SlideShare una empresa de Scribd logo
1 de 427
Descargar para leer sin conexión
Environmental Impact Assessment for Proposed
               Sethusamudram Ship Channel Project




                           Sponsor




           Tuticorin Port Trust, Tuticorin




National Environmental Engineering Research Institute
              Nehru Marg, Nagpur - 440 020


                       August 2004
Environmental Impact Assessment for
             Proposed Sethusamudram Ship Channel Project




                                                     Sponsor


                                   Tuticorin Port Trust, Tuticorin




                                                                                                 Point Calemer
               INDIA
                                                                                                                           BAY OF
                                                                                                                           BENGAL

                                                                                                                 Palk Strait




   INDIA
                                                                                      PALK BAY



                         Tamil Nadu
                                                      Mandapam
                                                                            Rameshwaram
                                                                 Mandapam
                                    Keelakkarai


                                                                                                                               LANKA
                            Valinokkam


         Terkmukkaiyur



   Vembar


Vaipar
                                                                                                                               SRI




 Tuticorin

                                                  GULF OF MANNAR




                National Environmental Engineering Research Institute
                Nehru Marg, Nagpur - 440 020


                August 2004
Contents


      Item                                                               Page
No.

      List of Figures                                                            vi
      List of Tables                                                             xi
      List of Plates                                                            xv
      List of Drawings                                                          xvi

 1. Introduction                                                         1.1-1. 25
       1.1   Preamble                                                         1.1
       1.2   Earlier Studies Involving Creation of Canal                      1.3
       1.3   Project Region                                                   1.7
       1.4   Geomorphology of Study Region                                    1.9
       1.5   Environmental Impact Assessment (EIA)                           1.14
             1.5.1    Objectives of EIA Study                                1.15
             1.5.2    Scope of the Study                                     1.15
             1.5.3    Plan of Work                                           1.16
             1.5.4    Components included in the Study                       1.17
                      1.5.4.1   Coastal Waster Environment                   1.17
                      1.5.4.2   Marine Environment                           1.17
                      1.5.4.3   Land Environment                             1.18
                      1.5.4.4   Biological Environment                       1.18
                      1.5.4.5   Socio-Economic and Health Environment        1.19
                      1.5.4.6   Ecological Risks                             1.19
             1.5.5    Environmental Management Plan                          1.20
       1.6   Techno-economic Viability                                       1.20
             1.6.1   Traffic Potential                                       1.20
             1.6.2   Alignment of Canal                                      1.20
             1.6.3   Dredging and Disposal Areas                             1.21
             1.6.4   Cost Estimates and Economic Viability                   1.21
       1.7   Permits and Approvals                                           1.21
       Figures 1.1-1.3                                                  1.22-1.24
       Table 2.1                                                             1.25


 2.    Proposed Project and Oceanographic Environmental Setting         2.1-2. 104
       2.1   Proposed Project                                                   2.1
2.2   Oceanographic Status in Project area along Route Alignment   2.2
Item                                                                      Page
No.

             2.2.1   Waves                                                             2.2
                     2.2.1.1   Wave Measurement                                        2.3
                     2.2.1.2   Wave Refraction                                         2.4
                     2.2.1.3   Wave Period                                             2.5
             2.2.2   Tides and Currents                                                2.5
                     2.2.2.1   Longshore Currents                                      2.5
                     2.2.2.2   Currents Studies                                        2.7
             2.2.3   Sediment Transport                                            2.12
                     2.2.3.1   Longshore Sediment Transport                        2.13
                     2.2.3.2   Spit Configuration                                  2.22
             2.2.4   Geological Strata along Navigational Channel in               2.23
                     Adams Bridge Area
             2.2.5   Bathymetry and Shallow Seismic Survey in                      2.25
                     Gulf of Mannar and Palk Bay Area
                     2.2.5.1   Bathymetry and Shallow Seismic Survey in
                               Area Identified for Channel in Adam's Bridge        2.26
                     2.2.5.2   Bathymetry Survey of Area of 4 km. X 4 km.          2.36
                     2.2.5.3   Bathymetry and Seismic Survey along the
                               Channel in Palk Bay Area                            2.37
             2.2.6   Selection of Route in Adam's Bridge Area                      2.38
             2.2.7   Navigation Route in Palk Bay and Palk Strait                  2.38
             2.2.8   Computation of Dredged Material                               2.38
       2.3   Environmental Setting in Project Area                                 2.39
       Figures 2.1-2.51                                                        2.44-2.98
       Tables 2.1 - 2.6                                                       2.99-2.104


 3.    Marine Environment                                                      3.1-3.167
       3.1   Physico-chemical Characteristics                                       3.1
       3.2   Biological Characteristics                                             3.3
       3.3   Biodiversity of Islands in Study Region                               3.32
             3.3.1   Mandapam Group                                                3.32
                     3.3.1.1   Shingle Island                                      3.35
                     3.3.1.2   Krusadai Island                                     3.35
                     3.3.1.3   Pullivasal and Poomarichan Island                   3.36
3.3.1.4   Manoli and Manoliputti Islands             3.38
                     3.3.1.5   Musal Island                               3.39

      Item                                                             Page
No.

             3.3.2   Marine Organisms Observed around the
                     Mandapam Group of Island                             3.40
             3.3.3   Trend of Fish Catch in Mandapam Region               3.42
             3.3.4   Keezhakarai Group                                    3.42
                     3.3.4.1   Mulli Island                               3.43
                     3.3.4.2   Valai and Talairi Islands                  3.44
                     3.3.4.3   Appa Island                                3.45
                     3.3.4.4   Anaipar Island                             3.46
             3.3.5   Marine organisms recorded around Keezhakarai
                     Group Islands                                        3.47
             3.3.6   Vembar Group                                         3.48
                     3.3.6.1   Nallathanni Island                         3.49
                     3.3.6.2   Pulivinichalli Island                      3.49
                     3.3.6.3   Upputhanni Island                          3.50
             3.3.7   Marine Organisms around Vember Group of Islands      3.51
             3.3.8   Tuticorin Group                                      3.52
                     3.5.8.1   Karaichalli Island                         3.53
                     3.3.8.2   Vilanguchalli Island                       3.53
                     3.5.8.3   Kasuwar Island                             3.54
             3.3.9   Marine Organisms                                     3.55
       3.4   Palk Bay/Palk Strait                                         3.56
             3.4.1   Marine Water Quality                                 3.56
             3.4.2   Biological Productivity                              3.56
                     3.4.2.1   Primary Productivity                       3.57
                     3.4.2.2   Secondary Productivity                     3.59
                     3.4.2.3   Tertiary Productivity                      3.61
                     3.4.2.4   Benthos                                    3.61
             3.4.3   Sponges and Corals                                   3.62
             3.4.4   Fishing in Palk Bay                                  3.64
             3.4.5   Marine Mammals                                       3.64
             3.4.6   Distribution of Palk Bay Reef                        3.65
             3.4.7   Review of the Coral Reef Ecosystem of Palk Bay       3.66
             3.4.8   Present Status of Palk Bay                           3.69
             3.4.9   Wildlife Sanctuary Adjoining Palk Strait             3.70
3.5    Gulf of Mannar                                                    3.72
       3.6    Issues Related to Coral Reefs                                     3.73
              3.6.1   Natural Stresses to Coral Reefs                           3.74
              3.6.2   Impacts of Human Activity on Coral Reefs                  3.75


      Item                                                                  Page
No.

                      3.6.2.1   Sedimentation                                   3.76
                      3.6.2.2   Runoff/Chemical Pollution/ Water Quality        3.77
                      3.6.2.3   Sewage                                          3.78
                      3.6.2.4   Temperature Stress and Bleaching                3.79
                      3.6.2.5   Coral diseases                                  3.80
                      3.6.2.6   Destructive fishing practices                   3.80
       3.7    Impacts in Palk Bay and Gulf of Mannar                            3.82
       3.8    Conservation                                                      3.83
       3.9    Future Direction 3.84
       3.10   Strategies for Coral Reef Ecosystems in India                     3.85
             3.10.1 Analyzing the Short Comings in Coral Reef
                     Conservation in India                                     3.85
             3.10.2 Understand the Coral Reef Problems                         3.85
             3.10.3 Determine the True Economic Value of Coral Reefs in India 3.85
             3.10.4 Coral Reef Conservation Education                          3.87
             3.10.5 Focus Management of Coral Reef around the Stakeholder      3.87
             3.10.6 Incorporate More Coral Reefs in Marine Protected Areas     3.87
             3.10.7 Control Managing Practices                                 3.88
             3.10.8 Promote Sustainable Uses                                   3.89
             3.10.9 Monitor the Effectiveness of Coral Reef
                     Management in India                                       3.89
       Figures 3.1-3.18                                                  3.92-3.109
       Tables 3.1-3.46                                                  3.110-3.167


 4.    Land Environment                                                    4.1 - 4.15
       4.1    Objectives                                                           4.1
       4.2    Data Used                                                            4.2
       4.3    Hardware and Software Used                                           4.3
       4.4    Selection of Study Sites                                             4.3
       4.5    Methodology                                                          4.4
       4.6    Data Interpretation                                                  4.6
       4.7    Identification of Dumping Sites for Dredged Materials                4.8
       Plates 4.1-4.4                                                      4.10-4.13
       Tables 4.1-4.2                                                      4.14-4.15
5.    Socio-economic Environment                                              5.1 - 5.19
       5.1   Socio-economics of the Fishing Community                                  5.1
       5.2   Sample Survey                                                             5.3
       5.3   Existing Status                                                           5.6
       Tables 5.1 - 5.3                                                        5.13-5.19

      Item                                                                      Page
No.

 6.    Assessment of Environmental Impacts                                      6.1-6.77
       6.1   General                                                                   6.1
       6.2   Impact Networks                                                           6.1
       6.3   Impacts due to Land Based Facilities                                      6.2
       6.4   Impacts due to Dredging                                                   6.3
             6.4.1   Dredged Material Disposal                                         6.7
                     6.4.1.1   Disposal on Land                                        6.7
                     6.4.1.2   Disposal in Sea                                         6.8
       6.5   Impacts due to Road and Rail Traffic                                   6.12
       6.6   Impacts on Productivity and Ecology in GOM/Palk Bay                    6.12
       6.7   Impacts on Hydrodynamic Conditions                                     6.15
             6.7.1   Tidal Current Distributions – Before and After Dredging        6.16
             6.7.2   The Salient Conclusions                                        6.18
                     6.7.2.1   Gulf of Mannar                                       6.18
                     6.7.2.2   Palk Bay                                             6.18
       6.8   Socio-economic Impact                                                  6.19
       6.9   Analysis of Alternatives for Route Alignment                           6.19
       Figures 6.1-6.30                                                        6.23-6.58
       Tables 6.1 - 6.11                                                       6.59-6.76


 7.    Environmental Management Plan                                             7.1-7.9
       7.1   Construction Phase                                                        7.1
             7.1.1   Acquisition of Land for Onshore Facilities                        7.1
             7.1.2   Dredging Activity                                                 7.1
       7.2   Operational Phase                                                         7.3
             7.2.1   Route Alignment                                                   7.3
             7.2.2   Discharges from Ships                                             7.3
             7.2.3   Maintenance Dredging                                              7.5
7.3    Summary of Environmental Management Plan                            7.6
               7.3.1   Construction Phase                                          7.6
               7.3.2   Operational Phase                                           7.7


 8.     Bibliography                                                          8.1-8.7



                                   List of Figures

Figure No.                     Title                                        Page
No.

 1.1          Shipping Routes in East Coast of India                          1.22
 1.2          The Gulf of Mannar and Palk Bay/Palk Strait Area                1.23
 1.3          The Study Area                                                   1.24
 2.1          Measured Significant Wave Height                                 2.44
 2.2          Measured Maximum Wave Height                                     2.44
 2.3          Wave Refraction Between Tuticorin and Arimunai (NE Monsoon)      2.45
 2.4          Wave Refraction Between Tuticorin and Arimunai (SW Monsoon)     2.46
 2.5          Wave Refraction Between Tuticorin and Arimunai (SW Monsoon)     2.47
 2.6          Wave Refraction Between Arimunai and Vedaraniyam                 2.48      (NE Monso
 2.7          Variation of Currents Off Arimunai in SW Monsoon                 2.49
 2.8          Components of Currents Near Surface off Arimunai
              (Stn. C1) during Southwest Monsoon                               2.50
 2.9          Components of Currents near Bottom Off Arimunai (Stn. C1)
              during Southwest Monsoon                                         2.51
 2.10         Variation of Currents off Uthalai (GM)in SW Monsoon              2.52
 2.11         Components of Currents near Surface off Rameswaram Island
              South (Stn. C2) (GM) during Southwest Monsoon                    2.53
 2.12         Components of Currents near Bottom off Rameswaram Island
              South (Stn. C2) (GM) during Southwest Monsoon                    2.54
 2.13         Variation of Currents off Pamban Pass in SW Monsoon              2.55
2.14    Components of Currents near Surface off Pamban Pass
                  (Stn. C3) during Southwest Monsoon 2.56
 2.15      Variation of Currents off Tharuvai in SW Monsoon                2.57
 2.16      Components of Currents near Bottom off Tharuvai
           (Stn. C4) during Southwest Monsoon                              2.58
 2.17      Variation of Currents off Arimunai in NE Monsoon                2.59
 2.18      Components of Currents near Surface off Arimunai (Stn. C1)
           during Northeast Monsoon                                        2.60



Figure No.                 Title                                        Page
No.

 2.19      Components of Currents near Bottom off Arimunai (Stn. C1)
           during Northeast Monsoon                                        2.61
 2.20      Variation of Currents Uthalai (GM) in NE Monsoon                2.62
 2.21      Components of Currents near Surface off Rameswaram Island
           South (Stn. C2) (GM) during Northeast Monsoon                   2.63
 2.22      Components of Currents near Bottom off Rameswaram Island
           South (Stn. C2) (GM) during Northeast Monsoon                   2.64
 2.23      Variation of Currents off Pamban Pass in NE Monsoon             2.65
 2.24      Components of Currents near Surface off Pamban
           Pass (Stn. C3) during Northeast Monsoon                         2.66
 2.25      Variation of Currents off Tharuvai in NE Monsoon                2.67
 2.26      Components of Currents near Surface off Tharuvai (Stn. C4)
           during Northeast Monsoon                                        2.68
 2.27      Components of Currents near Bottom off Tharuvai (Stn. C4)
           during Northeast Monsoon                                        2.69
 2.28      Variation of Currents off Arimunai in FW Period                 2.70
 2.29      Components of Currents near Surface off
           Arippumunai (Stn. C1) during Fair Weather                       2.71
 2.30      Components of Currents near Bottom off
           Arrippumunai (Stn. C1) during Fair Weather                      2.72
 2.31      Variation of Currents off Uthalai (GM) in FW Period             2.73
 2.32      Components of Currents Near Surface off Rameswaram
           Island South (Stn. C2) (GM) during Fair Weather                 2.74
2.33    Components of Currents near Bottom off Rameswaram
         Island South (Stn. C2) (GM) during Fair Weather                         2.75
 2.34    Variation of Currents off Pamban Pass in FW Period                      2.76
 2.35    Components of Currents near Surface off Pamban
         Pass (Stn. C3) during Fair Weather                                      2.77
 2.36    Monthly Sediment Transport Rate                                         2.78
 2.37    Monthly Sediment Transport Rate                                         2.79
 2.38    Monthly Sediment Transport Rate                                         2.80
 2.39    Annual Net Sediment Transport Rate                                      2.81



Figure No.                Title                                               Page
No.

 2.40    Annual Gross Sediment Transport Rate                                    2.82
 2.41    Location of Boreholes                                                   2.83
 2.42a   Grain Size Distribution at BH1 at Surface and 2.5 m                     2.84
 2.42b   Grain Size Distribution at BH1 at 5.0 m and 7.5 m                       2.85
 2.42c   Grain Size Distribution at BH1 at 9.0 m and 12 m                        2.86
 2.43a   Grain Size Distribution at BH2 at Surface and 2.5 m                     2.87
 2.43b   Grain Size Distribution at BH2 at 5 m and 6.5 m                         2.88
 2.43c   Grain Size Distribution at BH2 at 11 m                                  2.89
 2.44a   Grain Size Distribution at BH3 at Surface and 0.7 m to 8.5 m            2.90
 2.44b   Grain Size Distribution at BH3 at 8.5 m to 10 m and 10.5 to 12.7 m      2.91
 2.45    Bathymetry Map of Gulf of Mannar (1975)                                2.92
 2.46    Bathymetry map of Tuticorin Coastal Region (1999)                      2.93
 2.47    Location of Proposed Site                                              2.94
 2.48    Bathymetry Study Over 100 Line km Across the 20 km x 4 km line         2.95
 2.49    Area Showing Bathymetry More than 12 m and
         Hard Strata in Palk Bay Area                                           2.96
 2.50    Area Showing Bathymetry more than 10 m with
         Hard Strata at about 16 m depth in Palk Bay Area                       2.97
 2.51    Bathymetry along the Proposed Channel                                  2.98
3.1   Data Locations                                                     3.92
3.2   Variation in Salinity                                              3.93
3.3   Variation in Salinity and Silicate                                 3.94
3.4   Particle Size Distribution of Sediments (1-10 Sampling Stations)   3.95
3.5   Trophic Relations of Marine in Study Area of
      Sethu Samudram Ship Canal Project                                  3.96
3.6   Maximum Diversity Index values of Phytoplankton in 21 Islands
      of Gulf of Mannar                                                  3.97
3.7   Maximum Diversity Index values of Zooplanktons in 21 Islands of
      Gulf of Mannar                                                     3.98
Figure No.              Title                                           Page
No.

 3.8     Location of Corals in the Gulf of Mannar and the Palk Bay          3.99
 3.9     Coral Reef and Seagrass Areas around the Islands of
         Gulf of Mannar                                                    3.100
 3.10    Maximum Diversity Index values of Corals in 21 Islands of
         Gulf of Mannar                                                    3.101
 3.11    Locations of Pearl Banks in the Gulf of Mannar                    3.102
 3.12    Chank Habitats in the Gulf of Mannar and the Palk Bay             3.103
 3.13    Habitats of Sea Cow (Dugong-dugong) in the Gulf of Mannar
         and the Palk Bay                                                  3.104
 3.14    Habitats of Sea Weed, Sea Grass and Holothuria in the
         Gulf of Mannar and the Palk Bay                                   3.105
 3.15    Maximum Diversity Index values of Seagrass in 21 Islands of
         Gulf of Mannar                                                    3.106
 3.16    Maximum Diversity Index values of Mangroves in 21 Islands of
         Gulf of Mannar                                                    3.107
 3.17    Locations of Mangroves in Gulf of Mannar and the Palk Bay         3.108
 3.18    Maximum Diversity Index values of Corals, Mangroves and
         Seagrass in 21 islands of Gulf of Mannar                          3.109
 6 .1    Environmental Impact Network - Construction Phase                  6.23
 6.2     Environmental Impact Network - Post-Construction/
         Operation Phase                                                    6.24
 6.3     Study Area for Route Alignment in Adam’s Bridge Area               6.25
 6.4     Borehole Data in Adam’s Bridge Area                                6.26
 6.5     Bathymetry Along Line 1                                            6.27
 6.6     Bathymetry Along Line 2                                            6.28
 6.7     Bathymetry Along Line 3                                            6.29
 6.8     Bathymetry Along Line 4                                            6.30
 6.9     Bathymetry Along Line 5                                            6.31
 6.10    Quantity Dredged Material along Various Tracks in Adam’s Bridge    6.32
 6.11    The Alignment of the Proposed Channel                              6.33
6.12    Bathymetry along the Proposed Channel                               6.34


Figure No.               Title                                           Page
No.

 6.13    Cross Section of Proposed Channel                                   6.35
 6.14    3D Plume of Disposed Silt                                           6.36
 6.15    Near Field                                                          6.37
 6.16    Far Field                                                           6.38
 6.17    Central Line Dilution                                               6.39
 6.18    Geographical Domain Considered for Modelling                        6.40
 6.19    Locations for Current Measurements                                  6.41
 6.20    Tidal Stream Observations                                           6.42
 6.21    Tidal Stream Observation                                            6.46
 6.22    Tidal Observations                                                  6.50
 6.23    Proposed Ship Navigation Alignment Considered for Modelling         6.51
 6.24    Calibration Tide Heights                                            6.52
 6.25    Calibration Currents                                                6.53
 6.26    Spatial Current Predicted by the Model - Before Dredging            6.54
 6.27    Spatial Current Predicted by the Model - After Dredging             6.55
 6.28    Locations of Coral Reefs in the Modelling Domain
         (Adjoining Mandapam and Pambam Islands)                             6.56
 6.29    Locations of Coral Reefs in the Modelling Domain
         (Dhanushkodi Portion of Pambam Island)                              6.57
 6.30    Plan Showing Various Alignments of Sethusamudram Ship Canal
         Project and the Group of Islands (Marine Parks) in Gulf of Mannar   6.58
List of Tables

Table No.                 Title                                            Page
No.

