Juan Carlos Balarezo Constante FISEIPrimero “C”
Propiedades de la multiplicación de un escalar por un vector              Conmutativa.- El orden del producto del escalar ...
[(⃗⃗⃗        )        (               )],          -        [ (⃗⃗⃗             )               (                  )],     ...
(⃗⃗⃗   ⃗⃗⃗           ⃗⃗⃗⃗ )(⃗⃗⃗            ⃗⃗⃗        ⃗⃗⃗⃗ ), -       (⃗⃗⃗         ⃗⃗⃗         ⃗⃗⃗⃗ )(⃗⃗⃗          ⃗⃗⃗    ...
(⃗⃗⃗          ⃗⃗⃗⃗ )[(⃗⃗⃗          ⃗⃗⃗        ⃗ ) (⃗⃗⃗               ⃗⃗⃗           ⃗⃗⃗⃗ )], -                           (⃗...
              x               =|                                                   |          x            =|            ...
2. Homogénea        A   (     x     ) = (A       )x              =         x (A              )                            ...
3. Distributiva                    x (            +            ) =        x           +                  x            ·   ...
Próxima SlideShare
Cargando en…5
×

Propiedades de los vectores.

737 visualizaciones

Publicado el

muestra los tipos de propiedades que tienen los vectores en fisica

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
737
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
7
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Propiedades de los vectores.

  1. 1. Juan Carlos Balarezo Constante FISEIPrimero “C”
  2. 2. Propiedades de la multiplicación de un escalar por un vector Conmutativa.- El orden del producto del escalar por el vector no altera su resultado. a. = .a ⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ) [ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )], - [(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ) ], - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ), - Asociativa.- Si se multiplica primero un escalar por un vector y luego se multiplica por unsegundo escalar, su resultado no cambia. a · (b · ) = (a · b) · ⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗ ), - [( )( ⃗⃗⃗ ⃗⃗⃗⃗ )], - ( )( ) . ⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ / , - ( ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ), - . ⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ / , - ( ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ), - ( ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ), - Distributiva I (Distributiva vectorial).- Si se multiplica un escalar por la suma devectores es igual al producto del escalar por cada vector.k · ( + ) = k · + k · ⃗ (⃗⃗⃗ ), - ⃗ ( ), -
  3. 3. [(⃗⃗⃗ ) ( )], - [ (⃗⃗⃗ ) ( )], - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ), - [(⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ )], - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ), - Distributiva II (Distributiva escalar) .- Si se multiplica un vector por la suma de dosescalares es igual al producto del vector por cada escalar.(a + b) · = a · + b · ⃗ (⃗⃗⃗ ⃗⃗⃗ ), -( )(⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ), -( )(⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), -(⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - (⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - Elemento neutro 1 · = ⃗ ( ), - ( ), - ( ), -( ), - ( ), - Propiedades del producto escalar 1.- Conmutativa ⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -
  4. 4. (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -,( ) ( ) ( )-, - ,( ) ( ) ( )-, - ,( )( ) ( )( ) ( )( )-, - ,( )( ) ( )( ) ( )( )-, - , - , - 2.- Asociativa ⃗ , - ⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - [( ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )], - [ ( ⃗⃗⃗ ⃗⃗⃗⃗ )](⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ,( ) ( ) ( )- , - [⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ](⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ,( )( ) ( )( ) ( )( )-, - ,( )( ) ( )( ) ( )( )-, - ( ), - ( ), - ( ), - , - , - , - 3.- Distributiva ⃗ (⃗⃗⃗ ⃗⃗⃗⃗ ), - ⃗⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗ ), - ⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -
  5. 5. (⃗⃗⃗ ⃗⃗⃗⃗ )[(⃗⃗⃗ ⃗⃗⃗ ⃗ ) (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )], - (⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗ ), - (⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -(⃗⃗⃗ ⃗⃗⃗⃗ )[( ) ( ) ( )⃗ ], - ,( ) ( ) ( )-, - ,( ) ( ) ( )-, -(⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ,( )( ) ( )( ) ( )( )-, - ,( )( ) ( )( ) ( )( )-, -,( )( ) ( )( ) ( )( )-, - ( ), - ( ), -( ), - , - , - , - , - 4.- El producto e scalar de un vector no nulo por sí mismo siempre es positivo . ⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ )(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒ ,( ) ( ) ( )- , -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒( ), -(⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⇒ , - Propiedades del producto vectorial 1 . Anti conmutativa (Simetría alternativa) x = − x ⃗⃗ (⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ), - ⃗ ( ⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ ), -
  6. 6.  x =| | x =| | x =( ) ( ) ( )⃗⃗⃗⃗ x = *,( )( )- ,( )( )-+ *,( )( )- ,( )( )-+ *,( )( )-,( )( )-+ ⃗ x = ,( ) ( )- ,( ) ( )- ,( ) ( )- ⃗ x =( ⃗)  − x − x | | − x | | − x = ,( ) ( )- ,( ) ( )- ,( )( )-⃗⃗⃗⃗ − x = *,( )( )- ,( )( )-+ *,( )( )- ,( )( )-+ *,( )( )-,( )( )-+ ⃗ − x = ,( ) ( )- ,( ) ( )- ,( ) ( )- ⃗ − x . ⃗ ⃗⃗ / x = − x ( ⃗) ( ⃗)
  7. 7. 2. Homogénea A ( x ) = (A )x = x (A ) ⃗ (⃗⃗⃗ ⃗⃗⃗⃗⃗), - (⃗⃗⃗ ⃗⃗⃗ ), - [(⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ )], - [ (⃗⃗⃗ ⃗⃗⃗ )] (⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ ) [ (⃗⃗⃗ ⃗⃗⃗ )], - | |, - (⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗ ), - (⃗⃗⃗ ⃗⃗⃗ ) (⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ), - | |, - | |, - | |, - *,( )( ) ( )( )- ,( )( ) ( )( )- +, - *,( )( ) ( )( )- ,( )( ) ( )( )- +, - * ,( )( ) ( )( )- ,( )( ) ( )( )- +, - ,( ) ( ) -, - ,( )( ) -, - ,( )( ) -, - ( ), - ( ), - ( ), -( ), - ( ), - ( ), -
  8. 8. 3. Distributiva x ( + ) = x + x · ⃗ ( ), - ( ), - ⃗⃗ ( ), -*( ) ,( ) ( )-+, - ,( ) ( ) ( ) ( )-, -[( ) ,( ) ( ) -], - | |, -+| |, -( ) ( ), - *,( ) ( )- ,( ) ( )- +, - *,( ) ( )-,( ) ( )- +, -| |, - ( ), - ( ), -,( ) ( ) ( ) ( ) -, - ( ), -( ), - ( ), - Nota:  El producto vectorial de dos vectores paralelos en igual al vector nulo. x =  El producto vectorial x es perpendicular a y a .

×