Juan Carlos Balarezo Constante FISEIPrimero “C”
Propiedades de la multiplicación de un escalar por un vector              Conmutativa.- El orden del producto del escalar ...
[(⃗⃗⃗        )        (               )],          -        [ (⃗⃗⃗             )               (                  )],     ...
(⃗⃗⃗   ⃗⃗⃗           ⃗⃗⃗⃗ )(⃗⃗⃗            ⃗⃗⃗        ⃗⃗⃗⃗ ), -       (⃗⃗⃗         ⃗⃗⃗         ⃗⃗⃗⃗ )(⃗⃗⃗          ⃗⃗⃗    ...
(⃗⃗⃗          ⃗⃗⃗⃗ )[(⃗⃗⃗          ⃗⃗⃗        ⃗ ) (⃗⃗⃗               ⃗⃗⃗           ⃗⃗⃗⃗ )], -                           (⃗...
              x               =|                                                   |          x            =|            ...
2. Homogénea        A   (     x     ) = (A       )x              =         x (A              )                            ...
3. Distributiva                    x (            +            ) =        x           +                  x            ·   ...
Próxima SlideShare
Cargando en...5
×

Propiedades de los vectores.

580

Published on

muestra los tipos de propiedades que tienen los vectores en fisica

Published in: Educación
0 comentarios
0 Me gusta
Estadísticas
Notas
  • Sea el primero en comentar

  • Be the first to like this

Sin descargas
reproducciones
reproducciones totales
580
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
6
Comentarios
0
Me gusta
0
Insertados 0
No embeds

No notes for slide

Propiedades de los vectores.

  1. 1. Juan Carlos Balarezo Constante FISEIPrimero “C”
  2. 2. Propiedades de la multiplicación de un escalar por un vector Conmutativa.- El orden del producto del escalar por el vector no altera su resultado. a. = .a ⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ) [ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )], - [(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ) ], - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ), - Asociativa.- Si se multiplica primero un escalar por un vector y luego se multiplica por unsegundo escalar, su resultado no cambia. a · (b · ) = (a · b) · ⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗ ), - [( )( ⃗⃗⃗ ⃗⃗⃗⃗ )], - ( )( ) . ⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ / , - ( ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ), - . ⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ / , - ( ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ), - ( ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ), - Distributiva I (Distributiva vectorial).- Si se multiplica un escalar por la suma devectores es igual al producto del escalar por cada vector.k · ( + ) = k · + k · ⃗ (⃗⃗⃗ ), - ⃗ ( ), -
  3. 3. [(⃗⃗⃗ ) ( )], - [ (⃗⃗⃗ ) ( )], - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ), - [(⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ )], - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ), - Distributiva II (Distributiva escalar) .- Si se multiplica un vector por la suma de dosescalares es igual al producto del vector por cada escalar.(a + b) · = a · + b · ⃗ (⃗⃗⃗ ⃗⃗⃗ ), -( )(⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ), -( )(⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), -(⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - Elemento neutro 1 · = ⃗ ( ), - ( ), - ( ), -( ), - ( ), - Propiedades del producto escalar 1.- Conmutativa ⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -
  4. 4. (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -,( ) ( ) ( )-, - ,( ) ( ) ( )-, - ,( )( ) ( )( ) ( )( )-, - ,( )( ) ( )( ) ( )( )-, - , - , - 2.- Asociativa ⃗ , - ⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - [( ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )], - [ ( ⃗⃗⃗ ⃗⃗⃗⃗ )](⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ,( ) ( ) ( )- , - [⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ](⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ,( )( ) ( )( ) ( )( )-, - ,( )( ) ( )( ) ( )( )-, - ( ), - ( ), - ( ), - , - , - , - 3.- Distributiva ⃗ (⃗⃗⃗ ⃗⃗⃗⃗ ), - ⃗⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗ ), - ⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -
  5. 5. (⃗⃗⃗ ⃗⃗⃗⃗ )[(⃗⃗⃗ ⃗⃗⃗ ⃗ ) (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )], - (⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗ ), - (⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -(⃗⃗⃗ ⃗⃗⃗⃗ )[( ) ( ) ( )⃗ ], - ,( ) ( ) ( )-, - ,( ) ( ) ( )-, -(⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ,( )( ) ( )( ) ( )( )-, - ,( )( ) ( )( ) ( )( )-, -,( )( ) ( )( ) ( )( )-, - ( ), - ( ), -( ), - , - , - , - , - 4.- El producto e scalar de un vector no nulo por sí mismo siempre es positivo . ⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒ ,( ) ( ) ( )- , -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒( ), -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒ , - Propiedades del producto vectorial 1 . Anti conmutativa (Simetría alternativa) x = − x ⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ), -
  6. 6.  x =| | x =| | x =( ) ( ) ( )⃗⃗⃗⃗ x = *,( )( )- ,( )( )-+ *,( )( )- ,( )( )-+ *,( )( )-,( )( )-+ ⃗ x = ,( ) ( )- ,( ) ( )- ,( ) ( )- ⃗ x =( ⃗)  − x − x | | − x | | − x = ,( ) ( )- ,( ) ( )- ,( )( )-⃗⃗⃗⃗ − x = *,( )( )- ,( )( )-+ *,( )( )- ,( )( )-+ *,( )( )-,( )( )-+ ⃗ − x = ,( ) ( )- ,( ) ( )- ,( ) ( )- ⃗ − x . ⃗ ⃗⃗ / x = − x ( ⃗) ( ⃗)
  7. 7. 2. Homogénea A ( x ) = (A )x = x (A ) ⃗ (⃗⃗⃗ ⃗⃗⃗⃗⃗), - (⃗⃗⃗ ⃗⃗⃗ ), - [(⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ )], - [ (⃗⃗⃗ ⃗⃗⃗ )] (⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ ) [ (⃗⃗⃗ ⃗⃗⃗ )], - | |, - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - | |, - | |, - | |, - *,( )( ) ( )( )- ,( )( ) ( )( )- +, - *,( )( ) ( )( )- ,( )( ) ( )( )- +, - * ,( )( ) ( )( )- ,( )( ) ( )( )- +, - ,( ) ( ) -, - ,( )( ) -, - ,( )( ) -, - ( ), - ( ), - ( ), -( ), - ( ), - ( ), -
  8. 8. 3. Distributiva x ( + ) = x + x · ⃗ ( ), - ( ), - ⃗⃗ ( ), -*( ) ,( ) ( )-+, - ,( ) ( ) ( ) ( )-, -[( ) ,( ) ( ) -], - | |, -+| |, -( ) ( ), - *,( ) ( )- ,( ) ( )- +, - *,( ) ( )-,( ) ( )- +, -| |, - ( ), - ( ), -,( ) ( ) ( ) ( ) -, - ( ), -( ), - ( ), - Nota:  El producto vectorial de dos vectores paralelos en igual al vector nulo. x =  El producto vectorial x es perpendicular a y a .

×