 1.1        Texture, Mineralogy and Elemental Composition of
            Sediments in Palk Strait                                            1.25
 2.1        Monthly Variation of Breaking Wave Height (m)                       2.99
 2.2        Monthly Variation of Wave Period (s)                               2.100
 2.3        Predominant Wave Characteristics Buoy Data Off
            Vembar from Wave Rider                                             2.101
 2.4        Monthly Variation of Longshore Current (m/s)                       2.102
 2.5        Longshore Sediment Transport Rate                                  2.103
 2.6        List of Islands in the Gulf of Mannar                              2.104
 3.1        Particulars of Sampling Locations along the
            Proposed Canal Alignment                                           3.110
 3.2        Physico-chemical Quality of Marine Water                           3.111
 3.3        Marine Water Quality (Inorganic, Nutrient and Heavy Metals)        3.112
 3.4        Sediment Quality                                                   3.113
 3.5        Gross Primary Productivity                                         3.115
 3.6        Number of Species Recorded in the Gulf of Mannar Marine
            Biosphere Reserve during Different Periods                         3.116
 3.7        Status Report of Biota of Gulf of Mannar                           3.117
 3.8        Distribution of Phytoplankton in Gulf of Mannar
            (Number of Species Recorded During October '98, August '99)        3.124
 3.9        Maximum Diversity Index Values of Phytoplankton
            in 21 Islands of Gulf of Mannar                                    3.125
 3.10       Enumeration and Diversity of Phytoplankton                         3.126
 3.11       List of Phytoplankton Recorded                                     3.127
 3.12       Distribution of Zooplankton in Gulf of Mannar (Number of Species
            Recorded During October '98, August '99)                           3.128
 3.13       Shannon Weaver Diversity Indice of Zooplankton Recorded
            at various Coastal Waters in India                                 3.129
 3.14       Enumeration and Diversity of Zooplankton                           3.130
3.15       List of Zoolplankton at Different Locations                         3.131



Table No.                 Title                                               Page
No.

 3.16       Maximum diversity index values of Zooplankton                               in 21 island
 3.17       Distribution of Benthic Organisms in Gulf of Mannar                 3.133
 3.18       Enumeration and Diversity of Macrobenthos                           3.134
 3.19       List of Macrobenthos Recorded                                       3.135
 3.20       Density and Biomass of Meiofauna in Sediment Samples                3.138
 3.21       Distribution Pattern of Corals, Live Corals (Percentage)
            and Seagrases                                                       3.139
 3.22       Maximum diversity index values of Corals                                    in 21 island
 3.23       List of Fishlanding Centres within
            Sethusamudram Ship Canal Zone                                       3.141
 3.24       Shannon Weaver Diversity Index (H' value) for the Ornamental
            Fishes Recorded Around each Island in the Gulf of Mannar            3.143
 3.25       Commercially Important Species Contributing to Fishery in                   the Gulf of
 3.26       Major Fishing Gears used in the Gulf of Mannar and the Palk Bay     3.145
 3.27       Marine Fish landings in the Gulf of
            Mannar during 1992-96 (In Tonnes)                                   3.146
 3.28       Composition of Different Groups in Marine Fish Landings in
            the Gulf of Mannar (Catch in Tonnes)                                3.147
 3.29       Composition of Trawl Catches in the Gulf of Mannar                  3.149
 3.30       Composition of the Trawl Catches at
            Pamban, Rameswaram and Tuticorin                                    3.150
 3.31       Pearl Oyster Paars in the Gulf of Mannar and the Palk Bay           3.151
 3.32       Distribution of Seagrass in the Islands of Gulf of Mannar           3.152
 3.33       Maximum diversity index values of Seagrass                                  in 21 island
 3.34       Maximum diversity index values of Mangroves                                 in 21 island
 3.35       Mangrove Species in Coasts of Palk Bay and Gulf of Mannar           3.155
 3.36       Distribution of Mangrove Vegetation in the
            Islands of Gulf of Mannar                                           3.156
Table No.                 Title                                              Page
No.

 3.37       Annual Primary Productivity (Gross) in Certain Marine
            Environments as Grams Carbon per square meter Sea Surface          3.157
 3.38       Coral Fauna around the Mandapam Group of Islands                   3.158
 3.39       Summary of Underwater Observations on Shelter and
            Food of Various Coral Reef Associated Fauna in the
            Mandapam Group of Islands                                          3.159
            Marine Water Quality in Palk Bay (Latitude 9O44’)
 3.40                                                                          3.160
 3.41       Distribution of Zooplankton in Palk Bay near the Proposed Channel 3.161
 3.42       Distribution of Decapods in Palk Bay                               3.162
 3.43       Distribution of Desmospongiae and Corals in Palk Bay               3.163
 3.44       Distribution (kg/hr) of Various Fishery Resources along
            Palk Bay SE Coast of India during 1985-90                          3.165
 3.45       Abundance of Demersal Finfish Resources (kg/hr) in
            SE Coast of India EEZ                                              3.166
 3.46       Perches Abundance in kg along S.E. Coast (Palk Bay)                3.167
 4.1        Land use/Land cover Status in Pamban Island, Based on the
            Satellite data of May, 2002                                         4.14
 4.2        Land use/Land cover Classification System                           4.15
 5.1        Summary of Coastal Villages/Towns in the Study Area                 5.13
 5.2        Details of Coastal Towns/Villages in the Study Area (Palk Bay)      5.14
 5.3        Details of Coastal Towns Villages in the Study Area                 5.18
 6.1        Bathymetry along Line: 1                                            6.59
 6.2        Bathymetry along Line: 2                                            6.60
 6.3        Bathymetry along Line: 3                                            6.61
 6.4        Bathymetry along Line: 4                                            6.62
 6.5        Bathymetry along Line: 5                                            6.63
 6.6        Dredging Requirement for 10 m Depth (9.15 m draught)
            and 300 m Width Channel                                             6.64
 6.7        Dredging Requirement of 12 m Depth (10.7 m draught)
            and 300 m Width Channel                                             6.65
6.8        The Quantity of Dredged Material for 14 m Deep 500 Wide Channel 6.66


Table No.                 Title                                               Page
No.

 6.9        Expected Number of Transits through Sethusamudram Channel            6.67
 6.10       Inputs to Model for Dredged Material Disposal (12 m deep channel)    6.68
 6.11       Maximum and Minimum Tidal Current (Speed) at Locations in
            Palk Bay and Gulf of Mannar                                          6.69
 6.12       Speed and Direction of Currents for Patch-I - Before Dredging        6.70
 6.13       Speed and Direction of Currents for Patch-II - Before Dredging       6.72
 6.14       Speed and Direction of Currents for Patch-III - Before Dredging      6.74
 6.15       Speed and Direction of Currents for Patch-IV - Before Dredging       6.76
List of Plates

Plate No.                  Title                                               Page
No.



 4.1        Merged FCC (IRS 1D PAN Sharpened LISS III) depicting
            Pamban Island                                                             4.10

 4.2        Merged Imagery (LISS III + PAN) depicting Western Surrounds
            of Sethusamudram Ship (Navigational) Canal route in Indian Water          4.11

 4.3        Land Use/Land Cover Status in Pamban Island based on IRS 1D               4.12
            (LISS III + PAN), May, 2002

 4.4        Merged Data (PAN + LISS III) depicting degraded land, selected
            for dumping dredged material in Pamban Island                             4.13
List of Drawings

Drawing No.                  Title

   2.1        General Bathymetry in Palk Bay

   2.2        Bathymetry and Shallow Seismic Survey - South of
              Adam’s Bridge Line 1

   2.3        Bathymetry and Shallow Seismic Survey - South of
              Adam’s Bridge Line 2

   2.4        Bathymetry and Shallow Seismic Survey - South of
              Adam’s Bridge Line 3

   2.5        Bathymetry and Shallow Seismic Survey - South of
              Adam’s Bridge Line 4

   2.6        Bathymetry and Shallow Seismic Survey - South of
              Adam’s Bridge Line 5

   2.7        Bathymetry and Shallow Seismic Survey - North of
              Adam’s Bridge Line 1

   2.8        Bathymetry and Shallow Seismic Survey - North of
              Adam’s Bridge Line 2

   2.9        Bathymetry and Shallow Seismic Survey - North of
              Adam’s Bridge Line 3

   2.10       Bathymetry and Shallow Seismic Survey - North of
              Adam’s Bridge Line 4

   2.11       Bathymetry and Shallow Seismic Survey - North of
              Adam’s Bridge Line 5

   2.12       Bathymetry Survey in Palk Bay along Proposed Channel Alignment
1. Introduction
1.1      Preamble
         Shipping plays a vital role in the development of the Indian Economy as the
country has been gifted with a peninsular coastline of about 6,000 km, which is
studded with 12 major and over 150 intermediary and minor ports. It also has a
strategic location as one of the world's main sea routes and thus has a history of
maritime trade with countries across the globe.

         It is, however, unfortunate that despite having such a coastline India does not
have, within her own territorial waters, a continuous navigable sea route around the
peninsula from the Gulf of Mannar to Palk Bay and vice-versa due to the presence of
shallow (about 3 m) sand-stone reef called 'Adam's Bridge' at Pamban near
Rameswaram between the south-eastern coast of India and Talaimann on the western
coast of Sri Lanka. Consequently, the entire coastal traffic from the east coast of the
country to the west and vice-versa has to go around Sri Lanka entailing an additional
distance of more than 254-424 nautical miles and 21-36 hours of sailing time. The
shipping routes and savings are shown in Fig. 1.1.

         The Gulf of Mannar, an inlet to the Indian Ocean between south-eastern India
and western Sri Lanka, is bounded on the north-east by the island of Rameswaram,
Adam's Bridge and Mannar. The Gulf is about 130-275 km wide and 160 km in length.
The    Palk     Bay     on     the     north        of      Gulf   of     Mannar      is    about
64-137 km wide and 137 km long and includes many islands of Sri Lanka.
Furthermore, Adam's Bridge is a chain of shoals, nearly seven in all, located between
India and Sri Lanka separating Palk Bay and Gulf of Mannar. It is about 30 km long
and   the     sea   across   this    portion   is        shallow   with   a   depth    of   about
3-3.5 m only during high tides.

         Various committees that have deliberated the subject have observed that a
shorter route through the Palk Bay is an important necessity to save time and foreign
exchange spent on import of fuel for Indian ships, also the country can stand to gain
revenue in foreign currency due to toll collections from International ships.
The creation of a channel called quot;Sethusamudram Ship Channel quot;, now under
consideration of the Ministry of Shipping, Government of India, envisages construction
of channel in stages and of varying lengths to suit different drafts ranging from 9.15 m
to 12.8 m through dredging / excavation across the Adam's Bridge. It is proposed to
study different alignments for the proposed channel in the light of representations from
the public, the fisherman, the pilgrims and above all its techno-economic viability. The
channel will originate from Tuticorin Harbour, extend north-east upto south of Pamban
island, cut through Adams Bridge and proceed parallel to medial line of fishing
between Sri Lanka and India before joining the Bay of Bengal channel. The width of
channel will vary between 200 and 500 m and will require dredging to arrive at desired
depth in the Adams Bridge and Palk Bay area. In GOM navigation depths will be used
hence no dredging is required. The area engulfing the Adam’s Bridge known as
‘Sethusamudram’ has been derived from the Kings of Jaffna who were called
'Sethukavalar,' meaning protectors of Adam's Bridge and the Southern sea that
surrounds the region. The Gulf of Mannar and Palk Bay/Palk Strait separated by
Adam's Bridge are shown in Fig. 1.2.

           The proposed channel on commissioning will bring plenty of prosperity and
industrial growth in the Indian hinterland lying along the proposed ship channel and
the very presence of the short route would increase the turn-arounds of the coastal
and international vessels. There are many other benefits which are difficult to quantify
like       (a)     surge     in     the      development       of    coastal      trade,
(b) development of Industries in Ramanathapuram and Tuticorin Districts,
(c) amelioration of distress due to droughts visiting annually Ramanathapuram and
Tuticorin Districts.

       • The project will further enable direct movement of Indian naval fleet between
           the east and west coast of the country instead of going around Sri Lanka.

       • The project opens up minor ports all along Tamil Nadu coastline upto the
           major port of Tuticorin and further west upto Colachal.

           The Tuticorin Port Trust, the nodal agency identified by the Ministry of
Shipping for the implementation of the proposal has retained in July 2002 the National
Environmental      Engineering    Research   Institute   (NEERI), Nagpur to conduct
Environmental Impact Assessment studies followed by the Techno-Economic Viability
for the proposed quot;Sethusamudram Ship Channel Projectquot;.

1.2        Earlier Studies Involving Creation of Canal
           One of the pioneering efforts undertaken to study the construction of the
canal was the Commander Taylor's proposal of 1860. Although a series of proposals
on the subject were forwarded thereafter during the British regime in the country, due
consideration could never be given to the proposal and the Sethusamudram Ship
Canal remained a dream for the Indian maritime community.

           After Independence, the Government of India continued to pursue the idea of
constructing the Sethusamudram Ship Canal and among the many committees
constituted for studying the feasibility of the project, the 'Ramaswamy Mudaliar
Committee' constituted in 1955, was the first. In addition to studying the feasibility of
the Sethusamudram Ship Canal project, the committee also studied the increase in
potentiality of the port of Tuticorin, if it were to be developed into a deep-sea port
alongwith the canal. Although Tuticorin port was in existence for a long time, it did not
have berthing facilities for ships and those had to be attended at the anchorage, which
was about 5 to 6 miles off the coast.

           The committee was of the view that the two projects namely the
Sethusamudram Ship Canal and Tuticorin Harbour were closely inter-related and
should be taken up and executed as part of the same project. After evaluating the
costs and benefits, the project was found to be feasible and viable and the committee,
therefore, proposed an initial capital outlay of Rs. 998 lakhs for the integrated
Sethusamudram-cum-Tuticorin Port Scheme. Thereafter, series of studies were
undertaken for the project, and many of those recommended for increase in draught
from the original 26 ft. proposed by the Ramaswamy Mudaliar Committee. These
studies also led to revision of the Project cost, as also to the expected savings in
navigable distance resulting from the canal which ranged from 260 to 425 kilometres.
Finally, the Tuticorin Harbour project was sanctioned in 1963 and the Government of
India continued to study the various aspects of the Sethusamudram Ship Canal
Project.

               Over a last century, several proposals were formulated by various
committees to create a continuous navigable route all around the peninsula within the
territorial waters of India. The latest study of the project was undertaken by the
Lakshminarayanan Committee constituted by the Ministry of Shipping and Transport
(Port wing) in 1981. The Committee, after a critical review of the earlier proposals,
some of which envisaged the canal project by cutting across the main land,
investigated another alignment known as the 'K' alignment across the Rameswaram
island near Kodandaramasamy temple, and established the technical feasibility and
economic viability of the alignment. This alignment was also in keeping with the
representations of the public, the fishermen and the pilgrims of Ramanathapuram area
who preferred the island being cut east of Rameswaram town. The Committee fixed
the alignment across the land and along the northern and southern approaches in the
sea, conducted drilling operations in sea and on land, collected tidal, current, wind and
other meteorological data, and submitted to the Government of India in 1983 a project
feasibility report with an estimated project cost of Rs. 282 crores including foreign
exchange component of Rs. 3 crores. As per economic analysis by the Committee, the
project would have generated surplus from twentieth year of its operations building up
cumulative surplus of Rs. 453 crores at the end of twenty fifth year. However, no
follow-up action on this report was initiated due to financial constraints.

              In its pursuit to make the Sethusamudram Ship Canal project a reality
the Government of Tamilnadu in 1996 got, through Pallavan Transport Consultancy
Services (PTCS) Limited, the Lakshaminarayanan Committee proposal updated for its
economic viability with a view to seeking approval from Government of India for the
project. Fresh particulars of cost and traffic were collected and incorporated in the
report so as to reflect conditions as of 1996.

         Apart from the construction of proposed canal, which constituted the major
component of project, creation of number of other infrastructural facilities as listed
below were envisaged :

         •    Construction of a quot;lockquot;

         •    Construction of rubble mound type breakwaters on either sides of the
              canal

         •    Navigational aids

              - Lighted beacons/buoys
              - Racons
- Satellite based differential global system
               - Improvements to Pamban light house

           •   Flotilla
               - Harbour tugs
               - Pilot, mooring, survey-cum-lighting launches
               - Despatch vessels

           •   Shore facilities
               -   Two service jetties
               -   Slipways
               -   Buoy yard
               -   Repair workshop

           •   Staff and administration buildings

               The canal proposed had two legs, one near the Point Calimere called
the Bay of Bengal Channel and another across the narrow Danushkody Peninsula
near Kodandaramasamy Temple. The Bay of Bengal Channel traverses the Palk Bay
wherein the sea-bed is mostly soft to hard clayey-sand in nature and not corals or
rock. The channel proposed was 19.3 km away from Point Calimere and Kanakesan
Thurai where the coast consists of only clayey-sand. The second leg of the canal 802
m long would have crossed the narrow Danushkody Peninsula through the land
portion. The entire coast of Danushkody Peninsula on the North and the South is all
sandy. In the North Approach Channel, soft sand-stone was met with below 12 m
depth and cutting this sand-stone was not necessary even in the ultimate stage of the
canal. The canal would have, however, cut the road connecting Rameswaram and
Danushkody. This road is being used by the Rameswaram fisherman to go to
Danushkody for daily fishing as there is no habitation at Danushkody. The project
envisaged a high-level or a swinging bridge at the crossing point to enable the traffic to
go through. Tracer studies conducted at two places along the 'K' alignment
established that the pattern of movement of sea-bed silt would almost be in the same
direction as that of the proposed canal, and that the chances of siltation would be very
minimal.

           The cost estimates for the proposed canal project were worked out by PTCS
Ltd. based on the same quantities of dredging as in the 1983 report but with updated
rates for the year 1996. The costs of dredging for various segments of channel for
three different drafts viz. 30, 31 and 35 feet were worked out alongwith cost estimates
for other components of the project including those of navigational aids and floating
crafts. The construction period for 31 feet draft was estimated as four years with a
capital expenditure of Rs. 760 crores. The operation and maintenance cost was
estimated by PTCS Ltd. at Rs. 4.52 crores per year.

           An economic appraisal of the Sethusamudram Ship Canal project, taking into
account cost estimates and cost benefits of the proposal, were made by PTCS Ltd.
Based on Net Present Value (NPV) method of appraisal, an Internal Rate of Return
(IRR) of 10 to 17% on the project investment was arrived at. Considering the then
interest rate of 9% per annum of government lending to ports on the capital employed
the project would have generated surplus from the 16 or 17th year of its operation, and
thereafter the benefits to the canal company would have been 47 crores in the first
year,          and          this        would         have         increased          to
100-120 crores every year.

           The traffic potential through the canal at various draughts projected by both
the studies for 2000 AD were as follows :

                    Upto 30' draught    31~32' draught   Above 32' draught
 1983 Committee           2,100             2,200               2,300
 1996 Report              3,791             3,875               4,211
        Later a report was prepared by NEERI in 1998 comprising the examination of
environmental status of the project region based on information available on
hydrography, marine water quality and ecological resources etc. An environmental
impact study was recommended by NEERI as essential for fuller description and
appreciation of the natural processes occurring in the region to delineate the
environmental consequences including the ecological risks associated due to the ship
canal and suggest measures for minimisation and mitigation of potential adverse
impacts.

           The study for initial environmental examination of proposed canal also
recommended that the canal route should pass through Adams Bridge area
circumventing the Pamban Island instead of cutting through it. A detour was
suggested from earlier alignment. Keeping in view the location biosphere reserves, it
was suggested that an environmental viable alignment of route be selected in GOM so
that proper distance from Biosphere reserves can be maintained and the available
navigational route can be selected based on both environmental and technical
viability. The EIA studies recommended in IEE report of NEERI was therefore
subjected to proper scoping so that all the environmental concerns due to this project
can be addressed and resolved through this report. The technical viability would
depend on quantity of dredging required in the vicinity of Adams Bridge area keeping
in view the draft required to operate the channel. This study report addresses
environmental, technical and commercial viability of the proposed ship canal project.

1.3      Project Region
         The Palk Bay and the Gulf of Mannar together sprawling over an area of
10,500 sq.km (8O35’N to 9O25’N latitude and 78O8’E to 79O30’E longitude) in which the
ship channel is proposed to be constructed are biologically rich and rated as the highly
productive seas of the world and their biodiversity is considered globally significant. In
the Gulf of Mannar, there are 21 islands covering an area of 623 ha which have been
declared as National Marine Parks by the Tamilnadu Forest Department and the
MoEF, Government of India. The islands are distributed in 4 groups namely
Mandapam, Keezhakarai, Vembar and Tuticorin group.

         The islands have luxurient growth of mangroves in their shores and swampy
regions. The coral reef of fringing and patch type are present around the 21 islands
from Rameshwaram to Tuticorin covering a distance of 140 km. However, a major part
of the reef is fringing type arising from shallow sea floor of not more than 5 m in depth.
About 3600 species of flora and fauna have been recorded in this area. Fringing type
of reef is present in Palk Bay.

         The hydrography data shows that there are two circulations of water masses
in the region, the clockwise circulation of south-west monsoon and the counter
clockwise circulation of north-east monsoon. The reported current velocities in the Palk
Bay and the Gulf of Mannar are as mild as 0.2 - 0.4 m/sec except on few days during
south-west monsoon when it rises upto 0.7 m/sec. The directions of currents follow the
directions of predominant winds.

         The presence of corals along the proposed ship channel alignment is
negligible however occurrence of major groups of biological resources like sea fan,
sponges, pearl oysters, chanks and holothuroids at various locations have been
reported. All the three groups of prochordata organisms, considered as the connecting
link between invertebrates and vertebrates, viz., hemichordata, cephalochordata and
urochordata have been recorded mostly around the islands of the Gulf of Mannar.

        There are 87 fish landing stations between the south of Point Calimere and
Pamban in the Palk Bay, and 40 stations in the Gulf of Mannar between Pamban and
Tuticorin. Out of over 600 varieties of fishes recorded in this area, 72 are commercially
important. During 1992-2001, the fish production has increased gradually from 55,300
tonnes in 1992 to 2,05,700 tonnes in 2001. Non-conventional fishing in the region is
represented by pearl, chank, sea weeds, ornamental shells and holothurians.

