A) Láseres de gases (transiciones electrónicas) He-Ne (punteros, luz guía de láser) Argón (488 ó 514.5 nm) B) Láseres de gases (transiciones vibracionales de los átomos) CO2 y N2 Láseres de colorantes - Lesiones vasculares Láseres de diodos semiconductores
  • 66. TIPOS DE LASERLaser CO2 Cromóforo: Agua intracelular y extracelular.Longitud de onda: 10600 nm. (infrarrojo). Diferentes modos de emisión: Onda Contínua Onda Pulsada Onda Franccionada
  • 67. TIPOS DE LASERLaser CO2 Onda continua: Focalizada: Para corte quirúrgico Desfocalizada: Efecto vaporizador en lesiones tumorales cutáneas benignas y malignas y tatuajes, con poca hemorragia. En un 1-4 % - Cicatrices hipertróficas. Onda Pulsada: Uso cosmético por su efecto ablativo para rejuvenecimiento cutáneo. Sus efectos secundarios implican un tiempo de re-epitelización de 6-8 semanas, con edema, eritema y trastornos de la pigmentación transitorios.
  • 68. TIPOS DE LASERLaser Erbio - YAG Siglas de YAG: Itrio-Aluminio-Garnet. Cromóforo: agua intracelular y extracelular.Longitud de onda: 2940 nm. (infrarrojo). Las mismas indicaciones que el láser de CO2, pero: Profundiza 10 veces menos en la piel Tratamiento menos agresivo, con un menor tiempo de recuperación.
  • 69. TIPOS DE LASERLaser CO2 Onda Fraccionada Nueva tecnología con un tiempo de recuperación excelente, uso cosmético, efecto ablativo para rejuvenecimiento cutáneo.
  • 70. TIPOS DE LASERPearl Fraccionado YSGG de 2790 nm. Es nueva tecnología: Fraccionada.  La tecnologia se llama YSGG desarrollada por CUTERA, y el tratamiento se hizo con el PEARL FRACCIONADO YSGG de 2790 nm.Novedoso: Resultado final obtenido con una sola sesión.
  • 71. Pearl Fractional Pretratamiento 6 Semanas post-tratamiento
  • 72. TIPOS DE LASERLaser ND - YAG Siglas: Neodimio: Itrio-Aluminio-Garnet. Cromóforo: agua intracelular y extracelular.Longitud de onda: 1064 nm. (infrarrojo) y 532 nm. Diferentes modos de emisión: Onda continua: Produce menor daño que el láser de CO2: Uso en cosmética para el rejuvenecimiento cutáneo. Pulso largo (vasculight): Lesiones vasculares. Mayor longitud de onda que los de colorante pulsado, tiene mayor poder de penetración -- alcanza vasos de mayor calibre y más profundos. Q-Switched: Pigmentos profundos y tatuajes, depilación , Puede inducir oscurecimiento irreversible del pigmento en algunos tatuajes.
  • 74. LASER - Aparatología Laser Nd-Yag Medlite C6 1064 - 532 nm. 585 - 650 nm.
  • 75. LASER - Aparatología Laser Nd-Yag Medlite C6 1064 - 532 nm. 585 - 650 nm.
  • 76. Láser – TratamientoLéntigo Laser Nd-Yag Medlite C6
  • 77. Láser – TratamientoOcronosis Laser Nd-Yag Medlite C6
  • 78. Láser – TratamientoEfélides Laser Nd-Yag Medlite C6
  • 79. Láser – TratamientoTatuajes Láser neodimio-yag.- En la modalidad Q-Switched 532 nm elimina el color rojo y el naranja; 1064 nm elimina todos los colores, excepto el verde, rojo y naranja. Láser de colorante pulsado.- Color negro y colores rojo y verde. Láser de alejandrita.- Tatuaje blanco, azul y verde. Láser de rubí.- En la modalidad Q-Switched (pulsos de 25-40 ms de duración) especialmente negros, verdes y otros colores oscuros, es ineficazcon el rojo y colores claros. Se utiliza también en lesiones pigmentadas.