        Rare and endangered species of sea turtle, dolphin, sea cow and whale are
recorded in the Gulf of Mannar and the Palk Bay. The sea cow inhabitates the shallow
shore regions where grasses occur, while other endangered animals mostly prefer
deep sea.

        Several species of green algae, brown algae, red algae, blue-green algae and
sea grasses are recorded in the Gulf of Mannar and the Palk Bay. A few of the islands
are reported to possess patches of mangroves predominated by Avicennia sp. and
Rhizophora sp.

        Most of the habitats of the sensitive biota, viz., corals, pearl oysters, chanks,
dugong, holothuroids and marine algae are along the coast and around the islands.

        Along the coast in the Gulf of Mannar and the Palk Bay there are 138 villages
and towns spread over 5 districts.

1.4     Geomorphology of Study Region
        The study region stretches between Tuticorin and Dhanushkoti including its
coastal and offshore water in Gulf of Mannar and Palk Bay area between Pumban and
Point Calimere.

        The coastline near Tuticorin is extensively used due to the presence of major
port. Beach is very flat and narrow between Tuticorin and Sippikulam. Offshore islands
viz; Pandyan Tivu, Van Tivu, kasuvari Tivu, Vilangu Shuli Tivu and Kariya Shuli tivu
are present within 5 km distance from the coast line along this segment and offer
protection from wave action. The backshore of this costal segment largely consists of
salt pans. The Viappar river joins Gulf of Mannar near Sippikulam. An extensive
coastal low land is seen between Sippikulam and Vembar (Loveson, 1994).
The coastal segment between Sippikulam and Naripaiyur is open without any
offshore islands or submerged coral banks and is exposed to direct action of waves
both during southwest monsoon and northeast monsoon. The coastline near
Kannirajapuram is found with large extent of beach rocks with pear luster (Loveson,
1994). Wide and flat sandy beach with numerous small dunes are seen between
Naripaiyur and Mukkaiyur .

         The formation of sand island off Tuticorin indicates this region as sediment
sinks with progressive accumulation of sand. The large beach storage of sand
between Manppad and Tiruchendur, Vembar and Valinokkam and Rameswaram
Island is an indication of depositional features of littoral sediments.

         Gundar river joins the sea near Mukkaiyur. The presence of offshore islands
are once again noticed from Mukkaiyur till Mandapam. There are 16 islands noticed
along this coastal segment viz., Uppu Tivu, Shalli Tivu, Nalla Tanni Tivu, Anaipar Tivu,
Palliyarmunai Tivu, Puvarasanpatti Tivu, Appa Tivu, Talairi Tivu, Valai Tivu, Muli Tivu,
Musal Tivu, Manali Tivu, Pumorichan Tivu, Kursadi Tivu, Kovi Tivu, and Shingle Tivu.
The beaches between Mukkaiyur and Valinokkam are very wide with elevated dunes.
Extensively developed beach is seen at Kilamundal. Flat rocky shorelines are noticed
near Valinokkam (Loveson, 1994). Extensive spread of rocky shore with hard sand
stone platform is seen off Valinokkam. There is a Bay formation immediately on the
northern side of Valinokkam.

         No beach is present especially during high tide Kilakarai. A narrow and flat
beach is noticed near Sethukarai with the abundance of algae along the coastline.
Loveson and Rajamanickam (1987, 1989) have identified a spit growth near
Pariyapattinam. They described well-developed hooked nature spit extending
southeast and connecting the main land in southwest direction. This formation of spit
extending southeast and connecting the main land in southwest direction indicated
seaward progradation of the coast between Tuticorin and Mandapam.

         Wave cut cliff is seen at places like Valinokkam, Sethukarai and Mandapam.
Very low and narrow sandy beach is noticed between Kalimangundu and Vedalai
(loveson, 1994). Sea is found to be very calm in this region. Wave cut platform is once
again noticed along the coast of Vedalai. A patch of rocks is observed along the coast
between Mandapam camp and Mandapam tip. Agrawal (1988) observed that the area
between Mandapam tip and Pamban Island is attributed to a sand spit later emerging
as a high water land. The coastline between Mukkaiyur and Mandapam is totally
protected from northeast monsoon waves. Chandrasekar et al. (1993) indicated
reversal trend in the direction of sediment transport between Mandapam and Cape
Comorin due to change in the coastal configuration, deposition as the formation of
numerous spits along this coast that too, in a region where fluvial activities are
negligible. The presence of three offshore islands viz., Pumorichan Tivu, Kursadi Tivu,
Shingle Tivu are noticed off Rameswaram Island in Gulf of Mannar. The stretch of
shoreline around Rameswaram Island exhibits distinct variation (Loveson, 1994).

         The central zone of the northern part of Rameswaram is made up of
undulatory sandy bodies with a relief upto 21 m above Mean Sea Level (MSL). This
area is partially covered with huge dunes. Northern part of Rameswaram Island is
occupied by raised coral plain. Characteristically, this zone is flat with dead corals and
numerous minor circular depressions. These depressions are liable to get filled with
water during rainy season and is entirely devoid of vegetation. Huge sand dues of
medium grain and white sands are found in the central part of the island. Dune
patterns are well developed by the active Aeolian processes, resulting in the migration
of dunes with frequent changes in their shapes and patterns from time to time but
generally trends due east to west. The sand sheet covers the southwestern zone of
the island. Within this unit, on the western part, localized sand mound of about 19 m
height is noted (Loveson, 1994). The beach zones in this area are broader with wide
inter tidal zones. The tail portion of Rameswaram occupying the southeastern part of
the island has coral swampy plain, which is considered to be of recent in age. This
vast flat and low-lying plain, which is considered to be of recent in age. This vast flat
and low lying plain is essentially composed of thin sheet of silt and clay materials in
which coral fragments are impregnated. Invariably, this zone is often inundated by
seawater during high tides, monsoons and storm seasons.

         At east, a long sand spit of about 20 km length is formed up to Arimunai and it
tends to grow longer and wider. The width of this sand spit which is about
2 km near Uthalai, reduced to Arimunai and it tends to grow longer and wider. The
width of this sand spit which is about 2 km near Uthalai, reduced to 1250 m at
Mukkuperiyar, 750 at Dhanushkodi and 150 m at just east of Arimunai and coverages
on tip at Arimunai. The beach berm is found to be highly elevated along the sand spit
bordering Gulf of Mannar, but very low and flat along the side bordering Palk Bay.
There is a marked depression in the sand spit level between Palk Bay and Gulf of
Mannar between Dhanushkodi and Arimunai. Due to such level difference, the water
overflows during spring tide particularly from Bay carrying the fine sediment to the
backshore regions. Most of the time, the water is stagnant and remains along the
trough of the spit. This low lying region is fully occupied by water column during the
monsoon season.

        The coastal process between Arimunai (India) and Talaimannar (Sri Lanka),
i.e. along Adman’s Bridge is quite complex which predominantly control the exchange
of sediment between Gulf of Mannar and Palk Bay. Adam’s Bridge is formation of
submerged sand shoals and there are around 17 islands present with bushes and
plants. The average length of these islands vary between 0.8 km to 3 km. This is
exposed to complex current pattern with the presence of quicksand. The currents near
Adam’s Bridge and Pamban Pass are found to be more seasonal. Submerged sand
shoals are seen shifting south of Arimunai and remain quasi-steady.

        The nearshore on the northern side of the Rameswaram Island is found to be
very shallow causing the northeast monsoon waves to break far offshore. The coastal
stretch between Mandapam and Ariyaman in Palk Bay shows the presence of wide
beach with elevated dunes.

        Loveson et.al. (1990) classified the coastal zone of Palk Bay into 3 groups; (i)
uplands/highlands with scantly vegetation, comprised of Cuddalore sandstone
formations, (ii) along the lower elevations sedimented Cuddalore sand stones, and (iii)
coastal lands mainly of microdeltas, swamps, and beach ridges based on the
geomorphological features. A large amount of sediments from those pediments are
removed constantly by rainfall and minor rivers. Because the pediments are placed
over the substratum which is appreciably sloping towards the sea, the erosion is found
to be intensive along the coastal islands. The eroded sediments brought to the littoral
zone are dumped in Palk Bay. As Palk Bay is shallow and protected from the high
waves and currents, the materials brought by these minor rivers is deposited in the
mouth of each river/stream, leading to the formation of micro-deltas in due course,
encouraging the formation of new shorelines.
Palk Bay is very shallow and is largely occupied by sand banks and shoals
(Agrawal, 1988). Abundant growth of corals, oysters, sponges, and other sea bottom
communities     flourish   in   the   relatively   calm   waters   of   Gulf   of   Mannar.
Sea level variations along the Tamilnadu coast were studied by Loveson et.al., (1990)
using satellite imageries and photographs. About 300 sediment samples were
collected along the central Tamilnadu coast by Chandrasekhar and Rajaminckham
(1993) and suggested to possibility of the supply from ultrabasic, pegmatitic and
granitic source of material to the depositional basic.

River Influx and Sedimentation in Palk Bay/Palk Strait
         Vaigai River basin is located between latitude 9O15’ and 10O25’N and
longitude 77O15’ to 79O covering an aerial extent of 8600 sq. km. in the Madurai and
Ramanathapuram districts of Tamil Nadu, India. The river Uaigai, originates at an
altitude of 2200 m above mean sea level in the western ghats, drains through the
plains and confluences with the Bay of Bengal near Attangarai of Ramanathapuram
district. The basin is bounded by western ghats, in the west, Palni hills in the north, a
stretch of mountain ranges comprising Varushanad and Andipatti hills in the south and
the Bay of Bengal in the east.

         Vellar estuary also comes under Palk Bay (lat. 11029'N ; long. 79046'E).
Sediment in estuarine region are rich in organic carbon, phosphorus and nitrogen and
finally finds its way into Palk Bay. The nutrient rich water (due to settling of unified feed
particle) discharges periodically from the shrimp farms however did not show influence
on nutrients content of sediment in estuary.

Sea Bed Characteristics
         Geomorphology of the area exhibits tidal flats, estuaries and marsh zones as
well as linear stabilized older younger sand dunes. Beach dunes run parallel to the
sea.

         Geologically, thick section of Quaternary alluvium overlies the Archean
charnockite rocks and these are in turn overlain by the Holocene tidal flat deposits.

         The detailed lithological observation of cores reveals that the sediments have
been depositing in phases and that there has been pulsating supply of fine sediments
onto the tidal flats and estuaries. Sediment in the cores show very heterogeneous
mixture of quartz sand, biogenic carbonate and clay. Geomorphologic observations
reveal that the coarse sand in the tidal zones reflect ample sediment supply during the
Northeast monsoons. A number of different types of topographical features are found
in the study area, such as continental shelves, deep sea basins, troughs, trenches and
continental slopes.

        Sediments are moderately well stored and slightly well skewed. Kurtosis
value of 0.3 shows less sorting in grain size distribution. Clay is absent and sediments
are made of detritus. Different grain size sediment show variable levels of heavy metal
(Fe, Mn, Cr, Cu, Pb, Zn, Cd & Hg) concentration (Table 1.1).

1.5     Environmental Impact Assessment (EIA)
        The pre-construction phase would involve land acquisition, resettlement
and rehabilitation of affected population as also compensation hence impacts due to
such activities are required to be assessed.

        During the construction phase there will be considerable increase in rail and
road traffic to and from the island for transportation of men, material, machinery and
equipment. Also, the land access, now available to the local fisher folks, to
Dhanushkody area for traditional fishing may be hindered unless alternative
arrangements are made. The potential sites for dredging and disposal of dredged
material are to be decided as also shipping operations will have to be regulated so as
to cause minimum disturbance to the normal fishing activities.

        During the operation phase of the channel, the potential sources of marine
pollution are spillage of oil and grease, marine litter, jetsam and floatsam including
plastic bags, discarded articles of human use from the sea-borne vessels hence
impacts due to such wastes are to be assessed.

        The channel may facilitate the movement of fishes and other biota from the
Bay of Bengal to the Indian Ocean and vice versa. By this way, the entry of oceanic
and alien species into the Palk Bay and the Gulf of Mannar, as also the disposal of
endemic species outside the Palk Bay and the Gulf of Mannar may occur.

        The project is expected to provide employment opportunities and avenues of
additional income through establishment of small ancillary industries. The project will
also trigger development of coastal trade between the ports south and north of
Rameswaram, consequently reducing the load and congestion on railways and
roadways. The project will help in saving considerable foreign exchange through
reduction in oil import bill, and generate revenue income from dues levied on ships
transiting the canal which will add to the national economy.

1.5.1 Objectives of EIA Study
         The objectives of the study is to carry out assessment of environmental impacts, its
quantification and for delineating environmental management plan for Sethusamudram Ship
Channel project to enable the Ministry of Shipping to obtain environmental clearances from
concerned local, state and central Government authorities. The environmental assessments
are to be carried out in keeping with the applicable guidelines and notifications of the
regulatory agencies as also the International transboundary concerns.

         The rapid environmental impact assessment study report was prepared incorporating
primary data collected for the region and also available secondary data, environmental impact
statement based on       identification, prediction    and evaluation of impacts, ranking of
environmentally viable alternatives and environmental management plan for the acceptable
route. The comprehensive EIA report was prepared later based on the primary data collection
for region.The area for Environmental Impact Assessment Study is shown in Fig. 1.3.

1.5.2 Scope of the Study
         The scope of the comprehensive EIA study is summarised as follows :

         i.     Assessment of the present status of coastal water, marine, land, biological and
                socio-economic components of environment including parameters of human
                interest along the proposed ship canal route

         ii.    Identification of potential impacts on various environmental components due
                to activities envisaged during pre-construction, construction and post-
                construction/ operational phases of the proposal

         iii.   Prediction of impacts on the various environmental components using
                appropriate mathematical/simulation models

         iv.    Preparation of environmental impact statement based on the identification,
                prediction and evaluation of impacts

         v.     Preparation of detailed Environmental Impact Statement (EIS) duly bringing
                out the likely impacts of the project, mitigation, protection and enhancement
measures including impacts due to the disposal of dredged materials,
            consideration of alternatives, etc.

      vi.   Short-listing of viable routes for the proposed shipping canal based on
            technical requirements, and delineation of acceptable canal route for shipping
            based on environmental considerations

      vii. Delineation of Environmental Management Plan (EMP) outlining preventive
            and control strategies for minimising adverse impacts for various stages of the
            proposed project including the costs and time schedules for its implementation

    viii.   Formulation of environmental quality monitoring programme for various
            phases of the project to be pursued as per the requirements of statutory
            authorities

1.5.3 Plan of Work
      •     Collation/ collection of primary and secondary data on benthic flora/
            fauna, meiobenthos, bacrobenthos

      •     Collation/collection of primary and secondary data on phytoplankton,
            zooplankton in water column

      •     Assessment of general physico-chemical quality of water

      •     Assessment of sediment quality and its texture

      •     Fishery potential of the region

      •     Collation of secondary data on bathymetry, sediment transport, water
            current and directions, wave height, tidal variation, dispersion
            coefficients and other hydrographic parameters

      •     Collection of information about marine parks and ecologically sensitive
            species


      •     Qualitative and quantitative assessment of waste loads likely to accrue
            from proposed activities in the hinterland all along the canal

      •     Assessment of change in hydrographic pattern in the region during and
            after implementation of dredging activities vis-à-vis impact on coastal
            ecosystems
•   Assessment of impacts on food chain productivity, growth of benthos
           and vegetation, phytoplankton densities predatory fish and birds in the
           coastal waters

       •   Assessment of impacts on ecological health due to hydrodynamic and
           water quality changes

1.5.4 Components included in the Study
1.5.4.1 Coastal Water Environment
       •   Study of coastal water environment with respect to its physico-chemical
           and biological characteristics

       •   Assessment of mangrove forests/vegetation in the coastal and inter-
           tidal zones

       •   Determination of primary and secondary productivity in the coastal
           region

       •   Prediction of impacts of discharges during dredging on marine water
           quality

       •   Evaluation of impacts due to shipping activities in keeping with the CRZ
           regulations

1.5.4.2 Marine Environment
       •   Establishing abiotic and biotic characteristics of water and sediment
           component of marine environment
•    Delineation of hydrodynamic conditions (tide, current, wind and waves)
            including the pattern of movement of sea-bed material in the project
            region

       •    Assessment of impacts of dredging, transportation and disposal of
            dredged materials like interference with fishing, increased turbidity and
            disturbance to the flora and fauna

       •    Identification of likely impacts on the islands/region along the shipping
            canal

       •    Prediction of impacts of the project on other natural marine processes

1.5.4.3 Land Environment
       •    Study of existing landuse pattern, vegetation and forestry along the
            coastline of the region

       •    Assessment of impacts on landuse pattern of main land and islands
            with respect to agriculture and forestry due to proposed project

1.5.4.4 Biological Environment
       •    Identify the sensitive receptors and ecological systems within the study
            region

       •    Collection of information about flora and fauna and determination of
            species diversity, density, abundance etc.

       •    Collection of available information on both terrestrial and aquatic flora
            and fauna, including rare and endangered species in the study region

       •    Assessment of potential impacts on aquatic flora and fauna due to
            effluent discharges

       •    Prediction of stress on biological environment in the study region

       •    Estimation of anticipated impacts on fisheries and other useful aquatic
            flora and fauna

       •    Delineation of measures for abatement/reduction of biological stress

1.5.4.5 Socio-economic and Health Environment
Collection of baseline data related to socio-economic profile of the study region
with reference to :

         •     Human settlements, occupational pattern, employment and income in
               the region

         •     Infrastructure resource base, viz. Medical, education, water resources,
               power supply

         •     Economic resource base, viz. Agriculture, industries, forest, trade and
               commerce

         •     Health status, viz. morbidity pattern with reference to prominent and
               endemic diseases

         •     Cultural and aesthetic attributes in the study region including places of
               historical/ archeological, religious, recreational importance

               -      Estimation of disruption in social life due to relocation of human
                      settlements and assessment of rehabilitation requirement

               -      Assessment of impacts on places of historical/ archeological importance
                      and aesthetic impairment

               -      Assessment of economic benefits to community and environment due to
                      the proposed activities

1.5.4.6 Ecological Risks
         •     Quantification of ecological risks and delineation of ecological risk
               mitigation measures

         •     Study and survey of environmentally sensitive sites viz. spawning and
               breeding grounds and coral reefs

         •     Analysis of information with regard to environmental impact (direct,
               synergistic and cumulative) and associated nagivational and landward
               activities in and around the project region

         •     Quantification of ecological risks with recourse to appropriate
               ecosystem models

1.5.5 Environmental Management Plan
Environmental Management Plan (EMP) is to be drawn for the pre-
construction, construction and operational phases after identifying, predicting and
evaluating the impacts on each component of the environment with a view to
maximising the benefits from the proposed project. The EMP to be prepared would
mainly cover mitigation measures at dredging sites, transportation route (of dredged
spoil), and dumping site. EMP would essentially consist of details of work proposed
under mitigation measures, implementation schedule of such measures, fund and
manpower requirements.

1.6        Techno-economic Viability
1.6.1 Traffic Potential
           The future traffic potential is to be studied over short, medium and long term
time horizons in terms of volumes of cargoes in tonnage like container, dry, liquid,
bulk, also number, size and category of ships and other types of vessels taking into
due consideration the future economic growth.

1.6.2 Alignment of Channel
           Alignment of the channel is to identified with reference to environmental
factors,    navigational   aspects,   morphological    aspects,   seabed    movements/
sedimentation likely to be induced by the cross currents in the canal after its creation
and during operation.
1.6.3 Dredging and Disposal Areas
         The disposal areas (within Indian territory) of the dredged materials are to be
spelt out to satisfy the statutory requirements of State/ Central Govt. Deptts./Ministry of
Environment & Forests and other concerned Archeological Deptt., Tamilnadu Pollution
Control Board, Tamilnadu Maritime Board etc. so as to ensure that the dumping of
dredged materials will not adversely affect the environment. Study the transboundary
effects such as flooding and effects of fishery potential etc. on the Sri Lankan side due
to the disposal of dredged materials. Also, the quantum of maintenance dredging per
annum, its periodicity, disposal areas etc. are to be assessed.

1.6.4 Cost Estimates and Economic Viability
         This would include the project cost estimates towards preliminary surveys and site
investigations; dredging costs, transportation and dumping of dredged material at the chosen
sea/land locations. The economic analysis for a selected route will also be carried out.


1.7      Permits and Approvals
         Permits and approvals from the following mentioned agencies / organisations
are envisaged :

         •     Tamilnadu State Pollution Control Board

         •     Tamilnadu State Forest & Environment Department

         •     Tamilnadu Maritime Board

         •     State Wildlife Warden

         •     Chief Conservator of Forests

         •     Ministry of Environment & Forests

         •     Ministry of Defence / Indian Navy

         •     Archeological Department

         •     Ministry of External Affairs

         •     Sri Lankan Government
Fig. 1.2 : The Gulf of Mannar and Palk Bay/Palk Strait Area
Fig. 1.3 : The Study Area
Table 1.1

 Texture, Mineralogy and Elemental Composition of Sediments in Palk Strait

Statistical Parameters of Sediments (units in φ)

Area             Mean         Dispersion              Skewness                   Kurtosis               Median

Palk strait      2.4                0.4                    -0.07                      0.3                    2.3

Percentage of Various Minerals in Sediments

Area                   Quartz             Feldspar                 Carbonates                      Clays

Palk strait              64                     4                         32                            --

Chemical Composition of Bed Sediments

                   Fe       Mn                        Cu            Pb           Zn          Cd   Hg
Area                                 Cr ppm                                                                  Org carb
                   %       ppm                       ppm           ppm          ppm         ppm   ppb              %

Palk strait /     0.38        110         122          8           8-40          34         1-2   107          0.09
Palk Bay

Gulf of Mannar    0.35        90      BDL-10        BDL-70         10          BDL-40       BDL   BDL         0.3-0.4
2. Proposed Project and
                                              Oceanographic
                                        Environmental Setting

2.1      Proposed Project

         The project envisages a ship navigation channel across Adam’s bridge
connecting Gulf of Mannar with Palk Bay and further Palk Bay with Bay of Bengal with
dredging of navigational channel in Palk strait. The project enables the direct
movement of ship between the east & west coast of the country instead of going via
Srilanka. The route will originate from Tuticorin harbor, extend N-E up to south of
Pamban island using available navigation depths which is more than 20 m, cut through
Adam’s Bridge where a channel will be required to be dredged with depth suiting the
draft requirement and proceed parallel to medial line for fishing rights in Palk Bay
through available navigation depth, pass through a channel to be created in Palk strait
by dredging and join Bay of Bengal. The construction of ship channel will be done to
suit different drafts 9.15m, 10.7m & 12.8m by dredging & Excavation in Adam’s Bridge
area and Palk strait.

         •    Tentative specification of Navigational channel are :
        −     First phase    : 9.15-m draft. 300m width
        −     Second phase : 10.7 m draft 300m width
        −     Third phase    : 12.8 m draft 500 m width

         •    Phase wise development
        −     First phase    : control two way traffic
        −     Second phase : control two way traffic
        −     Third phase    : two way traffic

         The project besides creating a channel envisages deployment of Vessel
Traffic Management System (VTMS) to be located on Rameshwaram Island and at pt.
Calimere to control navigation. Provision will be made for necessary navigational aids
which include lighted Fairway Buoys, channel marked, Buoys, Recons, flotilla etc.
NEERI has undertaken studies for assessing environmental status of the region and
have engaged services of National Ship Design Research Center (NSDRC),
Visakhapattanam for oceanographic & hydrographic surveys besides drilling
operations along proposed alignment, to collect borehole data. Services of National
Hydrographic Office (NHO) Dehradun were engaged to conduct bathymetry and
bottom profile studies in Palk Bay Strait area.

2.2      Oceanographic Status in Project area along Route
         Alignment

         The stability of the study area along the alignment is influenced by number of
environmental factors, primarily due to geological, biological, meteorological and
oceanographical parameters, which distinctly vary from one sector of the coast to
another. The most influencing factors in coastal waters are the tides, waves and
currents, and they interact each other to produce an energy input, which shapes and
modifies the shore. Any attempt to study these problems require a thorough
understanding of the factors and processes involved in the coastal geomorphological
system, the pattern of sediment transport in the littoral zone, the volume of exchange
of littoral drift from one region to another, the monthly and seasonal variation, and the
intermittent oceanographic factors acting on the system.

2.2.1    Waves

         The winds blowing over the ocean surface has the direct effect on wave
generation as it is related to wind speed, extent of fetch and wind duration. Pilot (1953)
gives a detailed account of the southern part of the Bay of Bengal. The oceanographic
pattern along the Indian coast is mainly governed by the monsoons. The southwest
monsoon influences this pattern from June to September. The average speed of the
wind during southwest monsoon period is about 35 km per hour frequently rising up to
45-55 km per hour. The average speed of the wind during northeast monsoon
(October              to              January)              prevails              around
20 km per hour. Tropical storms known as cyclones frequently occur in the Bay of
Bengal during October to January.

         In eastern coast, the wave activity is significant both during southwest and
northeast monsoons.
2.2.1.1 Wave Measurement
         The observations on wave measurement show that significant wave height
varied from 0.46 to 1.12 m in March, 0.33 to 1.18 m in April, 0.46 to 1.74 m in May,
0.71 to 1.78 m in June, 0.68 to 1.6 m in July, 0.68 to 1.49 in August, 0.64 to 1.76 m in
September, 0.54 to 1.35 m in October, 0.40 to 1.13 m in November, 0.40 to 1.12 m in
December, 0.35 to 1.03 m in January and 0.35 to 1.23 m in February. Measured
significant wave height is given in Fig. 2.1

         The maximum wave height varied from 0.67 to 1.78 m in March, 0.44 to 1.73
m in April, 0.66 to 2.81 m in May, 0.98 to 2.72 m in June, 0.91 to 2.45 m in July, 0.89
to 2.48 in August, 0.89 to 2.96 m in September, 0.66 to 2.94 m in October, 0.59 to
1.60m in November, 0.48 to 1.73 m in December, 0.47 to 1.68 m in January and 0.45
to 1.79 m in Febraury. Wave heights are relatively higher during southwest monsoon.
Measured maximum wave height is depicted in Fig. 2.2.

         Monthly variation of breaking wave height (m) is depicted in Table. 2.1

         The wave direction (with respect to north) mostly prevailed 140O to 230O in
southwest monsoon (June to September), 85O to 150O during northeast monsoon
(October to January), and 90O – 200O during fair weather period (February to May).
The wave direction is highly variable in January and May. The zero crossing wave
period predominantly varied 3-8 s in December to April, 4-10 s in May and 4-9 s during
rest of the year.

         The wave heights recorded in west and east coast offshore area of India are
compared. In west coast the wave heights off Mumbai are in between 2.0-6.0 m in
southwest monsoon, 2.0-3.0 in north east monsoon, and 1.0-2.5 m in fair weather
period. Off Goa the wave heights are between 0.8-5.1 m in southwest monsoon. Off
Mangalore wave heights are around 3.2 m in southwest monsoon and 0.8 m in fair
weather period. Off Trivandrum the wave heights are 2-4.3 m in southwest monsoon
and 1-2.0 m in fair weather period. Off Cochin the wave heights are between 0.9-2.0 in
southwest monsoon. In east coast off Chennai the wave heights are 2.5 m in
southwest monsoon and 1 m in northeast monsoon. Off Visakhapatnam coast these
heights are between 0.8-3.9 m in southwest monsoon 0.6-2.9 m in northeast monsoon
and 0.5-3.8 m in fair weather period. Off Orissa the wave heights are between 1.0-2.5
m in southwest monsoon and 0.8-2.5 m in northeast monsoon, and around 1-2.2 m in
fair weather period.

         The wave climate reported in the literature indicates that the wave activity in
the study region remains relatively low compared to the rest of Indian coast.

2.2.1.2 Wave Refraction
Tuticorin to Arimunai
         Wave refraction during the southwest monsoon shows appreciable
divergence of wave orthogonal near Adams Bridge, Arimunai, and south of
Sippikulam. Wave activity was found to be extremely reduced between Mandapam
and north of Valinokkam due to the presence of offshore islands, which causes waves
to break offshore. Wave energy concentration was observed at Mukkuperiyar,
Valinokkam, Mukkaiyur and Vember. The region between Sippikulam and Tuticorin is
again protected from southwestern waves due to the presence of islands. The
presence of offshore islands is observed to protect the coastal stretch from Mandapam
to Valinokkam, and Veppalodai to Tuticorin from northeasterly waves. Wave refraction
between Tuticorin and Arimunai during NE Monsoon and SW Monsoon is shown in
Figs. 2.3-2.5 respectively.

Arimunai to Vedarnyam
         This segment of the coastline lies in Palk Bay and waves propagating from
south (during southwest monsoon and fair weather period) do not enter in this region.
Studies are indicating that even during the northeast monsoon, waves are found not
entering the bay and get attenuated across the shoals of middle banks and south
banks between Vedaranyam (India) and Matakal (Sri Lanka). Part of wave energy with
less magnitude enters the bay through Pedro Channel and reach the coast between
Puduvalasai and Gopalpatnam. Wave refraction between Arimunai and Vedaranyam
during NE Monsoon is shown in Fig. 2.6 respectively.
2.2.1.3 Wave Period
         During southwest monsoon, the wave period predominantly persisted 9 –10 s
between Vembar and Keelamunadal, and 6 – 8 s between Uthalai and Dhanushkodi.
During the northeast monsoon, it predominantly persisted 5 –10 s between Vembar
and Keelamundal, and 5 –8 s between Uthalai and Dhanushkodi east. In fair weather
period, it remained 6 –10 s along Vembar to Keelamundal, and 9 –10 s along Uthalai
to Dhanushkodi. The study shows that the waves approaching the coastline consist of
both seas and swells.

         Monthly variation of wave period is depicted in Table 2.2. Predominent wave
character buoy data off Vembar from wave rider is given in Table 2.3.

2.2.2    Tides and Currents

         The tides in this region are semidiurnal. The various important tide heights
with respect to chart datum near Pamban pass are as follows.

         Mean Higher High Water Springs            =       0.70 m
         Mean High Water Neaps                     =       0.48 m
         Mean Sea Level                            =       0.41 m
         Mean Low Water Neaps                      =       0.32 m
         Mean Low Water Springs                    =       0.06 m

         It shows that the average spring tidal range is about 0.64 m and the neap tidal
range is about 0.16 m. The tidal range is relatively low compared to the northern part
of the Indian coast, which inturn would restrict the influence of tidal currents.

2.2.2.1 Longshore Currents
         The longshore current speed remained weak (<0.1 m/s) throughout the year
between Keelamundal and Vedalai and along the northern coast of Rameswaram
from Arimunai to Ariyaman. Consequently, it was relatively moderate (>0.1 m/s)
throughout the year between Sippikulam and Naripaiyur and along the southern coast
of Rameswaram i.e. from Uthalai to Mukkuperiyar.

         The spit between Dhanuskodi and Arimunai in Gulf of Mannar experienced
relatively stronger currents during fair weather period (March to May) and remained
weak during southwest monsoon and northeast monsoon periods (June to February).
It indicates that the stronger currents prevailing in the adjacent coasts during
southwest/northeast monsoons becoming weaker between Dhanushkodi and
Arimunai. This phenomenon of sudden weakening of littoral currents causes the littoral
drift to deposit and form series of sand shoals near Arimunai. Such prolonged
deposition of littoral drift over many years can be attributed to formation of numerous
islands and shallow shoals across the strait between Arimunai (India) and
Talaimannar (Sri Lanka) called Adam’s Bridge.

        The Uthalai coast facing Gulf of Mannar experienced stronger longshore
currents (0.2 – 0.5 m/s) throughout the year, followed by a segment of the coast
between Vembar and Naripayur (0.2 – 0.4 m/s) with exposure to relatively high wave
energy environment.

        The prevalence of weak longshore currents between Keelamundal and
Vedalai is causing deposition of littoral drift on either side, as evidenced by the
occurrence of many offshore islands and submerged shoals.

        Although the Pamban Pass, connecting Palk Bay and Gulf of Mannar break
the continuity of longshore current between the mainland and Rameswaram Island,
the magnitude of the current on either side of Pamban Pass is found to be very weak.
This reduces the volume of littoral sediments approaching the Pamban Pass which
inturn reduces the quantity of sediment passing through Pamban Pass from Gulf of
Mannar to Palk Bay.

        The longshore current direction prevailed northerly during southwest
monsoon and fair weather period, and southerly during northeast monsoon between
Sippikulam and Uthallai. The entire coast of Rameswaram facing Gulf of Mannar,
experienced the current in westerly direction throughout the year, except in June and
July. This phenomenon of northerly currents along the mainland and westerly current
along Rameswaram create a zone, wherein, most of the littoral drift will get deposited.
Only a fractional proportion is expected to move from this region by tide induced
currents towards the Adams Bridge. This would reduce the volume of littoral sediment
reaching the Adam’s Bridge and intrun. The quantity of sediment entering Palk Bay
from      Gulf      of     Mannar.       These       sediments       deposited       at


shoals is supplied back to the littoral system for the mainland, when the longshore
currents move towards south during the ensuing northeast monsoon.
Although the longshore current was extremely weak along the sand spit
facing Palk Bay, it tends to be easterly during southwest monsoon/fair weather period
and westerly during northeast monsoon. Similarly, at Ariyaman, the longshore current
direction was southerly during southwest monsoon/fair weather period and northerly
during northeast monsoon, indicating just opposite to the phenomenon observed in
Gulf of Mannar. Such processes once again indicate the accumulation of littoral drift
on either side of Rameswaram Island during southwest monsoon and removal during
northeast monsoon, making this region as a sediment storage reservoir.

         Monthly variation of longshore current (m/s) is given in Table 2.4.

2.2.2.2 Currents Studies
         Continuous measurements on tidal current speed and direction were carried
out for three seasons at 4 locations viz., i) stn. C1 - off Arimunai-Adam’s Bridge, ii) stn.
C2 - off Uthalai (Gulf of Mannar), iii) stn. C3 - Pamban Pass, and iv) stn. C4 - off
Tharuvai (Palk Bay). The measured currents were resolved into parallel and
perpendicular components with respect to the coastline. The variation of current speed
and direction and the resolved components are presented in Figs. 2.7 to 2.35.

Southwest monsoon (June to September)
         Near Arimunai (stn. C1) the average current speed occurred around 0.2 m/s
with the maximum and minimum speed of 0.3 m/s and 0.05 m/s respectively both at
surface and bottom (Fig. 2.7). The variation of current direction had not followed the
tidal phase. It showed consistent northwesterly flow over one tidal cycle and changed
to southeasterly flow for the subsequent tidal cycle. It indicates that current shifted its
flow direction for alternate tidal cycles rather than flood and ebb tidal phases. The
shore parallel component of currents indicates that for larger tidal range, the flow was
in westerly direction and for small range in easterly direction. The shore perpendicular
component of currents indicates that the flow consistently existed from Gulf of Mannar
into Palk Bay. The northwesterly and southeasterly currents over different tidal cycles
were found to be equally predominant.The component of currents near surface and
bottom off Ariminai during southwest monsoon is depicted in Fig. 2.8 and Fig. 2.9
respectively.

         At Uthalai (stn. C2) in Gulf of Mannar, the average current prevailed around
0.1 m/s with the maximum and minimum of 0.2 m/s and 0.05 m/s respectively (Fig.
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project
EIA Full report of NEERI on Sethusamudram Channel Project

Más contenido relacionado

La actualidad más candente

Development Plan of Mehsana, Gujarat
Development Plan of Mehsana, GujaratDevelopment Plan of Mehsana, Gujarat
Development Plan of Mehsana, GujaratPratham Pincha
 
River - Front Development with 2 Examples
River - Front Development with 2 ExamplesRiver - Front Development with 2 Examples
River - Front Development with 2 ExamplesRohit Kumar Singh
 
Area Appreciation - Gagan Vihar
Area Appreciation - Gagan ViharArea Appreciation - Gagan Vihar
Area Appreciation - Gagan ViharDhanya Pravin
 
Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...
Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...
Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...Ekonnect Knowledge Foundation
 
Goa Regional Plan 2021 part 6
Goa Regional Plan 2021 part 6Goa Regional Plan 2021 part 6
Goa Regional Plan 2021 part 6lilliandcosta
 
Riverfront development
Riverfront developmentRiverfront development
Riverfront developmentmisschand
 
Urban heritage conservation , India
Urban heritage conservation , IndiaUrban heritage conservation , India
Urban heritage conservation , IndiaSiddhi Vakharia
 
The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...
The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...
The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...Regional Science Academy
 
Lake preservation and protection in Hyderabad: a watershed systems approach
Lake preservation and protection in Hyderabad: a watershed systems approachLake preservation and protection in Hyderabad: a watershed systems approach
Lake preservation and protection in Hyderabad: a watershed systems approachSiddharth Hande
 
A case study on Rajkillpakkam Junction,Chennai
A case study on Rajkillpakkam Junction,ChennaiA case study on Rajkillpakkam Junction,Chennai
A case study on Rajkillpakkam Junction,ChennaiSukhdeep Jat
 
City Development Plan Solapur 2041
City Development Plan Solapur 2041City Development Plan Solapur 2041
City Development Plan Solapur 2041AdithyaA16
 
Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...
Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...
Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...India Water Portal
 
Regional context of Raipur, Chhattisgarh.
Regional context of Raipur, Chhattisgarh.Regional context of Raipur, Chhattisgarh.
Regional context of Raipur, Chhattisgarh.Chetan Choudhary
 
TRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITY
TRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITYTRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITY
TRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITYshrikrishna kesharwani
 
Conservation and Management: A case study of Jaisalmer Fort, Rajasthan, India
Conservation and Management: A case study of Jaisalmer Fort, Rajasthan, IndiaConservation and Management: A case study of Jaisalmer Fort, Rajasthan, India
Conservation and Management: A case study of Jaisalmer Fort, Rajasthan, IndiaVijay Meena
 
Architectural design
Architectural designArchitectural design
Architectural designSunita Sinha
 
Adyar River Restoration, Chennai
Adyar River Restoration, Chennai Adyar River Restoration, Chennai
Adyar River Restoration, Chennai Geeva Chandana
 
PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning and U...
PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning  and  U...PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning  and  U...
PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning and U...Abhilash Singh Chauhan
 

La actualidad más candente (20)

Development Plan of Mehsana, Gujarat
Development Plan of Mehsana, GujaratDevelopment Plan of Mehsana, Gujarat
Development Plan of Mehsana, Gujarat
 
River - Front Development with 2 Examples
River - Front Development with 2 ExamplesRiver - Front Development with 2 Examples
River - Front Development with 2 Examples
 
Area Appreciation - Gagan Vihar
Area Appreciation - Gagan ViharArea Appreciation - Gagan Vihar
Area Appreciation - Gagan Vihar
 
Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...
Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...
Lake Restoration Projects Being Undertaken by BDA_Bangalore Development Autho...
 
Case study.pptx
Case study.pptxCase study.pptx
Case study.pptx
 
Wastelands
WastelandsWastelands
Wastelands
 
Goa Regional Plan 2021 part 6
Goa Regional Plan 2021 part 6Goa Regional Plan 2021 part 6
Goa Regional Plan 2021 part 6
 
Riverfront development
Riverfront developmentRiverfront development
Riverfront development
 
Urban heritage conservation , India
Urban heritage conservation , IndiaUrban heritage conservation , India
Urban heritage conservation , India
 
The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...
The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...
The Cultural/Historic Urban Landscape: A Resource for Urban Regeneration and ...
 
Lake preservation and protection in Hyderabad: a watershed systems approach
Lake preservation and protection in Hyderabad: a watershed systems approachLake preservation and protection in Hyderabad: a watershed systems approach
Lake preservation and protection in Hyderabad: a watershed systems approach
 
A case study on Rajkillpakkam Junction,Chennai
A case study on Rajkillpakkam Junction,ChennaiA case study on Rajkillpakkam Junction,Chennai
A case study on Rajkillpakkam Junction,Chennai
 
City Development Plan Solapur 2041
City Development Plan Solapur 2041City Development Plan Solapur 2041
City Development Plan Solapur 2041
 
Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...
Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...
Kuttanad below sea level farming system (KBSFS)_Dr Anilkumar (The Kerala Envi...
 
Regional context of Raipur, Chhattisgarh.
Regional context of Raipur, Chhattisgarh.Regional context of Raipur, Chhattisgarh.
Regional context of Raipur, Chhattisgarh.
 
TRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITY
TRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITYTRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITY
TRANSPORTATION EXISTING SCENARIO AND PROPOSALS FOR UJJAIN CITY
 
Conservation and Management: A case study of Jaisalmer Fort, Rajasthan, India
Conservation and Management: A case study of Jaisalmer Fort, Rajasthan, IndiaConservation and Management: A case study of Jaisalmer Fort, Rajasthan, India
Conservation and Management: A case study of Jaisalmer Fort, Rajasthan, India
 
Architectural design
Architectural designArchitectural design
Architectural design
 
Adyar River Restoration, Chennai
Adyar River Restoration, Chennai Adyar River Restoration, Chennai
Adyar River Restoration, Chennai
 
PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning and U...
PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning  and  U...PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning  and  U...
PRESENT LAND USE PLANNING SYSTEM OF INDIA : Current Land Use Planning and U...
 