  • 80. Láser – TratamientoTatuajes Laser Nd-Yag Medlite C6
  • 81. Láser – TratamientoTatuajes Laser Nd-Yag Medlite C6
  • 82. Láser – TratamientoTatuaje accidental Laser Nd-Yag Medlite C6
  • 83. Láser – TratamientoTatuajes Laser Nd-Yag Medlite C6
  • 84. Láser – TratamientoTatuajes Laser Nd-Yag Medlite C6
  • 90. Láser – TratamientoFotodepilación Los más adecuados: Longitud de onda entre 700 y 1400 nm. por ser en este rango donde: Existe mayor absorción por la melanina Menor interferencia con otros pigmentos como la hemoglobina. Los láseres más empleados son: Láser de rubí (694 nm) – empleo ocasionalLáser de alejandrita (755 nm) – hasta tipo IVLáser de diodo (800 nm) – fototipo VLáser de Neodimio-Yag (1064 nm)Luz pulsada intensa (590-1200 nm)
  • 91. Espectro de Absorción de la Melanina
  • 93. Láser – TratamientoFotodepilación Alejandrita Apogee 9300 – Cynosure Longitud de onda de 755 nm. Pulso largo es mas seguro en pieles Obscuras Piernas, ingles y axilas en mujeres
  • 95. Láser - Tratamientos El Laser Pulsado de NeodiniumYag (1064 nm) permite actuar sobre telangiectasias y pequeñas venas varicosas con fines estéticos. Se produce daño del epitelio vascular y a los 30 días se visualiza la pared de los vasos sanguíneos rotos con fibrosis , depósitos de fibrina y formación de un trombo. A los 3 meses del tratamiento se completa el proceso y los macrófagos se han encargado de remover el tejido necrótico.
  • 96. Láser – Tratamiento Cynergy - Pulse Dye Laser 585nm* & 1064nm Multiplex Aplicaciones Lesiones Vasculares Lesiones Pigmentadas Mancha en Vino de Oporto Cicatrices quirúrgicas
  • 97. Láser – TratamientoVárices miembros inferiores Cynergy - Pulse Dye Laser 585nm* & 1064nm Multiplex
  • 98. Láser – TratamientoVárices miembros inferiores Cynergy - Pulse Dye Laser 585nm* & 1064nm Multiplex
  • 99. Láser – En Cirugía Dermatológica Para extirpar tumores benignos superficiales y no susceptibles de malignizarse : Léntigos simples y léntigos solares, Queratosis Seborreicas, Verrugas vulgares, Xantelasmas, Pequeños quistes de retención epidérmica, Rinofima. Adenomas sebáceos, Papilomas plantares, Siringomas. Condilomas no sensibles a tratamiento tópicos Tricoepiteliomas, Nevus epidérmicos , Neurofibromas Quistes mixoides digitales, Molusco contagioso Rinoescleroma, Hidradenitis supurativa
  • 100. Láser – En Cirugía Dermatológica También se ha reportado éxito en: Perifoliculitis de la cabeza, Cromomicosis, hiperplasia Angiolinfoide, Blastomicosis, Tumores glómicos, Lesiones orales benignas y premalignas,, Prurito Vulvar, Psoriasis , Poroqueratosis, Condrodermatitis nodular, Balanitis Xerótica Obliterante, Lupus Eritematoso Discoide, Balanitis de Zoon, Pápulas Perladas del Pene, Vitiligo estable
  • 101. Láser – En Cirugía Dermatológica Existen patologías dermatológicas que no deben ser tratadas con láser: Carcinoma Basocelular Carcinoma Espinocelular Melanoma Nevos atípicos Lesiones sin diagnóstico claro Tratamiento con método mas eficaz y comprobación anatomo-patológico de la entidad,.