Destacado

January 8th esp 179 lecture- class intro and eia basics
January 8th  esp 179 lecture- class intro and eia basicsJanuary 8th  esp 179 lecture- class intro and eia basics
January 8th esp 179 lecture- class intro and eia basicsCEQAplanner
 
Techno-economic feasibility report (SSCP) Aug. 2004
Techno-economic feasibility report (SSCP) Aug. 2004Techno-economic feasibility report (SSCP) Aug. 2004
Techno-economic feasibility report (SSCP) Aug. 2004Srinivasan Kalyanaraman
 
Dr.BVS_to_Sri Rama Sethu Committee
Dr.BVS_to_Sri Rama Sethu CommitteeDr.BVS_to_Sri Rama Sethu Committee
Dr.BVS_to_Sri Rama Sethu Committeeguestb884a3
 
GFRP Reinforcement Bar Manufacturing
GFRP Reinforcement Bar Manufacturing GFRP Reinforcement Bar Manufacturing
GFRP Reinforcement Bar Manufacturing Chi Nini
 
Wcc New York Sep 23 2010
Wcc New York Sep 23 2010Wcc New York Sep 23 2010
Wcc New York Sep 23 2010Philbert Suresh
 
Implementations of the law of the sea convention in Sri Lanka
Implementations of the law of the sea convention in Sri LankaImplementations of the law of the sea convention in Sri Lanka
Implementations of the law of the sea convention in Sri LankaTharindu Dilshan
 
Canal regulation works. m4pptx
Canal regulation works. m4pptxCanal regulation works. m4pptx
Canal regulation works. m4pptxBibhabasu Mohanty
 
Advantages and disadvantages of Remote Sensing
Advantages and disadvantages of Remote SensingAdvantages and disadvantages of Remote Sensing
Advantages and disadvantages of Remote SensingEr Abhi Vashi
 
Cleaning and shaping the root canal system
Cleaning and shaping the root canal systemCleaning and shaping the root canal system
Cleaning and shaping the root canal systemParth Thakkar
 
Design of t beam bridge using wsm(2)
Design of t beam bridge using wsm(2)Design of t beam bridge using wsm(2)
Design of t beam bridge using wsm(2)Ankit Singh
 
Canal Regulation & Cross Drainage Works
Canal Regulation & Cross Drainage WorksCanal Regulation & Cross Drainage Works
Canal Regulation & Cross Drainage WorksGAURAV. H .TANDON
 

Destacado (20)

January 8th esp 179 lecture- class intro and eia basics
January 8th  esp 179 lecture- class intro and eia basicsJanuary 8th  esp 179 lecture- class intro and eia basics
January 8th esp 179 lecture- class intro and eia basics
 
Techno-economic feasibility report (SSCP) Aug. 2004
Techno-economic feasibility report (SSCP) Aug. 2004Techno-economic feasibility report (SSCP) Aug. 2004
Techno-economic feasibility report (SSCP) Aug. 2004
 
Ramasetu24june2007
Ramasetu24june2007Ramasetu24june2007
Ramasetu24june2007
 
Pressnote23aug
Pressnote23augPressnote23aug
Pressnote23aug
 
Ramasetu20 July2007
Ramasetu20 July2007Ramasetu20 July2007
Ramasetu20 July2007
 
Geologicalsettingpalkbay
GeologicalsettingpalkbayGeologicalsettingpalkbay
Geologicalsettingpalkbay
 
Ramasetu
RamasetuRamasetu
Ramasetu
 
Dr.BVS_to_Sri Rama Sethu Committee
Dr.BVS_to_Sri Rama Sethu CommitteeDr.BVS_to_Sri Rama Sethu Committee
Dr.BVS_to_Sri Rama Sethu Committee
 
GFRP Reinforcement Bar Manufacturing
GFRP Reinforcement Bar Manufacturing GFRP Reinforcement Bar Manufacturing
GFRP Reinforcement Bar Manufacturing
 
Setubookreview
SetubookreviewSetubookreview
Setubookreview
 
Gopalakrishnanmonograph
GopalakrishnanmonographGopalakrishnanmonograph
Gopalakrishnanmonograph
 
Wcc New York Sep 23 2010
Wcc New York Sep 23 2010Wcc New York Sep 23 2010
Wcc New York Sep 23 2010
 
Sethu samuthira plan
Sethu samuthira planSethu samuthira plan
Sethu samuthira plan
 
Implementations of the law of the sea convention in Sri Lanka
Implementations of the law of the sea convention in Sri LankaImplementations of the law of the sea convention in Sri Lanka
Implementations of the law of the sea convention in Sri Lanka
 
Rama Setu: ppt
Rama Setu: pptRama Setu: ppt
Rama Setu: ppt
 
Canal regulation works. m4pptx
Canal regulation works. m4pptxCanal regulation works. m4pptx
Canal regulation works. m4pptx
 
Advantages and disadvantages of Remote Sensing
Advantages and disadvantages of Remote SensingAdvantages and disadvantages of Remote Sensing
Advantages and disadvantages of Remote Sensing
 
Cleaning and shaping the root canal system
Cleaning and shaping the root canal systemCleaning and shaping the root canal system
Cleaning and shaping the root canal system
 
Design of t beam bridge using wsm(2)
Design of t beam bridge using wsm(2)Design of t beam bridge using wsm(2)
Design of t beam bridge using wsm(2)
 
Canal Regulation & Cross Drainage Works
Canal Regulation & Cross Drainage WorksCanal Regulation & Cross Drainage Works
Canal Regulation & Cross Drainage Works
 

Similar a EIA Full report of NEERI on Sethusamudram Channel Project

2008 L Vd Burg Thesis Final 1 (Presence)
2008 L Vd Burg Thesis Final 1  (Presence)2008 L Vd Burg Thesis Final 1  (Presence)
2008 L Vd Burg Thesis Final 1 (Presence)Lennart van der Burg
 
South east kowloon development kai tak approach channel reclamation.
South east kowloon development   kai tak approach channel reclamation.South east kowloon development   kai tak approach channel reclamation.
South east kowloon development kai tak approach channel reclamation.FelixGao
 
Hydrology principles ragunath
Hydrology principles ragunathHydrology principles ragunath
Hydrology principles ragunathSajjad Ahmad
 
Choulis Book (Abstract Table Of Contents)
Choulis Book (Abstract Table Of Contents)Choulis Book (Abstract Table Of Contents)
Choulis Book (Abstract Table Of Contents)Konstantinos Choulis
 
Choulis Reverse Osmosis Book (abstract - table of contents)
Choulis Reverse Osmosis Book (abstract - table of contents)Choulis Reverse Osmosis Book (abstract - table of contents)
Choulis Reverse Osmosis Book (abstract - table of contents)Konstantinos Choulis
 
Tampakan Mine Project EIS Main Report April 2011
Tampakan Mine Project EIS Main Report April 2011Tampakan Mine Project EIS Main Report April 2011
Tampakan Mine Project EIS Main Report April 2011No to mining in Palawan
 
Okanagan Waterwise: Assessment of Water Management and Global Warming
Okanagan Waterwise: Assessment of Water Management and Global WarmingOkanagan Waterwise: Assessment of Water Management and Global Warming
Okanagan Waterwise: Assessment of Water Management and Global WarmingFiona9864
 
National Ganga Basin Management Plan : Proposal
National Ganga Basin Management Plan : ProposalNational Ganga Basin Management Plan : Proposal
National Ganga Basin Management Plan : ProposalFRANK Water
 
Kasur tanneries waste management agency (ktwma)
Kasur tanneries waste management agency (ktwma)Kasur tanneries waste management agency (ktwma)
Kasur tanneries waste management agency (ktwma)Muhammad Imran Nawaz
 
Deepwater oilgasmalaysia 0407.tuan-hay_ewe
Deepwater oilgasmalaysia 0407.tuan-hay_eweDeepwater oilgasmalaysia 0407.tuan-hay_ewe
Deepwater oilgasmalaysia 0407.tuan-hay_ewehdvmal
 
Social Aspects of Aircraft use in Aoraki/Mt Cook National Park
Social Aspects of Aircraft use in Aoraki/Mt Cook National Park Social Aspects of Aircraft use in Aoraki/Mt Cook National Park
Social Aspects of Aircraft use in Aoraki/Mt Cook National Park Magnus Kjeldsberg
 
A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...
A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...
A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...IJMER
 
090109 Durgin Cieneguita 43 101 Dec 08 Final
090109 Durgin Cieneguita 43 101 Dec 08 Final090109 Durgin Cieneguita 43 101 Dec 08 Final
090109 Durgin Cieneguita 43 101 Dec 08 FinalChristopher R Anderson
 
Channel dimensions & Paleodischarge estimates Palk Bay
Channel dimensions & Paleodischarge estimates Palk BayChannel dimensions & Paleodischarge estimates Palk Bay
Channel dimensions & Paleodischarge estimates Palk BayMandar Joglekar
 
Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...
Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...
Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...Symposium
 
Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...
Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...
Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...No to mining in Palawan
 
Causation factors for the banjar panjino 1blowout-neal adams
Causation factors for the banjar panjino 1blowout-neal adamsCausation factors for the banjar panjino 1blowout-neal adams
Causation factors for the banjar panjino 1blowout-neal adamsleaksnesia
 

Similar a EIA Full report of NEERI on Sethusamudram Channel Project (20)

2008 L Vd Burg Thesis Final 1 (Presence)
2008 L Vd Burg Thesis Final 1  (Presence)2008 L Vd Burg Thesis Final 1  (Presence)
2008 L Vd Burg Thesis Final 1 (Presence)
 
South east kowloon development kai tak approach channel reclamation.
South east kowloon development   kai tak approach channel reclamation.South east kowloon development   kai tak approach channel reclamation.
South east kowloon development kai tak approach channel reclamation.
 
Hydrology principles ragunath
Hydrology principles ragunathHydrology principles ragunath
Hydrology principles ragunath
 
Lo2419411943
Lo2419411943Lo2419411943
Lo2419411943
 
Choulis Book (Abstract Table Of Contents)
Choulis Book (Abstract Table Of Contents)Choulis Book (Abstract Table Of Contents)
Choulis Book (Abstract Table Of Contents)
 
Choulis Reverse Osmosis Book (abstract - table of contents)
Choulis Reverse Osmosis Book (abstract - table of contents)Choulis Reverse Osmosis Book (abstract - table of contents)
Choulis Reverse Osmosis Book (abstract - table of contents)
 
Tampakan Mine Project EIS Main Report April 2011
Tampakan Mine Project EIS Main Report April 2011Tampakan Mine Project EIS Main Report April 2011
Tampakan Mine Project EIS Main Report April 2011
 
Okanagan Waterwise: Assessment of Water Management and Global Warming
Okanagan Waterwise: Assessment of Water Management and Global WarmingOkanagan Waterwise: Assessment of Water Management and Global Warming
Okanagan Waterwise: Assessment of Water Management and Global Warming
 
National Ganga Basin Management Plan : Proposal
National Ganga Basin Management Plan : ProposalNational Ganga Basin Management Plan : Proposal
National Ganga Basin Management Plan : Proposal
 
Kasur tanneries waste management agency (ktwma)
Kasur tanneries waste management agency (ktwma)Kasur tanneries waste management agency (ktwma)
Kasur tanneries waste management agency (ktwma)
 
Deepwater oilgasmalaysia 0407.tuan-hay_ewe
Deepwater oilgasmalaysia 0407.tuan-hay_eweDeepwater oilgasmalaysia 0407.tuan-hay_ewe
Deepwater oilgasmalaysia 0407.tuan-hay_ewe
 
Social Aspects of Aircraft use in Aoraki/Mt Cook National Park
Social Aspects of Aircraft use in Aoraki/Mt Cook National Park Social Aspects of Aircraft use in Aoraki/Mt Cook National Park
Social Aspects of Aircraft use in Aoraki/Mt Cook National Park
 
Palawan Asset Accounts
Palawan Asset AccountsPalawan Asset Accounts
Palawan Asset Accounts
 
A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...
A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...
A Laboratory Study of Cyclic Plate Load Test on Lime and Rice Husk Ash Treate...
 
090109 Durgin Cieneguita 43 101 Dec 08 Final
090109 Durgin Cieneguita 43 101 Dec 08 Final090109 Durgin Cieneguita 43 101 Dec 08 Final
090109 Durgin Cieneguita 43 101 Dec 08 Final
 
Macventures MPSA 016_93_XIII
Macventures MPSA 016_93_XIIIMacventures MPSA 016_93_XIII
Macventures MPSA 016_93_XIII
 
Channel dimensions & Paleodischarge estimates Palk Bay
Channel dimensions & Paleodischarge estimates Palk BayChannel dimensions & Paleodischarge estimates Palk Bay
Channel dimensions & Paleodischarge estimates Palk Bay
 
Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...
Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...
Australia China Resources Sympsoium- Spotlight Presentation NT Chris Tonkin A...
 
Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...
Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...
Estimation of Environmental Damages from Mining Pollution: The Marinduque Isl...
 
Causation factors for the banjar panjino 1blowout-neal adams
Causation factors for the banjar panjino 1blowout-neal adamsCausation factors for the banjar panjino 1blowout-neal adams
Causation factors for the banjar panjino 1blowout-neal adams
 

Más de Srinivasan Kalyanaraman (20)

Legacy
LegacyLegacy
Legacy
 
Thenkasi terror
Thenkasi terrorThenkasi terror
Thenkasi terror
 
ramasetu1dec2007
ramasetu1dec2007ramasetu1dec2007
ramasetu1dec2007
 
Mahabharata
MahabharataMahabharata
Mahabharata
 
Mahabharata
MahabharataMahabharata
Mahabharata
 
Voyageestimating
VoyageestimatingVoyageestimating
Voyageestimating
 
Projectatsea
ProjectatseaProjectatsea
Projectatsea
 
Projectdisaster
ProjectdisasterProjectdisaster
Projectdisaster
 
Ramasetu28sept2007
Ramasetu28sept2007Ramasetu28sept2007
Ramasetu28sept2007
 
Pandey Et Al Current Science 2003
Pandey Et Al Current Science 2003Pandey Et Al Current Science 2003
Pandey Et Al Current Science 2003
 
Gupta Et Al Current Science 2006
Gupta Et Al Current Science 2006Gupta Et Al Current Science 2006
Gupta Et Al Current Science 2006
 
Ramasetu4sept2007
Ramasetu4sept2007Ramasetu4sept2007
Ramasetu4sept2007
 
Ramasetustrategicsecurity
RamasetustrategicsecurityRamasetustrategicsecurity
Ramasetustrategicsecurity
 
Geologytectonicsvkrao
GeologytectonicsvkraoGeologytectonicsvkrao
Geologytectonicsvkrao
 
Nationalwatergrid28oct04
Nationalwatergrid28oct04Nationalwatergrid28oct04
Nationalwatergrid28oct04
 
Convention En
Convention EnConvention En
Convention En
 
Strategicmetals
StrategicmetalsStrategicmetals
Strategicmetals
 
Thoriumdeposits
ThoriumdepositsThoriumdeposits
Thoriumdeposits
 
Geologypalkbaymainpoints
GeologypalkbaymainpointsGeologypalkbaymainpoints
Geologypalkbaymainpoints
 
Aryan & Non Aryan In S Asia, M Deshpande And Cook
Aryan & Non Aryan In S Asia, M Deshpande And CookAryan & Non Aryan In S Asia, M Deshpande And Cook
Aryan & Non Aryan In S Asia, M Deshpande And Cook
 

Último

Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 

Último (20)

Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 

EIA Full report of NEERI on Sethusamudram Channel Project

  • 1. Environmental Impact Assessment for Proposed Sethusamudram Ship Channel Project Sponsor Tuticorin Port Trust, Tuticorin National Environmental Engineering Research Institute Nehru Marg, Nagpur - 440 020 August 2004
  • 2. Environmental Impact Assessment for Proposed Sethusamudram Ship Channel Project Sponsor Tuticorin Port Trust, Tuticorin Point Calemer INDIA BAY OF BENGAL Palk Strait INDIA PALK BAY Tamil Nadu Mandapam Rameshwaram Mandapam Keelakkarai LANKA Valinokkam Terkmukkaiyur Vembar Vaipar SRI Tuticorin GULF OF MANNAR National Environmental Engineering Research Institute Nehru Marg, Nagpur - 440 020 August 2004
  • 3. Contents Item Page No. List of Figures vi List of Tables xi List of Plates xv List of Drawings xvi 1. Introduction 1.1-1. 25 1.1 Preamble 1.1 1.2 Earlier Studies Involving Creation of Canal 1.3 1.3 Project Region 1.7 1.4 Geomorphology of Study Region 1.9 1.5 Environmental Impact Assessment (EIA) 1.14 1.5.1 Objectives of EIA Study 1.15 1.5.2 Scope of the Study 1.15 1.5.3 Plan of Work 1.16 1.5.4 Components included in the Study 1.17 1.5.4.1 Coastal Waster Environment 1.17 1.5.4.2 Marine Environment 1.17 1.5.4.3 Land Environment 1.18 1.5.4.4 Biological Environment 1.18 1.5.4.5 Socio-Economic and Health Environment 1.19 1.5.4.6 Ecological Risks 1.19 1.5.5 Environmental Management Plan 1.20 1.6 Techno-economic Viability 1.20 1.6.1 Traffic Potential 1.20 1.6.2 Alignment of Canal 1.20 1.6.3 Dredging and Disposal Areas 1.21 1.6.4 Cost Estimates and Economic Viability 1.21 1.7 Permits and Approvals 1.21 Figures 1.1-1.3 1.22-1.24 Table 2.1 1.25 2. Proposed Project and Oceanographic Environmental Setting 2.1-2. 104 2.1 Proposed Project 2.1
  • 4. 2.2 Oceanographic Status in Project area along Route Alignment 2.2
  • 5. Item Page No. 2.2.1 Waves 2.2 2.2.1.1 Wave Measurement 2.3 2.2.1.2 Wave Refraction 2.4 2.2.1.3 Wave Period 2.5 2.2.2 Tides and Currents 2.5 2.2.2.1 Longshore Currents 2.5 2.2.2.2 Currents Studies 2.7 2.2.3 Sediment Transport 2.12 2.2.3.1 Longshore Sediment Transport 2.13 2.2.3.2 Spit Configuration 2.22 2.2.4 Geological Strata along Navigational Channel in 2.23 Adams Bridge Area 2.2.5 Bathymetry and Shallow Seismic Survey in 2.25 Gulf of Mannar and Palk Bay Area 2.2.5.1 Bathymetry and Shallow Seismic Survey in Area Identified for Channel in Adam's Bridge 2.26 2.2.5.2 Bathymetry Survey of Area of 4 km. X 4 km. 2.36 2.2.5.3 Bathymetry and Seismic Survey along the Channel in Palk Bay Area 2.37 2.2.6 Selection of Route in Adam's Bridge Area 2.38 2.2.7 Navigation Route in Palk Bay and Palk Strait 2.38 2.2.8 Computation of Dredged Material 2.38 2.3 Environmental Setting in Project Area 2.39 Figures 2.1-2.51 2.44-2.98 Tables 2.1 - 2.6 2.99-2.104 3. Marine Environment 3.1-3.167 3.1 Physico-chemical Characteristics 3.1 3.2 Biological Characteristics 3.3 3.3 Biodiversity of Islands in Study Region 3.32 3.3.1 Mandapam Group 3.32 3.3.1.1 Shingle Island 3.35 3.3.1.2 Krusadai Island 3.35 3.3.1.3 Pullivasal and Poomarichan Island 3.36
  • 6. 3.3.1.4 Manoli and Manoliputti Islands 3.38 3.3.1.5 Musal Island 3.39 Item Page No. 3.3.2 Marine Organisms Observed around the Mandapam Group of Island 3.40 3.3.3 Trend of Fish Catch in Mandapam Region 3.42 3.3.4 Keezhakarai Group 3.42 3.3.4.1 Mulli Island 3.43 3.3.4.2 Valai and Talairi Islands 3.44 3.3.4.3 Appa Island 3.45 3.3.4.4 Anaipar Island 3.46 3.3.5 Marine organisms recorded around Keezhakarai Group Islands 3.47 3.3.6 Vembar Group 3.48 3.3.6.1 Nallathanni Island 3.49 3.3.6.2 Pulivinichalli Island 3.49 3.3.6.3 Upputhanni Island 3.50 3.3.7 Marine Organisms around Vember Group of Islands 3.51 3.3.8 Tuticorin Group 3.52 3.5.8.1 Karaichalli Island 3.53 3.3.8.2 Vilanguchalli Island 3.53 3.5.8.3 Kasuwar Island 3.54 3.3.9 Marine Organisms 3.55 3.4 Palk Bay/Palk Strait 3.56 3.4.1 Marine Water Quality 3.56 3.4.2 Biological Productivity 3.56 3.4.2.1 Primary Productivity 3.57 3.4.2.2 Secondary Productivity 3.59 3.4.2.3 Tertiary Productivity 3.61 3.4.2.4 Benthos 3.61 3.4.3 Sponges and Corals 3.62 3.4.4 Fishing in Palk Bay 3.64 3.4.5 Marine Mammals 3.64 3.4.6 Distribution of Palk Bay Reef 3.65 3.4.7 Review of the Coral Reef Ecosystem of Palk Bay 3.66 3.4.8 Present Status of Palk Bay 3.69 3.4.9 Wildlife Sanctuary Adjoining Palk Strait 3.70
  • 7. 3.5 Gulf of Mannar 3.72 3.6 Issues Related to Coral Reefs 3.73 3.6.1 Natural Stresses to Coral Reefs 3.74 3.6.2 Impacts of Human Activity on Coral Reefs 3.75 Item Page No. 3.6.2.1 Sedimentation 3.76 3.6.2.2 Runoff/Chemical Pollution/ Water Quality 3.77 3.6.2.3 Sewage 3.78 3.6.2.4 Temperature Stress and Bleaching 3.79 3.6.2.5 Coral diseases 3.80 3.6.2.6 Destructive fishing practices 3.80 3.7 Impacts in Palk Bay and Gulf of Mannar 3.82 3.8 Conservation 3.83 3.9 Future Direction 3.84 3.10 Strategies for Coral Reef Ecosystems in India 3.85 3.10.1 Analyzing the Short Comings in Coral Reef Conservation in India 3.85 3.10.2 Understand the Coral Reef Problems 3.85 3.10.3 Determine the True Economic Value of Coral Reefs in India 3.85 3.10.4 Coral Reef Conservation Education 3.87 3.10.5 Focus Management of Coral Reef around the Stakeholder 3.87 3.10.6 Incorporate More Coral Reefs in Marine Protected Areas 3.87 3.10.7 Control Managing Practices 3.88 3.10.8 Promote Sustainable Uses 3.89 3.10.9 Monitor the Effectiveness of Coral Reef Management in India 3.89 Figures 3.1-3.18 3.92-3.109 Tables 3.1-3.46 3.110-3.167 4. Land Environment 4.1 - 4.15 4.1 Objectives 4.1 4.2 Data Used 4.2 4.3 Hardware and Software Used 4.3 4.4 Selection of Study Sites 4.3 4.5 Methodology 4.4 4.6 Data Interpretation 4.6 4.7 Identification of Dumping Sites for Dredged Materials 4.8 Plates 4.1-4.4 4.10-4.13 Tables 4.1-4.2 4.14-4.15
  • 8. 5. Socio-economic Environment 5.1 - 5.19 5.1 Socio-economics of the Fishing Community 5.1 5.2 Sample Survey 5.3 5.3 Existing Status 5.6 Tables 5.1 - 5.3 5.13-5.19 Item Page No. 6. Assessment of Environmental Impacts 6.1-6.77 6.1 General 6.1 6.2 Impact Networks 6.1 6.3 Impacts due to Land Based Facilities 6.2 6.4 Impacts due to Dredging 6.3 6.4.1 Dredged Material Disposal 6.7 6.4.1.1 Disposal on Land 6.7 6.4.1.2 Disposal in Sea 6.8 6.5 Impacts due to Road and Rail Traffic 6.12 6.6 Impacts on Productivity and Ecology in GOM/Palk Bay 6.12 6.7 Impacts on Hydrodynamic Conditions 6.15 6.7.1 Tidal Current Distributions – Before and After Dredging 6.16 6.7.2 The Salient Conclusions 6.18 6.7.2.1 Gulf of Mannar 6.18 6.7.2.2 Palk Bay 6.18 6.8 Socio-economic Impact 6.19 6.9 Analysis of Alternatives for Route Alignment 6.19 Figures 6.1-6.30 6.23-6.58 Tables 6.1 - 6.11 6.59-6.76 7. Environmental Management Plan 7.1-7.9 7.1 Construction Phase 7.1 7.1.1 Acquisition of Land for Onshore Facilities 7.1 7.1.2 Dredging Activity 7.1 7.2 Operational Phase 7.3 7.2.1 Route Alignment 7.3 7.2.2 Discharges from Ships 7.3 7.2.3 Maintenance Dredging 7.5
  • 9. 7.3 Summary of Environmental Management Plan 7.6 7.3.1 Construction Phase 7.6 7.3.2 Operational Phase 7.7 8. Bibliography 8.1-8.7 List of Figures Figure No. Title Page No. 1.1 Shipping Routes in East Coast of India 1.22 1.2 The Gulf of Mannar and Palk Bay/Palk Strait Area 1.23 1.3 The Study Area 1.24 2.1 Measured Significant Wave Height 2.44 2.2 Measured Maximum Wave Height 2.44 2.3 Wave Refraction Between Tuticorin and Arimunai (NE Monsoon) 2.45 2.4 Wave Refraction Between Tuticorin and Arimunai (SW Monsoon) 2.46 2.5 Wave Refraction Between Tuticorin and Arimunai (SW Monsoon) 2.47 2.6 Wave Refraction Between Arimunai and Vedaraniyam 2.48 (NE Monso 2.7 Variation of Currents Off Arimunai in SW Monsoon 2.49 2.8 Components of Currents Near Surface off Arimunai (Stn. C1) during Southwest Monsoon 2.50 2.9 Components of Currents near Bottom Off Arimunai (Stn. C1) during Southwest Monsoon 2.51 2.10 Variation of Currents off Uthalai (GM)in SW Monsoon 2.52 2.11 Components of Currents near Surface off Rameswaram Island South (Stn. C2) (GM) during Southwest Monsoon 2.53 2.12 Components of Currents near Bottom off Rameswaram Island South (Stn. C2) (GM) during Southwest Monsoon 2.54 2.13 Variation of Currents off Pamban Pass in SW Monsoon 2.55
  • 10. 2.14 Components of Currents near Surface off Pamban Pass (Stn. C3) during Southwest Monsoon 2.56 2.15 Variation of Currents off Tharuvai in SW Monsoon 2.57 2.16 Components of Currents near Bottom off Tharuvai (Stn. C4) during Southwest Monsoon 2.58 2.17 Variation of Currents off Arimunai in NE Monsoon 2.59 2.18 Components of Currents near Surface off Arimunai (Stn. C1) during Northeast Monsoon 2.60 Figure No. Title Page No. 2.19 Components of Currents near Bottom off Arimunai (Stn. C1) during Northeast Monsoon 2.61 2.20 Variation of Currents Uthalai (GM) in NE Monsoon 2.62 2.21 Components of Currents near Surface off Rameswaram Island South (Stn. C2) (GM) during Northeast Monsoon 2.63 2.22 Components of Currents near Bottom off Rameswaram Island South (Stn. C2) (GM) during Northeast Monsoon 2.64 2.23 Variation of Currents off Pamban Pass in NE Monsoon 2.65 2.24 Components of Currents near Surface off Pamban Pass (Stn. C3) during Northeast Monsoon 2.66 2.25 Variation of Currents off Tharuvai in NE Monsoon 2.67 2.26 Components of Currents near Surface off Tharuvai (Stn. C4) during Northeast Monsoon 2.68 2.27 Components of Currents near Bottom off Tharuvai (Stn. C4) during Northeast Monsoon 2.69 2.28 Variation of Currents off Arimunai in FW Period 2.70 2.29 Components of Currents near Surface off Arippumunai (Stn. C1) during Fair Weather 2.71 2.30 Components of Currents near Bottom off Arrippumunai (Stn. C1) during Fair Weather 2.72 2.31 Variation of Currents off Uthalai (GM) in FW Period 2.73 2.32 Components of Currents Near Surface off Rameswaram Island South (Stn. C2) (GM) during Fair Weather 2.74
  • 11. 2.33 Components of Currents near Bottom off Rameswaram Island South (Stn. C2) (GM) during Fair Weather 2.75 2.34 Variation of Currents off Pamban Pass in FW Period 2.76 2.35 Components of Currents near Surface off Pamban Pass (Stn. C3) during Fair Weather 2.77 2.36 Monthly Sediment Transport Rate 2.78 2.37 Monthly Sediment Transport Rate 2.79 2.38 Monthly Sediment Transport Rate 2.80 2.39 Annual Net Sediment Transport Rate 2.81 Figure No. Title Page No. 2.40 Annual Gross Sediment Transport Rate 2.82 2.41 Location of Boreholes 2.83 2.42a Grain Size Distribution at BH1 at Surface and 2.5 m 2.84 2.42b Grain Size Distribution at BH1 at 5.0 m and 7.5 m 2.85 2.42c Grain Size Distribution at BH1 at 9.0 m and 12 m 2.86 2.43a Grain Size Distribution at BH2 at Surface and 2.5 m 2.87 2.43b Grain Size Distribution at BH2 at 5 m and 6.5 m 2.88 2.43c Grain Size Distribution at BH2 at 11 m 2.89 2.44a Grain Size Distribution at BH3 at Surface and 0.7 m to 8.5 m 2.90 2.44b Grain Size Distribution at BH3 at 8.5 m to 10 m and 10.5 to 12.7 m 2.91 2.45 Bathymetry Map of Gulf of Mannar (1975) 2.92 2.46 Bathymetry map of Tuticorin Coastal Region (1999) 2.93 2.47 Location of Proposed Site 2.94 2.48 Bathymetry Study Over 100 Line km Across the 20 km x 4 km line 2.95 2.49 Area Showing Bathymetry More than 12 m and Hard Strata in Palk Bay Area 2.96 2.50 Area Showing Bathymetry more than 10 m with Hard Strata at about 16 m depth in Palk Bay Area 2.97 2.51 Bathymetry along the Proposed Channel 2.98
  • 12. 3.1 Data Locations 3.92 3.2 Variation in Salinity 3.93 3.3 Variation in Salinity and Silicate 3.94 3.4 Particle Size Distribution of Sediments (1-10 Sampling Stations) 3.95 3.5 Trophic Relations of Marine in Study Area of Sethu Samudram Ship Canal Project 3.96 3.6 Maximum Diversity Index values of Phytoplankton in 21 Islands of Gulf of Mannar 3.97 3.7 Maximum Diversity Index values of Zooplanktons in 21 Islands of Gulf of Mannar 3.98
  • 13. Figure No. Title Page No. 3.8 Location of Corals in the Gulf of Mannar and the Palk Bay 3.99 3.9 Coral Reef and Seagrass Areas around the Islands of Gulf of Mannar 3.100 3.10 Maximum Diversity Index values of Corals in 21 Islands of Gulf of Mannar 3.101 3.11 Locations of Pearl Banks in the Gulf of Mannar 3.102 3.12 Chank Habitats in the Gulf of Mannar and the Palk Bay 3.103 3.13 Habitats of Sea Cow (Dugong-dugong) in the Gulf of Mannar and the Palk Bay 3.104 3.14 Habitats of Sea Weed, Sea Grass and Holothuria in the Gulf of Mannar and the Palk Bay 3.105 3.15 Maximum Diversity Index values of Seagrass in 21 Islands of Gulf of Mannar 3.106 3.16 Maximum Diversity Index values of Mangroves in 21 Islands of Gulf of Mannar 3.107 3.17 Locations of Mangroves in Gulf of Mannar and the Palk Bay 3.108 3.18 Maximum Diversity Index values of Corals, Mangroves and Seagrass in 21 islands of Gulf of Mannar 3.109 6 .1 Environmental Impact Network - Construction Phase 6.23 6.2 Environmental Impact Network - Post-Construction/ Operation Phase 6.24 6.3 Study Area for Route Alignment in Adam’s Bridge Area 6.25 6.4 Borehole Data in Adam’s Bridge Area 6.26 6.5 Bathymetry Along Line 1 6.27 6.6 Bathymetry Along Line 2 6.28 6.7 Bathymetry Along Line 3 6.29 6.8 Bathymetry Along Line 4 6.30 6.9 Bathymetry Along Line 5 6.31 6.10 Quantity Dredged Material along Various Tracks in Adam’s Bridge 6.32 6.11 The Alignment of the Proposed Channel 6.33
  • 14. 6.12 Bathymetry along the Proposed Channel 6.34 Figure No. Title Page No. 6.13 Cross Section of Proposed Channel 6.35 6.14 3D Plume of Disposed Silt 6.36 6.15 Near Field 6.37 6.16 Far Field 6.38 6.17 Central Line Dilution 6.39 6.18 Geographical Domain Considered for Modelling 6.40 6.19 Locations for Current Measurements 6.41 6.20 Tidal Stream Observations 6.42 6.21 Tidal Stream Observation 6.46 6.22 Tidal Observations 6.50 6.23 Proposed Ship Navigation Alignment Considered for Modelling 6.51 6.24 Calibration Tide Heights 6.52 6.25 Calibration Currents 6.53 6.26 Spatial Current Predicted by the Model - Before Dredging 6.54 6.27 Spatial Current Predicted by the Model - After Dredging 6.55 6.28 Locations of Coral Reefs in the Modelling Domain (Adjoining Mandapam and Pambam Islands) 6.56 6.29 Locations of Coral Reefs in the Modelling Domain (Dhanushkodi Portion of Pambam Island) 6.57 6.30 Plan Showing Various Alignments of Sethusamudram Ship Canal Project and the Group of Islands (Marine Parks) in Gulf of Mannar 6.58
  • 15. List of Tables Table No. Title Page No. 1.1 Texture, Mineralogy and Elemental Composition of Sediments in Palk Strait 1.25 2.1 Monthly Variation of Breaking Wave Height (m) 2.99 2.2 Monthly Variation of Wave Period (s) 2.100 2.3 Predominant Wave Characteristics Buoy Data Off Vembar from Wave Rider 2.101 2.4 Monthly Variation of Longshore Current (m/s) 2.102 2.5 Longshore Sediment Transport Rate 2.103 2.6 List of Islands in the Gulf of Mannar 2.104 3.1 Particulars of Sampling Locations along the Proposed Canal Alignment 3.110 3.2 Physico-chemical Quality of Marine Water 3.111 3.3 Marine Water Quality (Inorganic, Nutrient and Heavy Metals) 3.112 3.4 Sediment Quality 3.113 3.5 Gross Primary Productivity 3.115 3.6 Number of Species Recorded in the Gulf of Mannar Marine Biosphere Reserve during Different Periods 3.116 3.7 Status Report of Biota of Gulf of Mannar 3.117 3.8 Distribution of Phytoplankton in Gulf of Mannar (Number of Species Recorded During October '98, August '99) 3.124 3.9 Maximum Diversity Index Values of Phytoplankton in 21 Islands of Gulf of Mannar 3.125 3.10 Enumeration and Diversity of Phytoplankton 3.126 3.11 List of Phytoplankton Recorded 3.127 3.12 Distribution of Zooplankton in Gulf of Mannar (Number of Species Recorded During October '98, August '99) 3.128 3.13 Shannon Weaver Diversity Indice of Zooplankton Recorded at various Coastal Waters in India 3.129 3.14 Enumeration and Diversity of Zooplankton 3.130
  • 16. 3.15 List of Zoolplankton at Different Locations 3.131 Table No. Title Page No. 3.16 Maximum diversity index values of Zooplankton in 21 island 3.17 Distribution of Benthic Organisms in Gulf of Mannar 3.133 3.18 Enumeration and Diversity of Macrobenthos 3.134 3.19 List of Macrobenthos Recorded 3.135 3.20 Density and Biomass of Meiofauna in Sediment Samples 3.138 3.21 Distribution Pattern of Corals, Live Corals (Percentage) and Seagrases 3.139 3.22 Maximum diversity index values of Corals in 21 island 3.23 List of Fishlanding Centres within Sethusamudram Ship Canal Zone 3.141 3.24 Shannon Weaver Diversity Index (H' value) for the Ornamental Fishes Recorded Around each Island in the Gulf of Mannar 3.143 3.25 Commercially Important Species Contributing to Fishery in the Gulf of 3.26 Major Fishing Gears used in the Gulf of Mannar and the Palk Bay 3.145 3.27 Marine Fish landings in the Gulf of Mannar during 1992-96 (In Tonnes) 3.146 3.28 Composition of Different Groups in Marine Fish Landings in the Gulf of Mannar (Catch in Tonnes) 3.147 3.29 Composition of Trawl Catches in the Gulf of Mannar 3.149 3.30 Composition of the Trawl Catches at Pamban, Rameswaram and Tuticorin 3.150 3.31 Pearl Oyster Paars in the Gulf of Mannar and the Palk Bay 3.151 3.32 Distribution of Seagrass in the Islands of Gulf of Mannar 3.152 3.33 Maximum diversity index values of Seagrass in 21 island 3.34 Maximum diversity index values of Mangroves in 21 island 3.35 Mangrove Species in Coasts of Palk Bay and Gulf of Mannar 3.155 3.36 Distribution of Mangrove Vegetation in the Islands of Gulf of Mannar 3.156
  • 17. Table No. Title Page No. 3.37 Annual Primary Productivity (Gross) in Certain Marine Environments as Grams Carbon per square meter Sea Surface 3.157 3.38 Coral Fauna around the Mandapam Group of Islands 3.158 3.39 Summary of Underwater Observations on Shelter and Food of Various Coral Reef Associated Fauna in the Mandapam Group of Islands 3.159 Marine Water Quality in Palk Bay (Latitude 9O44’) 3.40 3.160 3.41 Distribution of Zooplankton in Palk Bay near the Proposed Channel 3.161 3.42 Distribution of Decapods in Palk Bay 3.162 3.43 Distribution of Desmospongiae and Corals in Palk Bay 3.163 3.44 Distribution (kg/hr) of Various Fishery Resources along Palk Bay SE Coast of India during 1985-90 3.165 3.45 Abundance of Demersal Finfish Resources (kg/hr) in SE Coast of India EEZ 3.166 3.46 Perches Abundance in kg along S.E. Coast (Palk Bay) 3.167 4.1 Land use/Land cover Status in Pamban Island, Based on the Satellite data of May, 2002 4.14 4.2 Land use/Land cover Classification System 4.15 5.1 Summary of Coastal Villages/Towns in the Study Area 5.13 5.2 Details of Coastal Towns/Villages in the Study Area (Palk Bay) 5.14 5.3 Details of Coastal Towns Villages in the Study Area 5.18 6.1 Bathymetry along Line: 1 6.59 6.2 Bathymetry along Line: 2 6.60 6.3 Bathymetry along Line: 3 6.61 6.4 Bathymetry along Line: 4 6.62 6.5 Bathymetry along Line: 5 6.63 6.6 Dredging Requirement for 10 m Depth (9.15 m draught) and 300 m Width Channel 6.64 6.7 Dredging Requirement of 12 m Depth (10.7 m draught) and 300 m Width Channel 6.65
  • 18. 6.8 The Quantity of Dredged Material for 14 m Deep 500 Wide Channel 6.66 Table No. Title Page No. 6.9 Expected Number of Transits through Sethusamudram Channel 6.67 6.10 Inputs to Model for Dredged Material Disposal (12 m deep channel) 6.68 6.11 Maximum and Minimum Tidal Current (Speed) at Locations in Palk Bay and Gulf of Mannar 6.69 6.12 Speed and Direction of Currents for Patch-I - Before Dredging 6.70 6.13 Speed and Direction of Currents for Patch-II - Before Dredging 6.72 6.14 Speed and Direction of Currents for Patch-III - Before Dredging 6.74 6.15 Speed and Direction of Currents for Patch-IV - Before Dredging 6.76
  • 19. List of Plates Plate No. Title Page No. 4.1 Merged FCC (IRS 1D PAN Sharpened LISS III) depicting Pamban Island 4.10 4.2 Merged Imagery (LISS III + PAN) depicting Western Surrounds of Sethusamudram Ship (Navigational) Canal route in Indian Water 4.11 4.3 Land Use/Land Cover Status in Pamban Island based on IRS 1D 4.12 (LISS III + PAN), May, 2002 4.4 Merged Data (PAN + LISS III) depicting degraded land, selected for dumping dredged material in Pamban Island 4.13
  • 20. List of Drawings Drawing No. Title 2.1 General Bathymetry in Palk Bay 2.2 Bathymetry and Shallow Seismic Survey - South of Adam’s Bridge Line 1 2.3 Bathymetry and Shallow Seismic Survey - South of Adam’s Bridge Line 2 2.4 Bathymetry and Shallow Seismic Survey - South of Adam’s Bridge Line 3 2.5 Bathymetry and Shallow Seismic Survey - South of Adam’s Bridge Line 4 2.6 Bathymetry and Shallow Seismic Survey - South of Adam’s Bridge Line 5 2.7 Bathymetry and Shallow Seismic Survey - North of Adam’s Bridge Line 1 2.8 Bathymetry and Shallow Seismic Survey - North of Adam’s Bridge Line 2 2.9 Bathymetry and Shallow Seismic Survey - North of Adam’s Bridge Line 3 2.10 Bathymetry and Shallow Seismic Survey - North of Adam’s Bridge Line 4 2.11 Bathymetry and Shallow Seismic Survey - North of Adam’s Bridge Line 5 2.12 Bathymetry Survey in Palk Bay along Proposed Channel Alignment
  • 21. 1. Introduction 1.1 Preamble Shipping plays a vital role in the development of the Indian Economy as the country has been gifted with a peninsular coastline of about 6,000 km, which is studded with 12 major and over 150 intermediary and minor ports. It also has a strategic location as one of the world's main sea routes and thus has a history of maritime trade with countries across the globe. It is, however, unfortunate that despite having such a coastline India does not have, within her own territorial waters, a continuous navigable sea route around the peninsula from the Gulf of Mannar to Palk Bay and vice-versa due to the presence of shallow (about 3 m) sand-stone reef called 'Adam's Bridge' at Pamban near Rameswaram between the south-eastern coast of India and Talaimann on the western coast of Sri Lanka. Consequently, the entire coastal traffic from the east coast of the country to the west and vice-versa has to go around Sri Lanka entailing an additional distance of more than 254-424 nautical miles and 21-36 hours of sailing time. The shipping routes and savings are shown in Fig. 1.1. The Gulf of Mannar, an inlet to the Indian Ocean between south-eastern India and western Sri Lanka, is bounded on the north-east by the island of Rameswaram, Adam's Bridge and Mannar. The Gulf is about 130-275 km wide and 160 km in length. The Palk Bay on the north of Gulf of Mannar is about 64-137 km wide and 137 km long and includes many islands of Sri Lanka. Furthermore, Adam's Bridge is a chain of shoals, nearly seven in all, located between India and Sri Lanka separating Palk Bay and Gulf of Mannar. It is about 30 km long and the sea across this portion is shallow with a depth of about 3-3.5 m only during high tides. Various committees that have deliberated the subject have observed that a shorter route through the Palk Bay is an important necessity to save time and foreign exchange spent on import of fuel for Indian ships, also the country can stand to gain revenue in foreign currency due to toll collections from International ships.
  • 22. The creation of a channel called quot;Sethusamudram Ship Channel quot;, now under consideration of the Ministry of Shipping, Government of India, envisages construction of channel in stages and of varying lengths to suit different drafts ranging from 9.15 m to 12.8 m through dredging / excavation across the Adam's Bridge. It is proposed to study different alignments for the proposed channel in the light of representations from the public, the fisherman, the pilgrims and above all its techno-economic viability. The channel will originate from Tuticorin Harbour, extend north-east upto south of Pamban island, cut through Adams Bridge and proceed parallel to medial line of fishing between Sri Lanka and India before joining the Bay of Bengal channel. The width of channel will vary between 200 and 500 m and will require dredging to arrive at desired depth in the Adams Bridge and Palk Bay area. In GOM navigation depths will be used hence no dredging is required. The area engulfing the Adam’s Bridge known as ‘Sethusamudram’ has been derived from the Kings of Jaffna who were called 'Sethukavalar,' meaning protectors of Adam's Bridge and the Southern sea that surrounds the region. The Gulf of Mannar and Palk Bay/Palk Strait separated by Adam's Bridge are shown in Fig. 1.2. The proposed channel on commissioning will bring plenty of prosperity and industrial growth in the Indian hinterland lying along the proposed ship channel and the very presence of the short route would increase the turn-arounds of the coastal and international vessels. There are many other benefits which are difficult to quantify like (a) surge in the development of coastal trade, (b) development of Industries in Ramanathapuram and Tuticorin Districts, (c) amelioration of distress due to droughts visiting annually Ramanathapuram and Tuticorin Districts. • The project will further enable direct movement of Indian naval fleet between the east and west coast of the country instead of going around Sri Lanka. • The project opens up minor ports all along Tamil Nadu coastline upto the major port of Tuticorin and further west upto Colachal. The Tuticorin Port Trust, the nodal agency identified by the Ministry of Shipping for the implementation of the proposal has retained in July 2002 the National Environmental Engineering Research Institute (NEERI), Nagpur to conduct
  • 23. Environmental Impact Assessment studies followed by the Techno-Economic Viability for the proposed quot;Sethusamudram Ship Channel Projectquot;. 1.2 Earlier Studies Involving Creation of Canal One of the pioneering efforts undertaken to study the construction of the canal was the Commander Taylor's proposal of 1860. Although a series of proposals on the subject were forwarded thereafter during the British regime in the country, due consideration could never be given to the proposal and the Sethusamudram Ship Canal remained a dream for the Indian maritime community. After Independence, the Government of India continued to pursue the idea of constructing the Sethusamudram Ship Canal and among the many committees constituted for studying the feasibility of the project, the 'Ramaswamy Mudaliar Committee' constituted in 1955, was the first. In addition to studying the feasibility of the Sethusamudram Ship Canal project, the committee also studied the increase in potentiality of the port of Tuticorin, if it were to be developed into a deep-sea port alongwith the canal. Although Tuticorin port was in existence for a long time, it did not have berthing facilities for ships and those had to be attended at the anchorage, which was about 5 to 6 miles off the coast. The committee was of the view that the two projects namely the Sethusamudram Ship Canal and Tuticorin Harbour were closely inter-related and should be taken up and executed as part of the same project. After evaluating the costs and benefits, the project was found to be feasible and viable and the committee, therefore, proposed an initial capital outlay of Rs. 998 lakhs for the integrated Sethusamudram-cum-Tuticorin Port Scheme. Thereafter, series of studies were undertaken for the project, and many of those recommended for increase in draught from the original 26 ft. proposed by the Ramaswamy Mudaliar Committee. These studies also led to revision of the Project cost, as also to the expected savings in navigable distance resulting from the canal which ranged from 260 to 425 kilometres. Finally, the Tuticorin Harbour project was sanctioned in 1963 and the Government of India continued to study the various aspects of the Sethusamudram Ship Canal Project. Over a last century, several proposals were formulated by various committees to create a continuous navigable route all around the peninsula within the
  • 24. territorial waters of India. The latest study of the project was undertaken by the Lakshminarayanan Committee constituted by the Ministry of Shipping and Transport (Port wing) in 1981. The Committee, after a critical review of the earlier proposals, some of which envisaged the canal project by cutting across the main land, investigated another alignment known as the 'K' alignment across the Rameswaram island near Kodandaramasamy temple, and established the technical feasibility and economic viability of the alignment. This alignment was also in keeping with the representations of the public, the fishermen and the pilgrims of Ramanathapuram area who preferred the island being cut east of Rameswaram town. The Committee fixed the alignment across the land and along the northern and southern approaches in the sea, conducted drilling operations in sea and on land, collected tidal, current, wind and other meteorological data, and submitted to the Government of India in 1983 a project feasibility report with an estimated project cost of Rs. 282 crores including foreign exchange component of Rs. 3 crores. As per economic analysis by the Committee, the project would have generated surplus from twentieth year of its operations building up cumulative surplus of Rs. 453 crores at the end of twenty fifth year. However, no follow-up action on this report was initiated due to financial constraints. In its pursuit to make the Sethusamudram Ship Canal project a reality the Government of Tamilnadu in 1996 got, through Pallavan Transport Consultancy Services (PTCS) Limited, the Lakshaminarayanan Committee proposal updated for its economic viability with a view to seeking approval from Government of India for the project. Fresh particulars of cost and traffic were collected and incorporated in the report so as to reflect conditions as of 1996. Apart from the construction of proposed canal, which constituted the major component of project, creation of number of other infrastructural facilities as listed below were envisaged : • Construction of a quot;lockquot; • Construction of rubble mound type breakwaters on either sides of the canal • Navigational aids - Lighted beacons/buoys - Racons
  • 25. - Satellite based differential global system - Improvements to Pamban light house • Flotilla - Harbour tugs - Pilot, mooring, survey-cum-lighting launches - Despatch vessels • Shore facilities - Two service jetties - Slipways - Buoy yard - Repair workshop • Staff and administration buildings The canal proposed had two legs, one near the Point Calimere called the Bay of Bengal Channel and another across the narrow Danushkody Peninsula near Kodandaramasamy Temple. The Bay of Bengal Channel traverses the Palk Bay wherein the sea-bed is mostly soft to hard clayey-sand in nature and not corals or rock. The channel proposed was 19.3 km away from Point Calimere and Kanakesan Thurai where the coast consists of only clayey-sand. The second leg of the canal 802 m long would have crossed the narrow Danushkody Peninsula through the land portion. The entire coast of Danushkody Peninsula on the North and the South is all sandy. In the North Approach Channel, soft sand-stone was met with below 12 m depth and cutting this sand-stone was not necessary even in the ultimate stage of the canal. The canal would have, however, cut the road connecting Rameswaram and Danushkody. This road is being used by the Rameswaram fisherman to go to Danushkody for daily fishing as there is no habitation at Danushkody. The project envisaged a high-level or a swinging bridge at the crossing point to enable the traffic to go through. Tracer studies conducted at two places along the 'K' alignment established that the pattern of movement of sea-bed silt would almost be in the same direction as that of the proposed canal, and that the chances of siltation would be very minimal. The cost estimates for the proposed canal project were worked out by PTCS Ltd. based on the same quantities of dredging as in the 1983 report but with updated rates for the year 1996. The costs of dredging for various segments of channel for
  • 26. three different drafts viz. 30, 31 and 35 feet were worked out alongwith cost estimates for other components of the project including those of navigational aids and floating crafts. The construction period for 31 feet draft was estimated as four years with a capital expenditure of Rs. 760 crores. The operation and maintenance cost was estimated by PTCS Ltd. at Rs. 4.52 crores per year. An economic appraisal of the Sethusamudram Ship Canal project, taking into account cost estimates and cost benefits of the proposal, were made by PTCS Ltd. Based on Net Present Value (NPV) method of appraisal, an Internal Rate of Return (IRR) of 10 to 17% on the project investment was arrived at. Considering the then interest rate of 9% per annum of government lending to ports on the capital employed the project would have generated surplus from the 16 or 17th year of its operation, and thereafter the benefits to the canal company would have been 47 crores in the first year, and this would have increased to 100-120 crores every year. The traffic potential through the canal at various draughts projected by both the studies for 2000 AD were as follows : Upto 30' draught 31~32' draught Above 32' draught 1983 Committee 2,100 2,200 2,300 1996 Report 3,791 3,875 4,211 Later a report was prepared by NEERI in 1998 comprising the examination of environmental status of the project region based on information available on hydrography, marine water quality and ecological resources etc. An environmental impact study was recommended by NEERI as essential for fuller description and appreciation of the natural processes occurring in the region to delineate the environmental consequences including the ecological risks associated due to the ship canal and suggest measures for minimisation and mitigation of potential adverse impacts. The study for initial environmental examination of proposed canal also recommended that the canal route should pass through Adams Bridge area circumventing the Pamban Island instead of cutting through it. A detour was suggested from earlier alignment. Keeping in view the location biosphere reserves, it was suggested that an environmental viable alignment of route be selected in GOM so that proper distance from Biosphere reserves can be maintained and the available
  • 27. navigational route can be selected based on both environmental and technical viability. The EIA studies recommended in IEE report of NEERI was therefore subjected to proper scoping so that all the environmental concerns due to this project can be addressed and resolved through this report. The technical viability would depend on quantity of dredging required in the vicinity of Adams Bridge area keeping in view the draft required to operate the channel. This study report addresses environmental, technical and commercial viability of the proposed ship canal project. 1.3 Project Region The Palk Bay and the Gulf of Mannar together sprawling over an area of 10,500 sq.km (8O35’N to 9O25’N latitude and 78O8’E to 79O30’E longitude) in which the ship channel is proposed to be constructed are biologically rich and rated as the highly productive seas of the world and their biodiversity is considered globally significant. In the Gulf of Mannar, there are 21 islands covering an area of 623 ha which have been declared as National Marine Parks by the Tamilnadu Forest Department and the MoEF, Government of India. The islands are distributed in 4 groups namely Mandapam, Keezhakarai, Vembar and Tuticorin group. The islands have luxurient growth of mangroves in their shores and swampy regions. The coral reef of fringing and patch type are present around the 21 islands from Rameshwaram to Tuticorin covering a distance of 140 km. However, a major part of the reef is fringing type arising from shallow sea floor of not more than 5 m in depth. About 3600 species of flora and fauna have been recorded in this area. Fringing type of reef is present in Palk Bay. The hydrography data shows that there are two circulations of water masses in the region, the clockwise circulation of south-west monsoon and the counter clockwise circulation of north-east monsoon. The reported current velocities in the Palk Bay and the Gulf of Mannar are as mild as 0.2 - 0.4 m/sec except on few days during south-west monsoon when it rises upto 0.7 m/sec. The directions of currents follow the directions of predominant winds. The presence of corals along the proposed ship channel alignment is negligible however occurrence of major groups of biological resources like sea fan, sponges, pearl oysters, chanks and holothuroids at various locations have been reported. All the three groups of prochordata organisms, considered as the connecting
  • 28. link between invertebrates and vertebrates, viz., hemichordata, cephalochordata and urochordata have been recorded mostly around the islands of the Gulf of Mannar. There are 87 fish landing stations between the south of Point Calimere and Pamban in the Palk Bay, and 40 stations in the Gulf of Mannar between Pamban and Tuticorin. Out of over 600 varieties of fishes recorded in this area, 72 are commercially important. During 1992-2001, the fish production has increased gradually from 55,300 tonnes in 1992 to 2,05,700 tonnes in 2001. Non-conventional fishing in the region is represented by pearl, chank, sea weeds, ornamental shells and holothurians. Rare and endangered species of sea turtle, dolphin, sea cow and whale are recorded in the Gulf of Mannar and the Palk Bay. The sea cow inhabitates the shallow shore regions where grasses occur, while other endangered animals mostly prefer deep sea. Several species of green algae, brown algae, red algae, blue-green algae and sea grasses are recorded in the Gulf of Mannar and the Palk Bay. A few of the islands are reported to possess patches of mangroves predominated by Avicennia sp. and Rhizophora sp. Most of the habitats of the sensitive biota, viz., corals, pearl oysters, chanks, dugong, holothuroids and marine algae are along the coast and around the islands. Along the coast in the Gulf of Mannar and the Palk Bay there are 138 villages and towns spread over 5 districts. 1.4 Geomorphology of Study Region The study region stretches between Tuticorin and Dhanushkoti including its coastal and offshore water in Gulf of Mannar and Palk Bay area between Pumban and Point Calimere. The coastline near Tuticorin is extensively used due to the presence of major port. Beach is very flat and narrow between Tuticorin and Sippikulam. Offshore islands viz; Pandyan Tivu, Van Tivu, kasuvari Tivu, Vilangu Shuli Tivu and Kariya Shuli tivu are present within 5 km distance from the coast line along this segment and offer protection from wave action. The backshore of this costal segment largely consists of salt pans. The Viappar river joins Gulf of Mannar near Sippikulam. An extensive coastal low land is seen between Sippikulam and Vembar (Loveson, 1994).
  • 29. The coastal segment between Sippikulam and Naripaiyur is open without any offshore islands or submerged coral banks and is exposed to direct action of waves both during southwest monsoon and northeast monsoon. The coastline near Kannirajapuram is found with large extent of beach rocks with pear luster (Loveson, 1994). Wide and flat sandy beach with numerous small dunes are seen between Naripaiyur and Mukkaiyur . The formation of sand island off Tuticorin indicates this region as sediment sinks with progressive accumulation of sand. The large beach storage of sand between Manppad and Tiruchendur, Vembar and Valinokkam and Rameswaram Island is an indication of depositional features of littoral sediments. Gundar river joins the sea near Mukkaiyur. The presence of offshore islands are once again noticed from Mukkaiyur till Mandapam. There are 16 islands noticed along this coastal segment viz., Uppu Tivu, Shalli Tivu, Nalla Tanni Tivu, Anaipar Tivu, Palliyarmunai Tivu, Puvarasanpatti Tivu, Appa Tivu, Talairi Tivu, Valai Tivu, Muli Tivu, Musal Tivu, Manali Tivu, Pumorichan Tivu, Kursadi Tivu, Kovi Tivu, and Shingle Tivu. The beaches between Mukkaiyur and Valinokkam are very wide with elevated dunes. Extensively developed beach is seen at Kilamundal. Flat rocky shorelines are noticed near Valinokkam (Loveson, 1994). Extensive spread of rocky shore with hard sand stone platform is seen off Valinokkam. There is a Bay formation immediately on the northern side of Valinokkam. No beach is present especially during high tide Kilakarai. A narrow and flat beach is noticed near Sethukarai with the abundance of algae along the coastline. Loveson and Rajamanickam (1987, 1989) have identified a spit growth near Pariyapattinam. They described well-developed hooked nature spit extending southeast and connecting the main land in southwest direction. This formation of spit extending southeast and connecting the main land in southwest direction indicated seaward progradation of the coast between Tuticorin and Mandapam. Wave cut cliff is seen at places like Valinokkam, Sethukarai and Mandapam. Very low and narrow sandy beach is noticed between Kalimangundu and Vedalai (loveson, 1994). Sea is found to be very calm in this region. Wave cut platform is once again noticed along the coast of Vedalai. A patch of rocks is observed along the coast between Mandapam camp and Mandapam tip. Agrawal (1988) observed that the area
  • 30. between Mandapam tip and Pamban Island is attributed to a sand spit later emerging as a high water land. The coastline between Mukkaiyur and Mandapam is totally protected from northeast monsoon waves. Chandrasekar et al. (1993) indicated reversal trend in the direction of sediment transport between Mandapam and Cape Comorin due to change in the coastal configuration, deposition as the formation of numerous spits along this coast that too, in a region where fluvial activities are negligible. The presence of three offshore islands viz., Pumorichan Tivu, Kursadi Tivu, Shingle Tivu are noticed off Rameswaram Island in Gulf of Mannar. The stretch of shoreline around Rameswaram Island exhibits distinct variation (Loveson, 1994). The central zone of the northern part of Rameswaram is made up of undulatory sandy bodies with a relief upto 21 m above Mean Sea Level (MSL). This area is partially covered with huge dunes. Northern part of Rameswaram Island is occupied by raised coral plain. Characteristically, this zone is flat with dead corals and numerous minor circular depressions. These depressions are liable to get filled with water during rainy season and is entirely devoid of vegetation. Huge sand dues of medium grain and white sands are found in the central part of the island. Dune patterns are well developed by the active Aeolian processes, resulting in the migration of dunes with frequent changes in their shapes and patterns from time to time but generally trends due east to west. The sand sheet covers the southwestern zone of the island. Within this unit, on the western part, localized sand mound of about 19 m height is noted (Loveson, 1994). The beach zones in this area are broader with wide inter tidal zones. The tail portion of Rameswaram occupying the southeastern part of the island has coral swampy plain, which is considered to be of recent in age. This vast flat and low-lying plain, which is considered to be of recent in age. This vast flat and low lying plain is essentially composed of thin sheet of silt and clay materials in which coral fragments are impregnated. Invariably, this zone is often inundated by seawater during high tides, monsoons and storm seasons. At east, a long sand spit of about 20 km length is formed up to Arimunai and it tends to grow longer and wider. The width of this sand spit which is about 2 km near Uthalai, reduced to Arimunai and it tends to grow longer and wider. The width of this sand spit which is about 2 km near Uthalai, reduced to 1250 m at Mukkuperiyar, 750 at Dhanushkodi and 150 m at just east of Arimunai and coverages on tip at Arimunai. The beach berm is found to be highly elevated along the sand spit
  • 31. bordering Gulf of Mannar, but very low and flat along the side bordering Palk Bay. There is a marked depression in the sand spit level between Palk Bay and Gulf of Mannar between Dhanushkodi and Arimunai. Due to such level difference, the water overflows during spring tide particularly from Bay carrying the fine sediment to the backshore regions. Most of the time, the water is stagnant and remains along the trough of the spit. This low lying region is fully occupied by water column during the monsoon season. The coastal process between Arimunai (India) and Talaimannar (Sri Lanka), i.e. along Adman’s Bridge is quite complex which predominantly control the exchange of sediment between Gulf of Mannar and Palk Bay. Adam’s Bridge is formation of submerged sand shoals and there are around 17 islands present with bushes and plants. The average length of these islands vary between 0.8 km to 3 km. This is exposed to complex current pattern with the presence of quicksand. The currents near Adam’s Bridge and Pamban Pass are found to be more seasonal. Submerged sand shoals are seen shifting south of Arimunai and remain quasi-steady. The nearshore on the northern side of the Rameswaram Island is found to be very shallow causing the northeast monsoon waves to break far offshore. The coastal stretch between Mandapam and Ariyaman in Palk Bay shows the presence of wide beach with elevated dunes. Loveson et.al. (1990) classified the coastal zone of Palk Bay into 3 groups; (i) uplands/highlands with scantly vegetation, comprised of Cuddalore sandstone formations, (ii) along the lower elevations sedimented Cuddalore sand stones, and (iii) coastal lands mainly of microdeltas, swamps, and beach ridges based on the geomorphological features. A large amount of sediments from those pediments are removed constantly by rainfall and minor rivers. Because the pediments are placed over the substratum which is appreciably sloping towards the sea, the erosion is found to be intensive along the coastal islands. The eroded sediments brought to the littoral zone are dumped in Palk Bay. As Palk Bay is shallow and protected from the high waves and currents, the materials brought by these minor rivers is deposited in the mouth of each river/stream, leading to the formation of micro-deltas in due course, encouraging the formation of new shorelines.
  • 32. Palk Bay is very shallow and is largely occupied by sand banks and shoals (Agrawal, 1988). Abundant growth of corals, oysters, sponges, and other sea bottom communities flourish in the relatively calm waters of Gulf of Mannar. Sea level variations along the Tamilnadu coast were studied by Loveson et.al., (1990) using satellite imageries and photographs. About 300 sediment samples were collected along the central Tamilnadu coast by Chandrasekhar and Rajaminckham (1993) and suggested to possibility of the supply from ultrabasic, pegmatitic and granitic source of material to the depositional basic. River Influx and Sedimentation in Palk Bay/Palk Strait Vaigai River basin is located between latitude 9O15’ and 10O25’N and longitude 77O15’ to 79O covering an aerial extent of 8600 sq. km. in the Madurai and Ramanathapuram districts of Tamil Nadu, India. The river Uaigai, originates at an altitude of 2200 m above mean sea level in the western ghats, drains through the plains and confluences with the Bay of Bengal near Attangarai of Ramanathapuram district. The basin is bounded by western ghats, in the west, Palni hills in the north, a stretch of mountain ranges comprising Varushanad and Andipatti hills in the south and the Bay of Bengal in the east. Vellar estuary also comes under Palk Bay (lat. 11029'N ; long. 79046'E). Sediment in estuarine region are rich in organic carbon, phosphorus and nitrogen and finally finds its way into Palk Bay. The nutrient rich water (due to settling of unified feed particle) discharges periodically from the shrimp farms however did not show influence on nutrients content of sediment in estuary. Sea Bed Characteristics Geomorphology of the area exhibits tidal flats, estuaries and marsh zones as well as linear stabilized older younger sand dunes. Beach dunes run parallel to the sea. Geologically, thick section of Quaternary alluvium overlies the Archean charnockite rocks and these are in turn overlain by the Holocene tidal flat deposits. The detailed lithological observation of cores reveals that the sediments have been depositing in phases and that there has been pulsating supply of fine sediments onto the tidal flats and estuaries. Sediment in the cores show very heterogeneous mixture of quartz sand, biogenic carbonate and clay. Geomorphologic observations
  • 33. reveal that the coarse sand in the tidal zones reflect ample sediment supply during the Northeast monsoons. A number of different types of topographical features are found in the study area, such as continental shelves, deep sea basins, troughs, trenches and continental slopes. Sediments are moderately well stored and slightly well skewed. Kurtosis value of 0.3 shows less sorting in grain size distribution. Clay is absent and sediments are made of detritus. Different grain size sediment show variable levels of heavy metal (Fe, Mn, Cr, Cu, Pb, Zn, Cd & Hg) concentration (Table 1.1). 1.5 Environmental Impact Assessment (EIA) The pre-construction phase would involve land acquisition, resettlement and rehabilitation of affected population as also compensation hence impacts due to such activities are required to be assessed. During the construction phase there will be considerable increase in rail and road traffic to and from the island for transportation of men, material, machinery and equipment. Also, the land access, now available to the local fisher folks, to Dhanushkody area for traditional fishing may be hindered unless alternative arrangements are made. The potential sites for dredging and disposal of dredged material are to be decided as also shipping operations will have to be regulated so as to cause minimum disturbance to the normal fishing activities. During the operation phase of the channel, the potential sources of marine pollution are spillage of oil and grease, marine litter, jetsam and floatsam including plastic bags, discarded articles of human use from the sea-borne vessels hence impacts due to such wastes are to be assessed. The channel may facilitate the movement of fishes and other biota from the Bay of Bengal to the Indian Ocean and vice versa. By this way, the entry of oceanic and alien species into the Palk Bay and the Gulf of Mannar, as also the disposal of endemic species outside the Palk Bay and the Gulf of Mannar may occur. The project is expected to provide employment opportunities and avenues of additional income through establishment of small ancillary industries. The project will also trigger development of coastal trade between the ports south and north of Rameswaram, consequently reducing the load and congestion on railways and
  • 34. roadways. The project will help in saving considerable foreign exchange through reduction in oil import bill, and generate revenue income from dues levied on ships transiting the canal which will add to the national economy. 1.5.1 Objectives of EIA Study The objectives of the study is to carry out assessment of environmental impacts, its quantification and for delineating environmental management plan for Sethusamudram Ship Channel project to enable the Ministry of Shipping to obtain environmental clearances from concerned local, state and central Government authorities. The environmental assessments are to be carried out in keeping with the applicable guidelines and notifications of the regulatory agencies as also the International transboundary concerns. The rapid environmental impact assessment study report was prepared incorporating primary data collected for the region and also available secondary data, environmental impact statement based on identification, prediction and evaluation of impacts, ranking of environmentally viable alternatives and environmental management plan for the acceptable route. The comprehensive EIA report was prepared later based on the primary data collection for region.The area for Environmental Impact Assessment Study is shown in Fig. 1.3. 1.5.2 Scope of the Study The scope of the comprehensive EIA study is summarised as follows : i. Assessment of the present status of coastal water, marine, land, biological and socio-economic components of environment including parameters of human interest along the proposed ship canal route ii. Identification of potential impacts on various environmental components due to activities envisaged during pre-construction, construction and post- construction/ operational phases of the proposal iii. Prediction of impacts on the various environmental components using appropriate mathematical/simulation models iv. Preparation of environmental impact statement based on the identification, prediction and evaluation of impacts v. Preparation of detailed Environmental Impact Statement (EIS) duly bringing out the likely impacts of the project, mitigation, protection and enhancement
  • 35. measures including impacts due to the disposal of dredged materials, consideration of alternatives, etc. vi. Short-listing of viable routes for the proposed shipping canal based on technical requirements, and delineation of acceptable canal route for shipping based on environmental considerations vii. Delineation of Environmental Management Plan (EMP) outlining preventive and control strategies for minimising adverse impacts for various stages of the proposed project including the costs and time schedules for its implementation viii. Formulation of environmental quality monitoring programme for various phases of the project to be pursued as per the requirements of statutory authorities 1.5.3 Plan of Work • Collation/ collection of primary and secondary data on benthic flora/ fauna, meiobenthos, bacrobenthos • Collation/collection of primary and secondary data on phytoplankton, zooplankton in water column • Assessment of general physico-chemical quality of water • Assessment of sediment quality and its texture • Fishery potential of the region • Collation of secondary data on bathymetry, sediment transport, water current and directions, wave height, tidal variation, dispersion coefficients and other hydrographic parameters • Collection of information about marine parks and ecologically sensitive species • Qualitative and quantitative assessment of waste loads likely to accrue from proposed activities in the hinterland all along the canal • Assessment of change in hydrographic pattern in the region during and after implementation of dredging activities vis-à-vis impact on coastal ecosystems
  • 36. Assessment of impacts on food chain productivity, growth of benthos and vegetation, phytoplankton densities predatory fish and birds in the coastal waters • Assessment of impacts on ecological health due to hydrodynamic and water quality changes 1.5.4 Components included in the Study 1.5.4.1 Coastal Water Environment • Study of coastal water environment with respect to its physico-chemical and biological characteristics • Assessment of mangrove forests/vegetation in the coastal and inter- tidal zones • Determination of primary and secondary productivity in the coastal region • Prediction of impacts of discharges during dredging on marine water quality • Evaluation of impacts due to shipping activities in keeping with the CRZ regulations 1.5.4.2 Marine Environment • Establishing abiotic and biotic characteristics of water and sediment component of marine environment
  • 37. Delineation of hydrodynamic conditions (tide, current, wind and waves) including the pattern of movement of sea-bed material in the project region • Assessment of impacts of dredging, transportation and disposal of dredged materials like interference with fishing, increased turbidity and disturbance to the flora and fauna • Identification of likely impacts on the islands/region along the shipping canal • Prediction of impacts of the project on other natural marine processes 1.5.4.3 Land Environment • Study of existing landuse pattern, vegetation and forestry along the coastline of the region • Assessment of impacts on landuse pattern of main land and islands with respect to agriculture and forestry due to proposed project 1.5.4.4 Biological Environment • Identify the sensitive receptors and ecological systems within the study region • Collection of information about flora and fauna and determination of species diversity, density, abundance etc. • Collection of available information on both terrestrial and aquatic flora and fauna, including rare and endangered species in the study region • Assessment of potential impacts on aquatic flora and fauna due to effluent discharges • Prediction of stress on biological environment in the study region • Estimation of anticipated impacts on fisheries and other useful aquatic flora and fauna • Delineation of measures for abatement/reduction of biological stress 1.5.4.5 Socio-economic and Health Environment
  • 38. Collection of baseline data related to socio-economic profile of the study region with reference to : • Human settlements, occupational pattern, employment and income in the region • Infrastructure resource base, viz. Medical, education, water resources, power supply • Economic resource base, viz. Agriculture, industries, forest, trade and commerce • Health status, viz. morbidity pattern with reference to prominent and endemic diseases • Cultural and aesthetic attributes in the study region including places of historical/ archeological, religious, recreational importance - Estimation of disruption in social life due to relocation of human settlements and assessment of rehabilitation requirement - Assessment of impacts on places of historical/ archeological importance and aesthetic impairment - Assessment of economic benefits to community and environment due to the proposed activities 1.5.4.6 Ecological Risks • Quantification of ecological risks and delineation of ecological risk mitigation measures • Study and survey of environmentally sensitive sites viz. spawning and breeding grounds and coral reefs • Analysis of information with regard to environmental impact (direct, synergistic and cumulative) and associated nagivational and landward activities in and around the project region • Quantification of ecological risks with recourse to appropriate ecosystem models 1.5.5 Environmental Management Plan
  • 39. Environmental Management Plan (EMP) is to be drawn for the pre- construction, construction and operational phases after identifying, predicting and evaluating the impacts on each component of the environment with a view to maximising the benefits from the proposed project. The EMP to be prepared would mainly cover mitigation measures at dredging sites, transportation route (of dredged spoil), and dumping site. EMP would essentially consist of details of work proposed under mitigation measures, implementation schedule of such measures, fund and manpower requirements. 1.6 Techno-economic Viability 1.6.1 Traffic Potential The future traffic potential is to be studied over short, medium and long term time horizons in terms of volumes of cargoes in tonnage like container, dry, liquid, bulk, also number, size and category of ships and other types of vessels taking into due consideration the future economic growth. 1.6.2 Alignment of Channel Alignment of the channel is to identified with reference to environmental factors, navigational aspects, morphological aspects, seabed movements/ sedimentation likely to be induced by the cross currents in the canal after its creation and during operation.
  • 40. 1.6.3 Dredging and Disposal Areas The disposal areas (within Indian territory) of the dredged materials are to be spelt out to satisfy the statutory requirements of State/ Central Govt. Deptts./Ministry of Environment & Forests and other concerned Archeological Deptt., Tamilnadu Pollution Control Board, Tamilnadu Maritime Board etc. so as to ensure that the dumping of dredged materials will not adversely affect the environment. Study the transboundary effects such as flooding and effects of fishery potential etc. on the Sri Lankan side due to the disposal of dredged materials. Also, the quantum of maintenance dredging per annum, its periodicity, disposal areas etc. are to be assessed. 1.6.4 Cost Estimates and Economic Viability This would include the project cost estimates towards preliminary surveys and site investigations; dredging costs, transportation and dumping of dredged material at the chosen sea/land locations. The economic analysis for a selected route will also be carried out. 1.7 Permits and Approvals Permits and approvals from the following mentioned agencies / organisations are envisaged : • Tamilnadu State Pollution Control Board • Tamilnadu State Forest & Environment Department • Tamilnadu Maritime Board • State Wildlife Warden • Chief Conservator of Forests • Ministry of Environment & Forests • Ministry of Defence / Indian Navy • Archeological Department • Ministry of External Affairs • Sri Lankan Government
  • 41. Fig. 1.2 : The Gulf of Mannar and Palk Bay/Palk Strait Area
  • 42. Fig. 1.3 : The Study Area
  • 43. Table 1.1 Texture, Mineralogy and Elemental Composition of Sediments in Palk Strait Statistical Parameters of Sediments (units in φ) Area Mean Dispersion Skewness Kurtosis Median Palk strait 2.4 0.4 -0.07 0.3 2.3 Percentage of Various Minerals in Sediments Area Quartz Feldspar Carbonates Clays Palk strait 64 4 32 -- Chemical Composition of Bed Sediments Fe Mn Cu Pb Zn Cd Hg Area Cr ppm Org carb % ppm ppm ppm ppm ppm ppb % Palk strait / 0.38 110 122 8 8-40 34 1-2 107 0.09 Palk Bay Gulf of Mannar 0.35 90 BDL-10 BDL-70 10 BDL-40 BDL BDL 0.3-0.4
  • 44. 2. Proposed Project and Oceanographic Environmental Setting 2.1 Proposed Project The project envisages a ship navigation channel across Adam’s bridge connecting Gulf of Mannar with Palk Bay and further Palk Bay with Bay of Bengal with dredging of navigational channel in Palk strait. The project enables the direct movement of ship between the east & west coast of the country instead of going via Srilanka. The route will originate from Tuticorin harbor, extend N-E up to south of Pamban island using available navigation depths which is more than 20 m, cut through Adam’s Bridge where a channel will be required to be dredged with depth suiting the draft requirement and proceed parallel to medial line for fishing rights in Palk Bay through available navigation depth, pass through a channel to be created in Palk strait by dredging and join Bay of Bengal. The construction of ship channel will be done to suit different drafts 9.15m, 10.7m & 12.8m by dredging & Excavation in Adam’s Bridge area and Palk strait. • Tentative specification of Navigational channel are : − First phase : 9.15-m draft. 300m width − Second phase : 10.7 m draft 300m width − Third phase : 12.8 m draft 500 m width • Phase wise development − First phase : control two way traffic − Second phase : control two way traffic − Third phase : two way traffic The project besides creating a channel envisages deployment of Vessel Traffic Management System (VTMS) to be located on Rameshwaram Island and at pt. Calimere to control navigation. Provision will be made for necessary navigational aids which include lighted Fairway Buoys, channel marked, Buoys, Recons, flotilla etc.
  • 45. NEERI has undertaken studies for assessing environmental status of the region and have engaged services of National Ship Design Research Center (NSDRC), Visakhapattanam for oceanographic & hydrographic surveys besides drilling operations along proposed alignment, to collect borehole data. Services of National Hydrographic Office (NHO) Dehradun were engaged to conduct bathymetry and bottom profile studies in Palk Bay Strait area. 2.2 Oceanographic Status in Project area along Route Alignment The stability of the study area along the alignment is influenced by number of environmental factors, primarily due to geological, biological, meteorological and oceanographical parameters, which distinctly vary from one sector of the coast to another. The most influencing factors in coastal waters are the tides, waves and currents, and they interact each other to produce an energy input, which shapes and modifies the shore. Any attempt to study these problems require a thorough understanding of the factors and processes involved in the coastal geomorphological system, the pattern of sediment transport in the littoral zone, the volume of exchange of littoral drift from one region to another, the monthly and seasonal variation, and the intermittent oceanographic factors acting on the system. 2.2.1 Waves The winds blowing over the ocean surface has the direct effect on wave generation as it is related to wind speed, extent of fetch and wind duration. Pilot (1953) gives a detailed account of the southern part of the Bay of Bengal. The oceanographic pattern along the Indian coast is mainly governed by the monsoons. The southwest monsoon influences this pattern from June to September. The average speed of the wind during southwest monsoon period is about 35 km per hour frequently rising up to 45-55 km per hour. The average speed of the wind during northeast monsoon (October to January) prevails around 20 km per hour. Tropical storms known as cyclones frequently occur in the Bay of Bengal during October to January. In eastern coast, the wave activity is significant both during southwest and northeast monsoons.
  • 46. 2.2.1.1 Wave Measurement The observations on wave measurement show that significant wave height varied from 0.46 to 1.12 m in March, 0.33 to 1.18 m in April, 0.46 to 1.74 m in May, 0.71 to 1.78 m in June, 0.68 to 1.6 m in July, 0.68 to 1.49 in August, 0.64 to 1.76 m in September, 0.54 to 1.35 m in October, 0.40 to 1.13 m in November, 0.40 to 1.12 m in December, 0.35 to 1.03 m in January and 0.35 to 1.23 m in February. Measured significant wave height is given in Fig. 2.1 The maximum wave height varied from 0.67 to 1.78 m in March, 0.44 to 1.73 m in April, 0.66 to 2.81 m in May, 0.98 to 2.72 m in June, 0.91 to 2.45 m in July, 0.89 to 2.48 in August, 0.89 to 2.96 m in September, 0.66 to 2.94 m in October, 0.59 to 1.60m in November, 0.48 to 1.73 m in December, 0.47 to 1.68 m in January and 0.45 to 1.79 m in Febraury. Wave heights are relatively higher during southwest monsoon. Measured maximum wave height is depicted in Fig. 2.2. Monthly variation of breaking wave height (m) is depicted in Table. 2.1 The wave direction (with respect to north) mostly prevailed 140O to 230O in southwest monsoon (June to September), 85O to 150O during northeast monsoon (October to January), and 90O – 200O during fair weather period (February to May). The wave direction is highly variable in January and May. The zero crossing wave period predominantly varied 3-8 s in December to April, 4-10 s in May and 4-9 s during rest of the year. The wave heights recorded in west and east coast offshore area of India are compared. In west coast the wave heights off Mumbai are in between 2.0-6.0 m in southwest monsoon, 2.0-3.0 in north east monsoon, and 1.0-2.5 m in fair weather period. Off Goa the wave heights are between 0.8-5.1 m in southwest monsoon. Off Mangalore wave heights are around 3.2 m in southwest monsoon and 0.8 m in fair weather period. Off Trivandrum the wave heights are 2-4.3 m in southwest monsoon and 1-2.0 m in fair weather period. Off Cochin the wave heights are between 0.9-2.0 in southwest monsoon. In east coast off Chennai the wave heights are 2.5 m in southwest monsoon and 1 m in northeast monsoon. Off Visakhapatnam coast these heights are between 0.8-3.9 m in southwest monsoon 0.6-2.9 m in northeast monsoon and 0.5-3.8 m in fair weather period. Off Orissa the wave heights are between 1.0-2.5
  • 47. m in southwest monsoon and 0.8-2.5 m in northeast monsoon, and around 1-2.2 m in fair weather period. The wave climate reported in the literature indicates that the wave activity in the study region remains relatively low compared to the rest of Indian coast. 2.2.1.2 Wave Refraction Tuticorin to Arimunai Wave refraction during the southwest monsoon shows appreciable divergence of wave orthogonal near Adams Bridge, Arimunai, and south of Sippikulam. Wave activity was found to be extremely reduced between Mandapam and north of Valinokkam due to the presence of offshore islands, which causes waves to break offshore. Wave energy concentration was observed at Mukkuperiyar, Valinokkam, Mukkaiyur and Vember. The region between Sippikulam and Tuticorin is again protected from southwestern waves due to the presence of islands. The presence of offshore islands is observed to protect the coastal stretch from Mandapam to Valinokkam, and Veppalodai to Tuticorin from northeasterly waves. Wave refraction between Tuticorin and Arimunai during NE Monsoon and SW Monsoon is shown in Figs. 2.3-2.5 respectively. Arimunai to Vedarnyam This segment of the coastline lies in Palk Bay and waves propagating from south (during southwest monsoon and fair weather period) do not enter in this region. Studies are indicating that even during the northeast monsoon, waves are found not entering the bay and get attenuated across the shoals of middle banks and south banks between Vedaranyam (India) and Matakal (Sri Lanka). Part of wave energy with less magnitude enters the bay through Pedro Channel and reach the coast between Puduvalasai and Gopalpatnam. Wave refraction between Arimunai and Vedaranyam during NE Monsoon is shown in Fig. 2.6 respectively.
  • 48. 2.2.1.3 Wave Period During southwest monsoon, the wave period predominantly persisted 9 –10 s between Vembar and Keelamunadal, and 6 – 8 s between Uthalai and Dhanushkodi. During the northeast monsoon, it predominantly persisted 5 –10 s between Vembar and Keelamundal, and 5 –8 s between Uthalai and Dhanushkodi east. In fair weather period, it remained 6 –10 s along Vembar to Keelamundal, and 9 –10 s along Uthalai to Dhanushkodi. The study shows that the waves approaching the coastline consist of both seas and swells. Monthly variation of wave period is depicted in Table 2.2. Predominent wave character buoy data off Vembar from wave rider is given in Table 2.3. 2.2.2 Tides and Currents The tides in this region are semidiurnal. The various important tide heights with respect to chart datum near Pamban pass are as follows. Mean Higher High Water Springs = 0.70 m Mean High Water Neaps = 0.48 m Mean Sea Level = 0.41 m Mean Low Water Neaps = 0.32 m Mean Low Water Springs = 0.06 m It shows that the average spring tidal range is about 0.64 m and the neap tidal range is about 0.16 m. The tidal range is relatively low compared to the northern part of the Indian coast, which inturn would restrict the influence of tidal currents. 2.2.2.1 Longshore Currents The longshore current speed remained weak (<0.1 m/s) throughout the year between Keelamundal and Vedalai and along the northern coast of Rameswaram from Arimunai to Ariyaman. Consequently, it was relatively moderate (>0.1 m/s) throughout the year between Sippikulam and Naripaiyur and along the southern coast of Rameswaram i.e. from Uthalai to Mukkuperiyar. The spit between Dhanuskodi and Arimunai in Gulf of Mannar experienced relatively stronger currents during fair weather period (March to May) and remained weak during southwest monsoon and northeast monsoon periods (June to February). It indicates that the stronger currents prevailing in the adjacent coasts during
  • 49. southwest/northeast monsoons becoming weaker between Dhanushkodi and Arimunai. This phenomenon of sudden weakening of littoral currents causes the littoral drift to deposit and form series of sand shoals near Arimunai. Such prolonged deposition of littoral drift over many years can be attributed to formation of numerous islands and shallow shoals across the strait between Arimunai (India) and Talaimannar (Sri Lanka) called Adam’s Bridge. The Uthalai coast facing Gulf of Mannar experienced stronger longshore currents (0.2 – 0.5 m/s) throughout the year, followed by a segment of the coast between Vembar and Naripayur (0.2 – 0.4 m/s) with exposure to relatively high wave energy environment. The prevalence of weak longshore currents between Keelamundal and Vedalai is causing deposition of littoral drift on either side, as evidenced by the occurrence of many offshore islands and submerged shoals. Although the Pamban Pass, connecting Palk Bay and Gulf of Mannar break the continuity of longshore current between the mainland and Rameswaram Island, the magnitude of the current on either side of Pamban Pass is found to be very weak. This reduces the volume of littoral sediments approaching the Pamban Pass which inturn reduces the quantity of sediment passing through Pamban Pass from Gulf of Mannar to Palk Bay. The longshore current direction prevailed northerly during southwest monsoon and fair weather period, and southerly during northeast monsoon between Sippikulam and Uthallai. The entire coast of Rameswaram facing Gulf of Mannar, experienced the current in westerly direction throughout the year, except in June and July. This phenomenon of northerly currents along the mainland and westerly current along Rameswaram create a zone, wherein, most of the littoral drift will get deposited. Only a fractional proportion is expected to move from this region by tide induced currents towards the Adams Bridge. This would reduce the volume of littoral sediment reaching the Adam’s Bridge and intrun. The quantity of sediment entering Palk Bay from Gulf of Mannar. These sediments deposited at shoals is supplied back to the littoral system for the mainland, when the longshore currents move towards south during the ensuing northeast monsoon.
  • 50. Although the longshore current was extremely weak along the sand spit facing Palk Bay, it tends to be easterly during southwest monsoon/fair weather period and westerly during northeast monsoon. Similarly, at Ariyaman, the longshore current direction was southerly during southwest monsoon/fair weather period and northerly during northeast monsoon, indicating just opposite to the phenomenon observed in Gulf of Mannar. Such processes once again indicate the accumulation of littoral drift on either side of Rameswaram Island during southwest monsoon and removal during northeast monsoon, making this region as a sediment storage reservoir. Monthly variation of longshore current (m/s) is given in Table 2.4. 2.2.2.2 Currents Studies Continuous measurements on tidal current speed and direction were carried out for three seasons at 4 locations viz., i) stn. C1 - off Arimunai-Adam’s Bridge, ii) stn. C2 - off Uthalai (Gulf of Mannar), iii) stn. C3 - Pamban Pass, and iv) stn. C4 - off Tharuvai (Palk Bay). The measured currents were resolved into parallel and perpendicular components with respect to the coastline. The variation of current speed and direction and the resolved components are presented in Figs. 2.7 to 2.35. Southwest monsoon (June to September) Near Arimunai (stn. C1) the average current speed occurred around 0.2 m/s with the maximum and minimum speed of 0.3 m/s and 0.05 m/s respectively both at surface and bottom (Fig. 2.7). The variation of current direction had not followed the tidal phase. It showed consistent northwesterly flow over one tidal cycle and changed to southeasterly flow for the subsequent tidal cycle. It indicates that current shifted its flow direction for alternate tidal cycles rather than flood and ebb tidal phases. The shore parallel component of currents indicates that for larger tidal range, the flow was in westerly direction and for small range in easterly direction. The shore perpendicular component of currents indicates that the flow consistently existed from Gulf of Mannar into Palk Bay. The northwesterly and southeasterly currents over different tidal cycles were found to be equally predominant.The component of currents near surface and bottom off Ariminai during southwest monsoon is depicted in Fig. 2.8 and Fig. 2.9 respectively. At Uthalai (stn. C2) in Gulf of Mannar, the average current prevailed around 0.1 m/s with the maximum and minimum of 0.2 m/s and 0.05 m/s respectively (Fig.